1
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Li X, Zhong H, Zheng S, Mu J, Yu N, Guo S. Tumor-penetrating iRGD facilitates penetration of poly(floxuridine-ketal)-based nanomedicine for enhanced pancreatic cancer therapy. J Control Release 2024; 369:444-457. [PMID: 38575076 DOI: 10.1016/j.jconrel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Efficient intratumoral penetration is essential for nanomedicine to eradicate pancreatic tumors. Although nanomedicine can enter the perivascular space of pancreatic tumors, their access to distal tumor cells, aloof from the vessels, remains a formidable challenge. Here, we synthesized an acid-activatable macromolecular prodrug of floxuridine (FUDR)-poly(FUDR-ketal), engineered a micellar nanomedicine of FUDR, and intravenously co-administered the nanomedicine with the tumor-penetrating peptide iRGD for enhanced treatment of pancreatic tumor. A FUDR-derived mono-isopropenyl ether was synthesized and underwent self-addition polymerization to afford the hydrophobic poly(FUDR-ketal), which was subsequently co-assembled with amphiphilic DSPE-mPEG into the micellar nanomedicine with size of 12 nm and drug content of 56.8 wt% using nanoprecipitation technique. The acetone-based ketal-linked poly(FUDR-ketal) was triggered by acid to release FUDR to inhibit cell proliferation. In an orthotopic pancreatic tumor model derived from KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre) cells that overexpress neuropilin-1 (NRP-1) receptor, iRGD improved penetration of FUDR nanomedicine into tumor parenchyma and potentiated the therapeutic efficacy. Our nanoplatform, along with iRGD, thus appears to be promising for efficient penetration and activation of acid-responsive nanomedicines for enhanced pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Aier Eye Hospital, Tianjin 300190, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Jingjinji National Center of Technology Innovation, Beijing 100094, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ligasová A, Piskláková B, Friedecký D, Koberna K. A new technique for the analysis of metabolic pathways of cytidine analogues and cytidine deaminase activities in cells. Sci Rep 2023; 13:20530. [PMID: 37993628 PMCID: PMC10665361 DOI: 10.1038/s41598-023-47792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Deoxycytidine analogues (dCas) are widely used for the treatment of malignant diseases. They are commonly inactivated by cytidine deaminase (CDD), or by deoxycytidine monophosphate deaminase (dCMP deaminase). Additional metabolic pathways, such as phosphorylation, can substantially contribute to their (in)activation. Here, a new technique for the analysis of these pathways in cells is described. It is based on the use of 5-ethynyl 2'-deoxycytidine (EdC) and its conversion to 5-ethynyl 2'-deoxyuridine (EdU). Its use was tested for the estimation of the role of CDD and dCMP deaminase in five cancer and four non-cancer cell lines. The technique provides the possibility to address the aggregated impact of cytidine transporters, CDD, dCMP deaminase, and deoxycytidine kinase on EdC metabolism. Using this technique, we developed a quick and cheap method for the identification of cell lines exhibiting a lack of CDD activity. The data showed that in contrast to the cancer cells, all the non-cancer cells used in the study exhibited low, if any, CDD content and their cytidine deaminase activity can be exclusively attributed to dCMP deaminase. The technique also confirmed the importance of deoxycytidine kinase for dCas metabolism and indicated that dCMP deaminase can be fundamental in dCas deamination as well as CDD. Moreover, the described technique provides the possibility to perform the simultaneous testing of cytotoxicity and DNA replication activity.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Barbora Piskláková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Morgenroth A, Baazaoui F, Hosseinnejad A, Schäfer L, Vogg A, Singh S, Mottaghy FM. Neural Stem Cells as Carriers of Nucleoside-Conjugated Nanogels: A New Approach toward Cell-Mediated Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21792-21803. [PMID: 37127284 PMCID: PMC10176478 DOI: 10.1021/acsami.2c23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neural stem cells (NSCs) present attractive natural drug delivery systems (DDSs). Their migratory potential enables crossing of the blood-brain barrier and efficient and selective accumulation near malignant cells. Here, we present the potential of NSCs as DDSs for nucleoside analogue-conjugated nanogels (NGs). Two different approaches were investigated: the intracellular loading and extracellular cell surface decoration with NGs. For both designs, the tumor-specific migratory potentials of NSCs remained unchanged; however, the intracellular loading showed a shorter NG retention. The cell surface decoration protocol yielded a high loading capacity of 100% after 1 h and a prolonged drug retention. A redox-sensitive linker between NGs and the nucleoside analogue 5-ethynyl-2'-deoxycytidine (EdC) allowed a tumor environment-specific drug release and its efficient and preferential incorporation into the DNA of the tumor cells. Interestingly, the tumor-trafficking potentials of NSCs were significantly potentiated by irradiation of tumor cells. In conclusion, this study indicates the potentials of cell surface-decorated NSCs as DDSs for tumor-specific release, cellular uptake, and incorporation of EdC into DNA.
