1
|
Huang L, Zhang C, Ye R, Yan B, Zhou X, Xu W, Guo J. Capacitive biosensors for label-free and ultrasensitive detection of biomarkers. Talanta 2024; 266:124951. [PMID: 37487266 DOI: 10.1016/j.talanta.2023.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Capacitive biosensors are label-free capacitors that can detect biomarkers with the outstanding advantages of simplicity, low cost, and ultrahigh sensitivity. A typical capacitive biosensor consists of a bioreceptor and a transducer, where the bioreceptor captures the biomarker to form a bioreceptor/biomarker conjugate and the transducer generates a detectable signal. In general, antibodies, aptamers, or proteins are exploited as the bioreceptor, while various electrodes including carbon electrodes (CEs), gold electrodes (AuEs), or interdigitated electrodes (IDEs) may serve as the transducer. Because the formation of bioreceptor/biomarker conjugates often leads to a change in capacitance, the capacitive signal is then employed for biomarker detection. This review summarizes recent advances in capacitive biosensors for the detection of biomarkers over the last five years. With a focus on the three common types of bioreceptors, i.e., antibodies, aptamers, and proteins, capacitive biosensors using CEs, AuEs, and IDEs as the transducers are discussed in detail. The immobilization of bioreceptors and signal amplification strategies are described to provide a robust overview of capacitive biosensors for biomarker detection. In addition, analytical methods and future prospects are given to support the application of capacitive biosensors.
Collapse
Affiliation(s)
- Lei Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Run Ye
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Bin Yan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Xiaojia Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Wenbo Xu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Sahu PP, Sarma G, Das S, Borkakoty B. Rapid diagnosis of COVID-19 using disposal paper capacitive sensor. Anal Chim Acta 2023; 1273:341500. [PMID: 37423659 DOI: 10.1016/j.aca.2023.341500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Accurate and rapid detection and isolation become indispensable to restrict the spread of COVID-19. Since the start of COVID-19 pandemic in December 2019, many indisposal diagnostic tools are being developed incessantly. Out of all presently used tools, the gold standard rRT- PCR tool having very high sensitivity and specificity is a time consuming complicated molecular technique having requirements of special expensive equipment. Here, the main focus of this work is to develop rapid disposal paper capacitance sensor having simple and easy detection. We discovered a strong interaction between limonin and Spike-glycoprotein of SARS-COV-2 in comparison to its interaction with other similar viruses such as HCOV-OC43, HCOV-NL63, HCOV-HKU1, Influenza B and A viruses. The antibody free capacitive sensor having comb electrode structure was fabricated on whatman paper with drop coating of limonin (extracted using green method from pomelo seeds) and calibrated with known swab samples. The Blind test with unknown swab samples shows high sensitivity of 91.5% and high specificity of 88.37%. Requiring low sample volume and detection time and using biodegradable materials in the sensor fabrication assure the potential application as a point of care disposal diagnostic tool.
Collapse
Affiliation(s)
- Partha P Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Geetartha Sarma
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Satyajit Das
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Biswajyoti Borkakoty
- Regional VRDL, Regional Medical Research Centre, ICMR, N.E. Region, Dibrugarh, 786001, Assam, India
| |
Collapse
|
3
|
Georgas A, Lampas E, Houhoula DP, Skoufias A, Patsilinakos S, Tsafaridis I, Patrinos GP, Adamopoulos N, Ferraro A, Hristoforou E. ACE2-based capacitance sensor for rapid native SARS-CoV-2 detection in biological fluids and its correlation with real-time PCR. Biosens Bioelectron 2022; 202:114021. [PMID: 35092924 PMCID: PMC8776344 DOI: 10.1016/j.bios.2022.114021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
The spread of the SARS-CoV-2 and its increasing threat to human health worldwide have necessitated the development of new technological tools to combat the virus. Particular emphasis is given to the development of diagnostic methods that monitor the spread of the virus rapidly and effectively. In this study, we report the development and testing of an antibody-free biosensor, based on the immobilization of ACE2 protein on the surface of gold interdigitated electrode. When the sensor was used in laboratory conditions for targeting the virus' structural spike protein, it showed a limit of detection [LOD] of 750 pg/μL/mm2. Thereafter, the response of the sensor to swab and saliva samples from hospitalized patients was examined. The virus presence in the samples was confirmed by electrical effective capacitance measurements executed on the biosensor, and correlated with real-time PCR results. We verified that the biosensor can distinguish samples that are positive for the virus from those that are negative in a total of 7 positive and 16 negative samples. In addition, the biosensor can be used for semi-quantitative measurement, since its measurements are divided into 3 areas, the negative samples, the weakly positive and the positive samples. Reproducibility of the experiments was demonstrated with at least 3 replicates and stability was tested by keeping the sensor standby for 7 days at 4 °C before repeating the experiment. This work presents a biosensor that can be used as a fast-screening test at point of care detection of SARS-CoV-2 since it needs less than 2 min to provide results and is of simple operation.
