1
|
Dai D, Zhu Z, Han H, Xu T, Feng S, Zhang W, Ding F, Zhang R, Zhu J. Enhanced tyrosine sulfation is associated with chronic kidney disease-related atherosclerosis. BMC Biol 2023; 21:151. [PMID: 37424015 DOI: 10.1186/s12915-023-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.
Collapse
Affiliation(s)
- Daopeng Dai
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Hui Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Tian Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Fenghua Ding
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Ruiyan Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinzhou Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Does C-C Motif Chemokine Ligand 2 (CCL2) Link Obesity to a Pro-Inflammatory State? Int J Mol Sci 2021; 22:ijms22031500. [PMID: 33540898 PMCID: PMC7867366 DOI: 10.3390/ijms22031500] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms of how obesity contributes to the development of cardio-metabolic diseases are not entirely understood. Obesity is frequently associated with adipose tissue dysfunction, characterized by, e.g., adipocyte hypertrophy, ectopic fat accumulation, immune cell infiltration, and the altered secretion of adipokines. Factors secreted from adipose tissue may induce and/or maintain a local and systemic low-grade activation of the innate immune system. Attraction of macrophages into adipose tissue and altered crosstalk between macrophages, adipocytes, and other cells of adipose tissue are symptoms of metabolic inflammation. Among several secreted factors attracting immune cells to adipose tissue, chemotactic C-C motif chemokine ligand 2 (CCL2) (also described as monocyte chemoattractant protein-1 (MCP-1)) has been shown to play a crucial role in adipose tissue macrophage infiltration. In this review, we aimed to summarize and discuss the current knowledge on CCL2 with a focus on its role in linking obesity to cardio-metabolic diseases.
Collapse
|
3
|
Lemmnitzer K, Köhling S, Freyse J, Rademann J, Schiller J. Characterization of defined sulfated heparin-like oligosaccharides by electrospray ionization ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4692. [PMID: 33415813 DOI: 10.1002/jms.4692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Glycosaminoglycans (GAG) as long, unbranched polysaccharides are major components of the extracellular matrix. Many studies provided additional evidence of a specific binding between mediators and sulfated GAG, at which the sulfation code-which means the number and positions of sulfate groups along the polysaccharide chain-plays an important role. GAG from natural sources are very inhomogeneous regarding their sulfation patterns and molecular weight. Additionally, there is a high risk of contamination. This results in a growing interest in the careful characterization of native GAG and the synthesis of artificial GAG. Additionally, chemically oversulfated GAG analogues show many favorable properties. However, the structural characterization of these carbohydrates by mass spectrometry remains challenging. One significant problem is the sulfate loss during the ionization, which increases with the number of sulfate residues. We used the sulfated pentasaccharide fondaparinux as model substance to optimize sample preparation and measurement conditions, compared different established desalination methods and already existing protocols for sulfated oligosaccharides, and investigated their impact on the quality of the mass spectra. After optimization of the measurement conditions, we could establish a gentle and fast protocol for the mass spectrometry characterization of (fully) sulfated, artificial GAG-like oligosaccharides with minimized sulfate loss in the positive and negative ion mode. Here, the negative ion mode was more sensitive in comparison with the positive one, and fondaparinux species with sulfate loss were not detectable under the optimized conditions in the positive ion mode.
Collapse
Affiliation(s)
- Katharina Lemmnitzer
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Sebastian Köhling
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Joanna Freyse
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Nguyen GH, Tran TN, Podgorski MN, Bell SG, Supuran CT, Donald WA. Nanoscale Ion Emitters in Native Mass Spectrometry for Measuring Ligand-Protein Binding Affinities. ACS CENTRAL SCIENCE 2019; 5:308-318. [PMID: 30834319 PMCID: PMC6396573 DOI: 10.1021/acscentsci.8b00787] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 05/20/2023]
Abstract
Electrospray ionization (ESI) mass spectrometry (MS) is a crucial method for rapidly determining the interactions between small molecules and proteins with ultrahigh sensitivity. However, nonvolatile molecules and salts that are often necessary to stabilize the native structures of protein-ligand complexes can readily adduct to protein ions, broaden spectral peaks, and lower signal-to-noise ratios in native MS. ESI emitters with narrow tip diameters (∼250 nm) were used to significantly reduce the extent of adduction of salt and nonvolatile molecules to protein complexes to more accurately measure ligand-protein binding constants than by use of conventional larger-bore emitters under these conditions. As a result of decreased salt adduction, peaks corresponding to protein-ligand complexes that differ in relative molecular weight by as low as 0.06% can be readily resolved. For low-molecular-weight anion ligands formed from sodium salts, anion-bound and unbound protein ions that differ in relative mass by 0.2% were completely baseline resolved using nanoscale emitters, which was not possible under these conditions using conventional emitters. Owing to the improved spectral resolution obtained using narrow-bore emitters and an analytically derived equation, K d values were simultaneously obtained for at least six ligands to a single druggable protein target from one spectrum for the first time. This research suggests that ligand-protein binding constants can be directly and accurately measured from solutions with high concentrations of nonvolatile buffers and salts by native MS.