Collapse
Affiliation(s)
| | - Fatima Baazaoui
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Aisa Hosseinnejad
- DWI - Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura Schäfer
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Vogg
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Smriti Singh
- DWI - Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
- Department of Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, Netherlands
| |
Collapse
|
5
|
Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nat Protoc 2023; 18:1260-1295. [PMID: 36653528 DOI: 10.1038/s41596-022-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/09/2022] [Indexed: 01/19/2023]
Abstract
Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within six days. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.
Collapse
|
6
|
Aranda S, Di Croce L. Isolation of Chromatin Proteins by Genome Capture. Methods Mol Biol 2023; 2655:91-99. [PMID: 37212991 DOI: 10.1007/978-1-0716-3143-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Control of gene expression and the faithful transmission of genetic and epigenetic information rely on chromatin-bound proteins. These include the polycomb group of proteins, which can display a remarkable variability in their composition. Alterations in the chromatin-bound protein compositions are relevant for physiology and human disease. Thus, chromatin-bound proteomic profiling can be instrumental for understanding fundamental cellular processes and for identifying therapeutic targets. Inspired by biochemical strategies for the isolation of proteins on nascent DNA (iPOND) and the very similar DNA-mediated chromatin pull-down (Dm-ChP), we described a method for the identification of Protein on Total DNA (iPOTD) for bulk chromatome profiling. Here, we update our iPOTD method and, in particular, detail the experimental procedure for the isolation of chromatin proteins for mass spectrometry-based proteomic analysis.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
7
|
Bi X, Miao K, Wei L. Alkyne-Tagged Raman Probes for Local Environmental Sensing by Hydrogen-Deuterium Exchange. J Am Chem Soc 2022; 144:8504-8514. [PMID: 35508077 DOI: 10.1021/jacs.2c01991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkyne-tagged Raman probes have shown high promise for noninvasive and sensitive visualization of small biomolecules to understand their functional roles in live cells. However, the potential for alkynes to sense cellular environments that goes beyond imaging remains to be further explored. Here, we report a general strategy for Raman imaging-based local environment sensing by hydrogen-deuterium exchange (HDX) of terminal alkynes (termed alkyne-HDX). We first demonstrate, in multiple Raman probes, that deuterations of the alkynyl hydrogens lead to remarkable shifts of alkyne Raman peaks for about 130 cm-1, providing resolvable signals suited for imaging-based analysis with high specificity. Both our analytical derivation and experimental characterizations subsequently establish that HDX kinetics are linearly proportional to both alkyne pKas and environmental pDs. After validating the quantitative nature of this strategy, we apply alkyne-HDX to sensing local chemical and cellular environments. We establish that alkyne-HDX exhibits high sensitivity to various DNA structures and demonstrates the capacity to detect DNA structural changes in situ from UV-induced damage. We further show that this strategy is also applicable to resolve subtle pD variations in live cells. Altogether, our work lays the foundation for utilizing alkyne-HDX strategy to quantitatively sense the local environments for a broad spectrum of applications in complex biological systems.