Collapse
Affiliation(s)
- A Georgas
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece.
| | - E Lampas
- Konstantopoulio General Hospital, Agias Olgas 3-5, Nea Ionia, 142 33, Greece
| | - D P Houhoula
- University of West Attica, Agiou Spyridonos 28, Egaleo, 122 43, Greece
| | - A Skoufias
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| | - S Patsilinakos
- Konstantopoulio General Hospital, Agias Olgas 3-5, Nea Ionia, 142 33, Greece
| | - I Tsafaridis
- Katharsis Technologies Inc., 1200-1075, West Georgia Street, Vancouver, BC, Canada
| | - G P Patrinos
- University of Patras, University Campus, 26504, Rio, Greece
| | | | - A Ferraro
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| | - E Hristoforou
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| |
Collapse
|
4
|
Abstract
The field of molecularly imprinted polymer (MIP)-based chemosensors has been experiencing constant growth for several decades. Since the beginning, their continuous development has been driven by the need for simple devices with optimum selectivity for the detection of various compounds in fields such as medical diagnosis, environmental and industrial monitoring, food and toxicological analysis, and, more recently, the detection of traces of explosives or their precursors. This review presents an overview of the main research efforts made so far for the development of MIP-based chemosensors, critically discusses the pros and cons, and gives perspectives for further developments in this field.
Collapse
|
5
|
Norouzi P, Larijani B, Alizadeh T, Pourbasheer E, Aghazadeh M, Ganjali MR. Application of Advanced Electrochemical Methods with Nanomaterial-based Electrodes as Powerful Tools for Trace Analysis of Drugs and Toxic Compounds. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180316170607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
The new progress in electronic devices has provided a great opportunity for
advancing electrochemical instruments by which we can more easily solve many problems of interest
for trace analysis of compounds, with a high degree of accuracy, precision, sensitivity, and selectivity.
On the other hand, in recent years, there is a significant growth in the application of nanomaterials for
the construction of nanosensors due to enhanced chemical and physical properties arising from discrete
modified nanomaterial-based electrodes or microelectrodes.
Objective:
Combination of the advanced electrochemical system and nanosensors make these devices
very suitable for the high-speed analysis, as motioning and portable devices. This review will discuss
the recent developments and achievements that have been reported for trace measurement of drugs and
toxic compounds for environment, food and health application.
Collapse
Affiliation(s)
- Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Eslam Pourbasheer
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Mostafa Aghazadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Castiello FR, Porter J, Modarres P, Tabrizian M. Interfacial capacitance immunosensing using interdigitated electrodes: the effect of insulation/immobilization chemistry. Phys Chem Chem Phys 2019; 21:15787-15797. [DOI: 10.1039/c9cp02129a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
With the aim of improving the reproducibility of capacitive immunosensors, we performed a comparative study of four different insulating/immobilization chemistries.
Collapse
Affiliation(s)
| | - James Porter
- Biomedical Engineering Department
- McGill University
- Montreal
- Canada
| | - Paresa Modarres
- Biomedical Engineering Department
- McGill University
- Montreal
- Canada
| | - Maryam Tabrizian
- Biomedical Engineering Department
- McGill University
- Montreal
- Canada
- Faculty of Dentistry
| |
Collapse
|
7
|
Abdelrasoul GN, MacKay S, Salim SY, Ismond KP, Tamura M, Khalifa C, Mannan E, Lin D, Mandal T, Montgomery RR, Wishart DS, Chen J, Khadaroo RG. Non-invasive Point-of-Care Device To Diagnose Acute Mesenteric Ischemia. ACS Sens 2018; 3:2296-2302. [PMID: 30335977 DOI: 10.1021/acssensors.8b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inadequate blood supply to the intestine can lead to acute mesenteric ischemia (AMI), with a mortality rate ranging from 60% to 90%. This high mortality rate is partially due to late detection and the lack of efficient early diagnostic tests. There is an urgent need for a point-of-care tool for immediate bedside diagnosis. Here we present for the first time a rapid and non-invasive electrochemical biosensor device based on non-faradic impedance spectroscopy to detect intestinal fatty-acid binding protein (I-FABP) as an indication of AMI. The electrochemical biosensors consist of gold interdigitated electrodes that were fabricated using photolithographic techniques on top of silicon dioxide substrates. The electrode surfaces were functionalized with an I-FABP capture antibody (CAnB) to entice the target protein, while gold nanoparticles (GNPs) functionalized with detection antibodies (DAnB-GNPs) were utilized as a novel mechanism to enhance the detection signal. Quantification of the I-FABP concentration in the medium depended on its attachment to CAnB and DAnB-GNPs in a sandwich manner, where the latter boosts the impedance signal through its binding to the I-FABP. This non-invasive non-faradic electric biosensor device demonstrates the potential for bench-to-bedside translation with the goal of decreasing morbidity and mortality from AMI.