Collapse
Affiliation(s)
- Giang
T. H. Nguyen
- School
of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia
| | - Thinh N. Tran
- School
of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew N. Podgorski
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen G. Bell
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Claudiu T. Supuran
- Department
of Neuroscience, Psychology, Drug Research and Child’s Health,
Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - William A. Donald
- School
of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia
- Phone: +61 (2) 9385 8827. E-mail:
| |
Collapse
|
6
|
Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB, Volkman BF. Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. Int J Mol Sci 2017; 18:ijms18091894. [PMID: 28869519 PMCID: PMC5618543 DOI: 10.3390/ijms18091894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification found on many chemokine receptors, typically increases receptor affinity for the chemokine ligand. A previous bioinformatics analysis suggested that a sulfotyrosine (sY)-binding site on the surface of the chemokine CXCL12 may be conserved throughout the chemokine family. However, the extent to which receptor tyrosine sulfation contributes to chemokine binding has been examined in only a few instances. Computational solvent mapping correctly identified the conserved sulfotyrosine-binding sites on CXCL12 and CCL21 detected by nuclear magnetic resonance (NMR) spectroscopy, demonstrating its utility for hot spot analysis in the chemokine family. In this study, we analyzed five chemokines that bind to CXCR2, a subset of which also bind to CXCR1, to identify hot spots that could participate in receptor binding. A cleft containing the predicted sulfotyrosine-binding pocket was identified as a principal hot spot for ligand binding on the structures of CXCL1, CXCL2, CXCL7, and CXCL8, but not CXCL5. Sulfotyrosine titrations monitored via NMR spectroscopy showed specific binding to CXCL8, but not to CXCL5, which is consistent with the predictions from the computational solvent mapping. The lack of CXCL5–sulfotyrosine interaction and the presence of CXCL8–sulfotyrosine binding suggests a role for receptor post-translational modifications regulating ligand selectivity.
Collapse
Affiliation(s)
- Natasha A Moussouras
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Emily R Lackner
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA.
| | | | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
8
|
Interactions of the Chemokine CCL5/RANTES with Medium-Sized Chondroitin Sulfate Ligands. Structure 2015; 23:1066-77. [PMID: 25982530 DOI: 10.1016/j.str.2015.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Abstract
Interactions of the chemokine CCL5 (RANTES) with glycosaminoglycans (GAGs) are crucial to the CCL5-mediated inflammation process. However, structural information on interactions between CCL5 and longer GAG fragments is lacking. In this study, the interactions between oligosaccharides derived from chondroitin sulfate and a dimeric variant of CCL5 were investigated using solution nuclear magnetic resonance. The data indicate that, in addition to the BBXB motif in the 40s loop, GAGs also contact residues in the N loop in a manner similar to interactions between chemokine and the receptor N terminus, leading to possible stabilization of the dimer. Using 2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl-tagged hexasaccharides, the binding orientation of the hexasaccharides was shown to be highly dependent on the sulfation pattern of the N-acetyl galactosamine groups. Finally, a model of the CCL5 dimer complexed to chondroitin sulfate hexasaccharides was constructed using paramagnetic relaxation enhancement and intra- and intermolecular nuclear Overhauser effect constraints.
Collapse
|
9
|
Ludeman JP, Nazari-Robati M, Wilkinson BL, Huang C, Payne RJ, Stone MJ. Phosphate modulates receptor sulfotyrosine recognition by the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Org Biomol Chem 2015; 13:2162-9. [DOI: 10.1039/c4ob02262a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fluorescence anisotropy shows that the physiological buffer phosphate competes with a chemokine receptor sulfopeptide for binding to a cognate chemokine.
Collapse
Affiliation(s)
- Justin P. Ludeman
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| | - Mahdieh Nazari-Robati
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
- Department of Biochemistry
| | | | - Cheng Huang
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| | - Richard J. Payne
- School of Chemistry
- Building F11
- The University of Sydney
- NSW 2006
- Australia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| |
Collapse
|
10
|
Ludeman JP, Stone MJ. The structural role of receptor tyrosine sulfation in chemokine recognition. Br J Pharmacol 2014; 171:1167-79. [PMID: 24116930 DOI: 10.1111/bph.12455] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/10/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
Tyrosine sulfation is a post-translational modification of secreted and transmembrane proteins, including many GPCRs such as chemokine receptors. Most chemokine receptors contain several potentially sulfated tyrosine residues in their extracellular N-terminal regions, the initial binding site for chemokine ligands. Sulfation of these receptors increases chemokine binding affinity and potency. Although receptor sulfation is heterogeneous, insights into the molecular basis of sulfotyrosine (sTyr) recognition have been obtained using purified, homogeneous sulfopeptides corresponding to the N-termini of chemokine receptors. Receptor sTyr residues bind to a shallow cleft defined by the N-loop and β3-strand elements of cognate chemokines. Tyrosine sulfation enhances the affinity of receptor peptides for cognate chemokines in a manner dependent on the position of sulfation. Moreover, tyrosine sulfation can alter the selectivity of receptor peptides among several cognate chemokines for the same receptor. Finally, binding to receptor sulfopeptides can modulate the oligomerization state of chemokines, thereby influencing the ability of a chemokine to activate its receptor. These results increase the motivation to investigate the structural basis by which tyrosine sulfation modulates chemokine receptor activity and the biological consequences of this functional modulation.