Collapse
Affiliation(s)
- Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Yiu SPT, Guo R, Zerbe C, Weekes MP, Gewurz BE. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep 2022; 38:110411. [PMID: 35263599 PMCID: PMC8981113 DOI: 10.1016/j.celrep.2022.110411] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair. The major tegument protein BNRF1 targets SMC5/6 complexes by a ubiquitin proteasome pathway dependent on calpain proteolysis and Cullin-7. In the absence of BNRF1, SMC5/6 associates with R-loop structures, including at the viral lytic origin of replication, and interferes with RC formation and encapsidation. CRISPR analysis identifies RC restriction roles of SMC5/6 components involved in DNA entrapment and SUMOylation. Our study highlights SMC5/6 as an intrinsic immune sensor and restriction factor for a human herpesvirus RC and has implications for the pathogenesis of EBV-associated cancers.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cassie Zerbe
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
10
|
Zhou H, Li Y, Wang S, Wang L, Wang R. Tracking of Nascent Deoxynucleic Acids Enable by Incorporation of Uridine Variant with 2 Prime Azidomethyl Tag and Click Chemistry. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Rashid FZM, Mahlandt E, van der Vaart M, Boer DEC, Varela Alvarez M, Henneman B, Brocken DJW, Voskamp P, Blok A, Shimizu T, Meijer A, Luijsterburg M, Goedhart J, Crémazy FGE, Dame R. HI-NESS: a family of genetically encoded DNA labels based on a bacterial nucleoid-associated protein. Nucleic Acids Res 2021; 50:e10. [PMID: 34734265 PMCID: PMC8789088 DOI: 10.1093/nar/gkab993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023] Open
Abstract
The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS — a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Eike Mahlandt
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Michiel van der Vaart
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Monica Varela Alvarez
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Bram Henneman
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Daan J W Brocken
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Anneloes J Blok
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Thomas S Shimizu
- Systems Biology, AMOLF Institute, Amsterdam 1098XG, The Netherlands
| | - Annemarie H Meijer
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Joachim Goedhart
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
13
|
Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. J Biol Chem 2021; 297:101345. [PMID: 34717955 PMCID: PMC8592869 DOI: 10.1016/j.jbc.2021.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.
Collapse
|
14
|
Yao J, Li T, Shi X, Wang Y, Fang S, Wang H. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomater 2021; 130:409-422. [PMID: 34087447 DOI: 10.1016/j.actbio.2021.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy has been widely used for treating the vast majority of cancer patients. Unfortunately, only a fraction of patients can respond to chemotherapies, but these patients still experience severe side effects. In this context, a wide range of nanotherapeutic platforms have been developed with the aim of improving treatment outcomes while reducing drug toxicities. Nanohydrogels are highly appealing "smart" biocompatible and biodegradable vehicles for either local or systemic delivery of bioactive compounds. Here, we developed prodrug hydrogelators that can undergo one-step distillation-precipitation polymerization to form systemically injectable nanohydrogels. The optimized nanohydrogels were capable of rapidly releasing active agents (e.g., the cytotoxic agent cabazitaxel or the PI3K molecular inhibitor PI103) in response to the reducing tumor microenvironment, while drug release was very slow in the absence of the reductive reagent glutathione. Cabazitaxel-loaded nanogels showed preferential tumor accumulation, and administration of nanogels produced durable tumor regression in a docetaxel-resistant cervical tumor xenograft-bearing mouse model. More significantly, nanogel-based therapy was proven to demonstrate a higher safety profile than solution-based free cabazitaxel. Collectively, this study provides an alternative formulation that meets the essential requirements of high stability in the blood, spontaneous drug release at diseased sites, favorable safety in vivo, and translational capacity for further investigations. STATEMENT OF SIGNIFICANCE: Chemotherapy remains a considerable challenge and only a fraction of patients can respond to chemotherapies. Here we report an intratumoral reducing agent-activatable, tumor-targeting prodrug nanogel platform for therapeutic delivery. To this end, two anticancer agents (e.g., cytotoxic cabazitaxel or PI3K molecular inhibitor PI103) are tested. Prodrug nanogels are stable in the blood but performed reduction-triggered release of chemically unmodified drug molecules in cancerous tissues. Cabazitaxel-loaded nanogels exhibit satisfactory anticancer performance in a preclinical docetaxel-resistant tumor model. This is a practical and expedient approach that combines the prodrug strategy and nanogel scaffold to re-engineer a hydrophobic and toxic anticancer drug. The approach also is broadly applicable for the formulation of other agents to improve the therapeutic index.