Collapse
Affiliation(s)
- Gaser N. Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Scott MacKay
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Saad Y. Salim
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Kathleen P. Ismond
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Marcus Tamura
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charfeddine Khalifa
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Emma Mannan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Donghai Lin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tanushree Mandal
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Rachel G. Khadaroo
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| |
Collapse
|
8
|
Shahar T, Feldheim G, Marx S, Mandler D. Core-shell nanoparticles for gas phase detection based on silver nanospheres coated with a thin molecularly imprinted polymer adsorbed on a chemiresistor. NANOSCALE 2018; 10:17593-17602. [PMID: 29896601 DOI: 10.1039/c8nr01437j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a novel gas phase detection prototype based on assembling core-shell nanospheres made of a silver core and coated with a molecularly imprinted polymer (MIP) adsorbed onto an interdigitated array (IDA) electrode chemiresistor (CR). The core-shell nanospheres, AgNP@MIPs, were imprinted with linalool, a volatile terpene alcohol, as a model system. The thickness of the MIP layer was tuned to a few nanometers to enable the facile ingress and egress of the linalool, as well as to enhance the electrical transduction through the Ag core. The AgNP@MIPs were spread onto the IDA-CR modified with various positively charged polymers, by drop casting and dip-coating. The AgNP@MIPs were characterized by various techniques such as extra high-resolution scanning and tunnelling electron microscopy and X-ray diffraction. The MIP recognition event was transduced into a measurable increase in the resistance. The response to linalool exposure and removal was fast and the device was fully recovered and could be reused. Finally, the difference in the resistance change between imprinted and non-imprinted nanospheres was substantial.
Collapse
Affiliation(s)
- Tehila Shahar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | | | | |
Collapse
|
9
|
Alizadeh Zeinabad H, Ghourchian H, Falahati M, Fathipour M, Azizi M, Boutorabi SM. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles. NANOTECHNOLOGY 2018; 29:265102. [PMID: 29629877 DOI: 10.1088/1361-6528/aabca3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml-1, the linear range from 5 pg ml-1 to 1 ng ml-1 and the detection limit of 1.34 pg ml-1, at a signal-to-noise ratio of 3.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. MEMS & NEMS Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
10
|
Garyfallou GZ, Ketebu O, Şahin S, Mukaetova-Ladinska EB, Catt M, Yu EH. Electrochemical Detection of Plasma Immunoglobulin as a Biomarker for Alzheimer's Disease. SENSORS 2017; 17:s17112464. [PMID: 29077013 PMCID: PMC5713623 DOI: 10.3390/s17112464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022]
Abstract
The clinical diagnosis and treatment of Alzheimer’s disease (AD) represent a challenge to clinicians due to the variability of clinical symptomatology as well as the unavailability of reliable diagnostic tests. In this study, the development of a novel electrochemical assay and its potential to detect peripheral blood biomarkers to diagnose AD using plasma immunoglobulins is investigated. The immunosensor employs a gold electrode as the immobilizing substrate, albumin depleted plasma immunoglobulin as the biomarker, and polyclonal rabbit Anti-human immunoglobulin (against IgA, IgG, IgM) as the receptor for plasma conjugation. The assay showed good response, sensitivity and reproducibility in differentiating plasma immunoglobulin from AD and control subjects down to 10−9 dilutions of plasma immunoglobulin representing plasma content concentrations in the pg mL−1 range. The newly developed assay is highly sensitive, less time consuming, easy to handle, can be easily modified to detect other dementia-related biomarkers in blood samples, and can be easily integrated into portable devices.