Collapse
Affiliation(s)
- Justin P Ludeman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
11
|
Martí I, Bolte M, Burguete MI, Vicent C, Alfonso I, Luis SV. Tight and Selective Caging of Chloride Ions by a Pseudopeptidic Host. Chemistry 2014; 20:7458-64. [DOI: 10.1002/chem.201303604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/24/2014] [Indexed: 11/12/2022]
|
12
|
Faggi E, Moure A, Bolte M, Vicent C, Luis SV, Alfonso I. Pseudopeptidic Cages as Receptors for N-Protected Dipeptides. J Org Chem 2014; 79:4590-601. [DOI: 10.1021/jo500629d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Enrico Faggi
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Alejandra Moure
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Michael Bolte
- Institut
für Anorganische Chemie, J.-W.-Goethe-Universität, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | | | | | - Ignacio Alfonso
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| |
Collapse
|
13
|
De Zorzi R, Brancatelli G, Melegari M, Pinalli R, Dalcanale E, Geremia S. Selectivity assessment in host–guest complexes from single-crystal X-ray diffraction data: the cavitand–alcohol case. CrystEngComm 2014. [DOI: 10.1039/c4ce01813c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solid-state selectivity of a cavitand receptor towards short alkyl chain alcohols was evaluated by analysis of X-ray diffraction data of isomorphous single crystals grown in competition binding experiments.
Collapse
Affiliation(s)
- Rita De Zorzi
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| | - Giovanna Brancatelli
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| | - Monica Melegari
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Roberta Pinalli
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Enrico Dalcanale
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| |
Collapse
|
14
|
Kim JS, Song SU, Kim HJ. Simultaneous identification of tyrosine phosphorylation and sulfation sites utilizing tyrosine-specific bromination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1916-1925. [PMID: 21952757 DOI: 10.1007/s13361-011-0214-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Tyrosine phosphorylation and sulfation play many key roles in the cell. Isobaric phosphotyrosine and sulfotyrosine residues in peptides were determined by mass spectrometry using phosphatase or sulfatase to remove the phosphate or the sulfate group. Unique Br signature was introduced to the resulting tyrosine residues by incubation with 32% HBr at -20 °C for 20 min. MS/MS analysis of the brominated peptide enabled unambiguous determination of the phosphotyrosine and the sulfotyrosine sites. When phosphotyrosine and sulfotyrosine as well as free tyrosine were present in the same peptide, they could be determined simultaneously using either phosphatase or sulfatase following acetylation of the free tyrosine.
Collapse
Affiliation(s)
- Jong-Seo Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | |
Collapse
|
15
|
Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. JOURNAL OF AMINO ACIDS 2011; 2011:207691. [PMID: 22312457 PMCID: PMC3268018 DOI: 10.4061/2011/207691] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 01/08/2023]
Abstract
Posttranslational modifications (PTMs) modulate protein function in most eukaryotes and have a ubiquitous role in diverse range of cellular functions. Identification, characterization, and mapping of these modifications to specific amino acid residues on proteins are critical towards understanding their functional significance in a biological context. The interpretation of proteome data obtained from the high-throughput methods cannot be deciphered unambiguously without a priori knowledge of protein modifications. An in-depth understanding of protein PTMs is important not only for gaining a perception of a wide array of cellular functions but also towards developing drug therapies for many life-threatening diseases like cancer and neurodegenerative disorders. Many of the protein modifications like ubiquitination play a decisive role in various drug response(s) and eventually in disease prognosis. Thus, many commonly observed PTMs are routinely tracked as disease markers while many others are used as molecular targets for developing target-specific therapies. In this paper, we summarize some of the major, well-studied protein alterations and highlight their importance in various chronic diseases and normal development. In addition, other promising minor modifications such as SUMOylation, observed to impact cellular dynamics as well as disease pathology, are mentioned briefly.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Biochemistry, Cellular & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington DC 20057, USA
| | | |
Collapse
|
16
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Abstract
The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS.
Collapse
Affiliation(s)
- Gregory O. Staples
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| |
Collapse
|