Collapse
|
15
|
Li Y, Zhang HX, Luo WD, Lam CWK, Wang CY, Bai LP, Wong VKW, Zhang W, Jiang ZH. Profiling Ribonucleotide and Deoxyribonucleotide Pools Perturbed by Remdesivir in Human Bronchial Epithelial Cells. Front Pharmacol 2021; 12:647280. [PMID: 33995062 PMCID: PMC8120990 DOI: 10.3389/fphar.2021.647280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Remdesivir (RDV) has generated much anticipation for its moderate effect in treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the unsatisfactory survival rates of hospitalized patients limit its application to the treatment of coronavirus disease 2019 (COVID-19). Therefore, improvement of antiviral efficacy of RDV is urgently needed. As a typical nucleotide analog, the activation of RDV to bioactive triphosphate will affect the biosynthesis of endogenous ribonucleotides (RNs) and deoxyribonucleotides (dRNs), which are essential to RNA and DNA replication in host cells. The imbalance of RN pools will inhibit virus replication as well. In order to investigate the effects of RDV on cellular nucleotide pools and on RNA transcription and DNA replication, cellular RNs and dRNs concentrations were measured by the liquid chromatography-mass spectrometry method, and the synthesis of RNA and DNA was monitored using click chemistry. The results showed that the IC50 values for BEAS-2B cells at exposure durations of 48 and 72 h were 25.3 ± 2.6 and 9.6 ± 0.7 μM, respectively. Ten (10) μM RDV caused BEAS-2B arrest at S-phase and significant suppression of RNA and DNA synthesis after treatment for 24 h. In addition, a general increase in the abundance of nucleotides and an increase of specific nucleotides more than 2 folds were observed. However, the variation of pyrimidine ribonucleotides was relatively slight or even absent, resulting in an obvious imbalance between purine and pyrimidine ribonucleotides. Interestingly, the very marked disequilibrium between cytidine triphosphate (CTP) and cytidine monophosphate might result from the inhibition of CTP synthase. Due to nucleotides which are also precursors for the synthesis of viral nucleic acids, the perturbation of nucleotide pools would block viral RNA replication. Considering the metabolic vulnerability of endogenous nucleotides, exacerbating the imbalance of nucleotide pools imparts great promise to enhance the efficacy of RDV, which possibly has special implications for treatment of COVID-19.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Wen-Di Luo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Taipa, Macau, China
| |
Collapse
|
16
|
Zhu L, Li J, Fan X, Hu X, Chen J, Liu Y, Hao X, Shi T, Wang Z, Zhao Q. Design, synthesis and antitumor activity evaluation of Chrysamide B derivatives. Bioorg Chem 2021; 111:104828. [PMID: 33895605 DOI: 10.1016/j.bioorg.2021.104828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
Marine natural products derived from special or extreme environment provide an important source for the development of anti-tumor drugs due to their special skeletons and functional groups. In this study, based on our previous work on the total synthesis and structure revision of the novel marine natural product Chrysamide B, a group of its derivatives were designed, synthesized, and subsequently of which the anti-cancer activity, structure-activity relationships and cellular mechanism were explored for the first time. Compared with Chrysamide B, better anti-cancer performance of some derivatives against five human cancer cell lines (SGC-7901, MGC-803, HepG2, HCT-116, MCF-7) was observed, especially for compound b-9 on MGC-803 and SGC-7901 cells with the IC 50 values of 7.88 ± 0.81 and 10.08 ± 1.08 μM, respectively. Subsequently, cellular mechanism study suggested that compound b-9 treatment could inhibit the cellular proliferation, reduce the migration and invasion ability of cells, and induce mitochondrial-dependent apoptosis in gastric cancer MGC-803 and SGC-7901 cells. Furthermore, the mitochondrial-dependent apoptosis induced by compound b-9 is related with the JAK2/STAT3/Bcl-2 signaling pathway. To conclude, our results offer a new structure for the discovery of anti-tumor lead compounds from marine natural products.
Collapse
Affiliation(s)
- Longqing Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Material Medical/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese academy of sciences, Guangzhou, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Reoccurring neural stem cell divisions in the adult zebrafish telencephalon are sufficient for the emergence of aggregated spatiotemporal patterns. PLoS Biol 2020; 18:e3000708. [PMID: 33290409 PMCID: PMC7748264 DOI: 10.1371/journal.pbio.3000708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/18/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell populations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear how the activity of single stem cells is coordinated within the population or if cells divide in a purely random fashion. We addressed this issue by analyzing division events in an adult neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based simulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotemporal division patterns that matched the ones observed experimentally. In contrast, omitting redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal aggregation of dividing stem cells can thus emerge solely from the cells’ history. An interdisciplinary study of the rules governing cell divisions in a population of neural stem cells in the zebrafish brain reveals the existence of aggregated spatio-temporal division patterns of rapid cell cycles in stem cells, and shows that these patterns can be explained by a simple agent-based model relying solely on the cells‘ division history.