Collapse
Affiliation(s)
- Goulielmos-Zois Garyfallou
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Orlando Ketebu
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Samet Şahin
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
- Department of Chemical and Process Engineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey.
| | | | - Michael Catt
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Eileen Hao Yu
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
11
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
12
|
Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection. SENSORS 2015; 15:13201-21. [PMID: 26057036 PMCID: PMC4507581 DOI: 10.3390/s150613201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
Abstract
In this study, we designed and developed an interdigitated capacitor (IDC)-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP) and tetrahydrofuran (THF) to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE) via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl), saltiness (NaCl), sweetness (glucose) and bitterness (quinine-HCl), were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA) was applied to discriminate different types of taste of the mixed taste substances.
Collapse
|
13
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
14
|
Gao X, Cao W, Chen M, Xiong H, Zhang X, Wang S. A High Sensitivity Electrochemical Sensor Based on Fe3+-Ion Molecularly Imprinted Film for the Detection of T-2 Toxin. ELECTROANAL 2014. [DOI: 10.1002/elan.201400237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
EL-Sharif HF, Stevenson D, Warriner K, Reddy SM. Hydrogel-Based Molecularly Imprinted Polymers for Biological Detection. ADVANCED SYNTHETIC MATERIALS IN DETECTION SCIENCE 2014. [DOI: 10.1039/9781849737074-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecularly imprinted polymers (MIPs) have become an important tool in the preparation of artificial and robust recognition materials that are capable of mimicking natural systems. MIPs have been regarded as 'antibody mimics' and have shown clear advantages over real antibodies for sensor technology. Currently, on-site diagnostic (OSD) and point-of-care (POC) biosensor development are heavily dominated by antibody-dependent immuno-sensors such as the lateral flow immuno-assay. Although antibodies exhibit a high degree of selectivity, any biological recognition element is inherently unstable with limited shelf-life, even when stored under optimum conditions. OSD and POC tests are essential for disease screening and treatment monitoring as part of emergency management. Introduced or naturally occurring pathogens can cause significant disruptions, raise panic in the population, and result in significant economic losses. Cheaper, smaller, and smarter devices for early detection of disease or environmental hazards ultimately lead to rapid containment and corrective action. To this end, there has been extensive research on detection platforms based on genetic or immune techniques. MIPs have proven to produce selective biological extractions that rival immunoaffinity-based separations, but without the tediously lengthy time-consuming process. MIPs could provide an alternative to antibodies, and ultimately lead to cheaper, smaller, and smarter biosensors.
Collapse
Affiliation(s)
- Hazim F. EL-Sharif
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Derek Stevenson
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Keith Warriner
- Department of Food Science, University of Guelph Guelph ON Canada N1G 2W1
| | - Subrayal M. Reddy
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
16
|
Jung HW, Chang YW, Lee GY, Cho S, Kang MJ, Pyun JC. A capacitive biosensor based on an interdigitated electrode with nanoislands. Anal Chim Acta 2014; 844:27-34. [PMID: 25172812 DOI: 10.1016/j.aca.2014.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/30/2023]
Abstract
A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.
Collapse
Affiliation(s)
- Ha-Wook Jung
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Young Wook Chang
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Ga-yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon University, Incheon 406-799, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
17
|
Song X, Xu S, Chen L, Wei Y, Xiong H. Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 2014. [DOI: 10.1002/app.40766] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xingliang Song
- School of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 China
| | - Shoufang Xu
- School of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Yantai 264003 China
| | - Yingqin Wei
- School of Chemistry and Pharmaceutical Engineering; Qilu University of Technology; Jinan 250353 China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| |
Collapse
|
18
|
Lei R, Guo C, Xiong H, Dong C, Zhang X, Wang S. A Novel Electrochemical Sensor for β2-Agonists with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Sol-gel Doped with Antimony-Doped Tin Oxide. ELECTROANAL 2014. [DOI: 10.1002/elan.201300640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Disposable Electrochemical Ascorbic Acid Sensor Based on Molecularly Imprinted Poly(o-phenylenediamine)-Modified Dual Channel Screen-Printed Electrode for Orange Juice Analysis. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-013-9788-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Zhang Z, Yang X, Chen X, Zhang M, Luo L, Peng M, Yao S. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation. Anal Bioanal Chem 2011; 401:2855-63. [DOI: 10.1007/s00216-011-5373-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|