Collapse
|
18
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
19
|
Zhou L, Xie H, Chen X, Wan J, Xu S, Han Y, Chen D, Qiao Y, Zhou L, Zheng S, Wang H. Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomater 2020; 113:464-477. [PMID: 32652227 DOI: 10.1016/j.actbio.2020.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Although some formats of nanomedicines are now available for clinical use, the translation of new nanoparticles to the clinic remains a considerable challenge. Here, we describe a simple yet cost-effective strategy that converts a toxic drug, cabazitaxel, into a safe and effective nanomedicine. The strategy involves the ligation of drug molecules via a self-immolating spacer, followed by dimerization-induced self-assembly to assemble stable nanoparticles. Self-assembled cabazitaxel dimers could be further refined by PEGylation with amphiphilic polymers suitable for preclinical studies. This protocol enables the formation of systemically injectable nanoparticles (termed SNPs) with nearly quantitative entrapment efficiencies and exceptionally high drug loading (> 86%). In healthy mice, PEGylated SNPs show a favorable safety profile, with reduced systemic toxicity and negligible immunotoxicity. In two separate mouse xenograft models of cancer, administration of SNPs produces efficient antitumor activity with durable tumor suppression during therapeutic studies. Overall, this methodology opens up a practical and expedient route for the fabrication of clinically useful nanomedicines, transforming a hydrophobic and highly toxic drug into a systemic self-deliverable nanotherapy. STATEMENT OF SIGNIFICANCE: Despite the great progress in cancer nanomedicines, clinical translation of nanomedicines still remains a considerable challenge. In this study, we designed a self-assembling nanoplatform based on cabazitaxel dimer reversibly ligated via a bioactivatable linker. This approach enabled the generation of systemically injectable nanomedicines with quantitative entrapment efficiencies and exceptionally high drug loading (> 86%), which greatly obviates concerns about excipient-associated side effects. Self-assembled dimeric cabazitaxel exhibited a higher safety profile than free cabazitaxel and negligible immunotoxicity in animals. This is a practical and expedient example how the chemical ligation of a hydrophobic and highly toxic anticancer drug can be leveraged to create a self-assembling delivery nanotherapy which preserves inherent pharmacologic efficacy while reduces in vivo systemic and immune toxicity.
Collapse
|
20
|
Manska S, Octaviano R, Rossetto CC. 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses. J Biol Chem 2020; 295:5871-5890. [PMID: 32205447 PMCID: PMC7196651 DOI: 10.1074/jbc.ra119.012378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Indexed: 11/06/2022] Open
Abstract
Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA.
Collapse
Affiliation(s)
- Salomé Manska
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Rionna Octaviano
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Cyprian C Rossetto
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557.
| |
Collapse
|
21
|
Sykes ML, Hilko DH, Kung LI, Poulsen SA, Avery VM. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl Trop Dis 2020; 14:e0008068. [PMID: 32163414 PMCID: PMC7112222 DOI: 10.1371/journal.pntd.0008068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/01/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 μM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi. Chagas disease occurs within 21 countries in the Americas, causes over 10, 000 deaths per year and a further 25 million people are at risk of being infected. The cause of Chagas disease is Trypanosoma cruzi, a single celled protozoan parasite, which enters the bloodstream of a host by the bite of a “kissing bug”. In advanced disease stages, the parasite hides in heart and gut tissue and is difficult to treat. Identifying the replicative ability of these parasites is important to understanding Chagas disease progression and the effectiveness of compounds and drugs for treatment. By testing a panel of nucleoside analogues that may incorporate into DNA during synthesis, we developed an image-based method with a fluorescently-labelled DNA probe to identify replicating parasites. This method has effectively shown that drugs used to treat the parasite are able to clear intracellular infection, whilst a compound that was not efficacious in clinical trials leaves replicating T. cruzi behind. This methodology can be used to understand the action of further compounds and supports the identification of new, less toxic probes to assess intracellular parasite replication.
Collapse
Affiliation(s)
- Melissa Louise Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - David Hugh Hilko
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Livia Isabella Kung
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.,Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Sally-Ann Poulsen
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky Marie Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
22
|
Ma T, Ma QS, Yu B, Liu HM. Discovery of the theobromine derivative MQS-14 that induces death of MGC-803 cells mainly through ROS-mediated mechanisms. Eur J Med Chem 2019; 174:76-86. [DOI: 10.1016/j.ejmech.2019.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
23
|
Click Chemistry-Based Labeling of Poxvirus Genomes. Methods Mol Biol 2019. [PMID: 31240680 DOI: 10.1007/978-1-4939-9593-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccinia virus packages its dsDNA genome inside its core for protection during the extracellular phases of its life cycle. In the cytoplasm of a newly infected cell the viral genome is released from the core so the viral DNA replication machinery can access it and initiate DNA replication. Vaccinia virus replication sites in the cell cytosol can be detected with conventional DNA staining methods; these, however, do not provide enough specificity to be used for quantitative image analysis or further probing of the replication step. Likewise, the ability to generate recombinant vaccinia viruses with fluorescently tagged proteins has provided insight into many stages of the viral life cycle, but many of the early steps involving the viral genome remain to be elucidated. Nucleotide and nucleoside analogs are traditionally used for probing the cell cycle and investigating other changes in cellular DNA, with the more novel nucleoside analogs providing a better way to label with click chemistry. Here we demonstrate how nucleoside analogs and click chemistry can be used for tracking poxvirus replication in the viral factories, and tracking single viral genomes in infected cells.
Collapse
|
24
|
Aranda S, Alcaine-Colet A, Blanco E, Borràs E, Caillot C, Sabidó E, Di Croce L. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. SCIENCE ADVANCES 2019; 5:eaav2448. [PMID: 30854431 PMCID: PMC6402848 DOI: 10.1126/sciadv.aav2448] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/28/2019] [Indexed: 05/19/2023]
Abstract
Profiling the chromatin-bound proteome (chromatome) in a simple, direct, and reliable manner might be key to uncovering the role of yet uncharacterized chromatin factors in physiology and disease. Here, we have designed an experimental strategy to survey the chromatome of proliferating cells by using the DNA-mediated chromatin pull-down (Dm-ChP) technology. Our approach provides a global view of cellular chromatome under normal physiological conditions and enables the identification of chromatin-bound proteins de novo. Integrating Dm-ChP with genomic and functional data, we have discovered an unexpected chromatin function for adenosylhomocysteinase, a major one-carbon pathway metabolic enzyme, in gene activation. Our study reveals a new regulatory axis between the metabolic state of pluripotent cells, ribosomal protein production, and cell division during the early phase of embryo development, in which the metabolic flux of methylation reactions is favored in a local milieu.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire Caillot
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
25
|
Müller TG, Sakin V, Müller B. A Spotlight on Viruses-Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules 2019; 24:molecules24030481. [PMID: 30700005 PMCID: PMC6385038 DOI: 10.3390/molecules24030481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/03/2023] Open
Abstract
The replication of a virus within its host cell involves numerous interactions between viral and cellular factors, which have to be tightly controlled in space and time. The intricate interplay between viral exploitation of cellular pathways and the intrinsic host defense mechanisms is difficult to unravel by traditional bulk approaches. In recent years, novel fluorescence microscopy techniques and single virus tracking have transformed the investigation of dynamic virus-host interactions. A prerequisite for the application of these imaging-based methods is the attachment of a fluorescent label to the structure of interest. However, their small size, limited coding capacity and multifunctional proteins render viruses particularly challenging targets for fluorescent labeling approaches. Click chemistry in conjunction with genetic code expansion provides virologists with a novel toolbox for site-specific, minimally invasive labeling of virion components, whose potential has just recently begun to be exploited. Here, we summarize recent achievements, current developments and future challenges for the labeling of viral nucleic acids, proteins, glycoproteins or lipids using click chemistry in order to study dynamic processes in virus-cell interactions.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Volkan Sakin
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Venkatesham A, Pillalamarri SR, De Wit F, Lescrinier E, Debyser Z, Van Aerschot A. Propargylated Purine Deoxynucleosides: New Tools for Fluorescence Imaging Strategies. Molecules 2019; 24:molecules24030468. [PMID: 30696094 PMCID: PMC6384747 DOI: 10.3390/molecules24030468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
In vivo imaging of biological processes is an important asset of modern cell biology. Selectively reacting fluorophores herein are an important tool and click chemistry reactions take a large share in these events. 5-Ethynyl-2′-deoxyuridine (EdU) is well known for visualizing DNA replication, but does not show any selectivity for incorporation into DNA. Striving for specific visualization of virus replication, in particular HIV replication, a series of propargylated purine deoxynucleosides were prepared aiming for selective incorporation by HIV reverse transcriptase (RT). We here report on the synthesis and preliminary biological effects (cellular toxicity, HIV inhibitory effects, and feasibility of the click reaction) of these nucleoside analogues.
Collapse
Affiliation(s)
- Akkaladevi Venkatesham
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Sambasiva Rao Pillalamarri
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Flore De Wit
- Laboratory for Molecular Virology and Gene Therapy, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Ligasová A, Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules 2018; 23:molecules23113007. [PMID: 30453631 PMCID: PMC6278288 DOI: 10.3390/molecules23113007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is played by artificially-prepared nucleoside and nucleotide analogues that serve as markers of newly synthesized DNA. These analogues are incorporated into the DNA during DNA replication, and are subsequently visualized. Several methods are used for their detection, including the highly popular click chemistry. This review aims to provide the readers with basic information about the various possibilities of the detection of replication activity using nucleoside and nucleotide analogues, and to show the strengths and weaknesses of those different detection systems, including click chemistry for microscopic studies.
Collapse
Affiliation(s)
- Anna Ligasová
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| | - Karel Koberna
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
28
|
Bhilare S, Murthy Bandaru SS, Shah J, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. Pd/PTABS: Low Temperature Etherification of Chloroheteroarenes. J Org Chem 2018; 83:13088-13102. [DOI: 10.1021/acs.joc.8b01840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Siva Sankar Murthy Bandaru
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Jagrut Shah
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Nicolas Chrysochos
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Carola Schulzke
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
29
|
Spahn CK, Glaesmann M, Grimm JB, Ayala AX, Lavis LD, Heilemann M. A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels. Sci Rep 2018; 8:14768. [PMID: 30282984 PMCID: PMC6170473 DOI: 10.1038/s41598-018-33052-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
Maintenance of the bacterial homeostasis initially emanates from interactions between proteins and the bacterial nucleoid. Investigating their spatial correlation requires high spatial resolution, especially in tiny, highly confined and crowded bacterial cells. Here, we present super-resolution microscopy using a palette of fluorescent labels that bind transiently to either the membrane or the nucleoid of fixed E. coli cells. The presented labels are easily applicable, versatile and allow long-term single-molecule super-resolution imaging independent of photobleaching. The different spectral properties allow for multiplexed imaging in combination with other localisation-based super-resolution imaging techniques. As examples for applications, we demonstrate correlated super-resolution imaging of the bacterial nucleoid with the position of genetic loci, of nascent DNA in correlation to the entire nucleoid, and of the nucleoid of metabolically arrested cells. We furthermore show that DNA- and membrane-targeting labels can be combined with photoactivatable fluorescent proteins and visualise the nano-scale distribution of RNA polymerase relative to the nucleoid in drug-treated E. coli cells.
Collapse
Affiliation(s)
- Christoph K Spahn
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mathilda Glaesmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Anthony X Ayala
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA.
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
| |
Collapse
|
30
|
Tera M, Glasauer SMK, Luedtke NW. In Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018; 19:1939-1943. [PMID: 29953711 DOI: 10.1002/cbic.201800351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Metabolic incorporation of bioorthogonal functional groups into cellular nucleic acids can be impeded by insufficient phosphorylation of nucleosides. Previous studies found that 5azidomethyl-2'-deoxyuridine (AmdU) was incorporated into the DNA of HeLa cells expressing a low-fidelity thymidine kinase, but not by wild-type HeLa cells. Here we report that membrane-permeable phosphotriester derivatives of AmdU can exhibit enhanced incorporation into the DNA of wild-type cells and animals. AmdU monophosphate derivatives bearing either 5'-bispivaloyloxymethyl (POM), 5'-bis-(4-acetoxybenzyl) (AB), or "Protide" protective groups were used to mask the phosphate group of AmdU prior to its entry into cells. The POM derivative "POM-AmdU" exhibited better chemical stability, greater metabolic incorporation efficiency, and lower toxicity than "AB-AmdU". Remarkably, the addition of POM-AmdU to the water of zebrafish larvae enabled the biosynthesis of azide-modified DNA throughout the body.
Collapse
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, 619-0284, Kyoto, Japan
| | - Stella M K Glasauer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
31
|
Omidbakhshfard MA, Fujikura U, Olas JJ, Xue GP, Balazadeh S, Mueller-Roeber B. GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet 2018; 14:e1007484. [PMID: 29985961 PMCID: PMC6053248 DOI: 10.1371/journal.pgen.1007484] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 07/19/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that GRF9 restricts cell proliferation in the early developing leaf. Performing in vitro binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified ORG3 as a direct downstream, and positively regulated target of GRF9. Genetic analysis of grf9 org3 and GRF9ox org3 double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf.
Collapse
Affiliation(s)
| | - Ushio Fujikura
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam‐Golm, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam‐Golm, Germany
| | | | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam‐Golm, Germany
- Max‐Planck Institute of Molecular Plant Physiology, Potsdam‐Golm, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam‐Golm, Germany
- Max‐Planck Institute of Molecular Plant Physiology, Potsdam‐Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Department Plant Development, Plovdiv, Bulgaria
- * E-mail:
| |
Collapse
|
32
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Sekine E, Schmidt N, Gaboriau D, O’Hare P. Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy. PLoS Pathog 2017; 13:e1006721. [PMID: 29121649 PMCID: PMC5697887 DOI: 10.1371/journal.ppat.1006721] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7-10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear entry was independent of proteasome function and resistant to inhibitors of nuclear export. Together with additional data our results reveal new insight into the spatiotemporal dynamics of HSV genome uncoating, transport and organisation.
Collapse
Affiliation(s)
- Eiki Sekine
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
| | - Nora Schmidt
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
| | - David Gaboriau
- Department of Medicine, Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Tosevski V, Ulashchik E, Trovato A, Cappella P. CyTOF Mass Cytometry for Click Proliferation Assays. ACTA ACUST UNITED AC 2017; 81:7.50.1-7.50.14. [PMID: 28678421 DOI: 10.1002/cpcy.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel cell analyzers, including polychromatic flow cytometers and isotopical cytometry by time of flight (CyTOF) mass cytometers, enable simultaneous measurement of virtually bondless characteristics at the single-cell level. BrdU assays for quantifying cellular proliferation are common but have several limitations, including the need for a DNA denaturation step and inability to simultaneously resolve multiple parameters and phenotypic complexity. Click chemistry reactions have become popular in the past decade, as they can resolve these issues. This protocol introduces a novel assay able to bridge flow cytometry and CyTOF analysis for active S-phase determination in cell cycle applications, combining well-established click chemistry with a novel iodo-deoxyuridine (IdU) azide derivative and a cross-reactive anti-IdU antibody for detecting incorporated EdU during DNA synthesis. This method is preferred over traditional BrdU-based assays for complex and multiparametric experiments. It provides a feasible cost-effective approach for detecting ethynyl-labeled nucleotides, with the advantage of combining flow and mass cytometry analyses. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.,Primetech ALC, Minsk, Belarus
| | | | | |
Collapse
|
35
|
Ng HX, Lee EP, Cavanagh BL, Britto JM, Tan SS. A method for isolating cortical interneurons sharing the same birthdays for gene expression studies. Exp Neurol 2017; 295:36-45. [PMID: 28511841 DOI: 10.1016/j.expneurol.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 11/19/2022]
Abstract
The two neuronal populations in the cortex, pyramidal neurons and interneurons, can be separated based on neurotransmitter identity, however, within this segregation a large degree of diversity exists. Investigations into the molecular diversity of neurons are impeded by the inability to isolate cell populations born at different times for gene expression analysis. Developing interneurons may be distinguished by the expression of Glutamic Acid Decarboxylase-67 (GAD67). Neuronal birthdating using nucleoside analogs is an effective means of identifying coetaneous interneurons. Using these two features, neurotransmitter identity and birthdating, we have developed a method to isolate migrating interneurons using fluorescent-activated cell sorting (FACS) for RNA extraction and gene expression analysis. We utilized 5-ethynyl-2'-deoxyuridine (EdU) to birthdate interneuron cohorts and the GAD67 knock-in GFP transgenic mice to identify interneurons. In combination, we achieved simultaneous detection of GFP and EdU signals during FACS sorting of coetaneous interneurons with minimum loss of RNA integrity. RNA quality was deemed to be satisfactory by quantitative polymerase chain reaction (qPCR) for the interneuron-specific transcript Gad67.
Collapse
Affiliation(s)
- Hui Xuan Ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia.
| | - Ean Phing Lee
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Joanne M Britto
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Xu S, Ao J, Gu H, Wang X, Xie C, Meng D, Wang L, Liu M. IL-22 Impedes the Proliferation of Schwann cells: Transcriptome Sequencing and Bioinformatics Analysis. Mol Neurobiol 2017; 54:2395-2405. [PMID: 26960328 DOI: 10.1007/s12035-016-9699-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023]
Abstract
Schwann cells (SCs) proliferation is crucial for nerve regeneration following nerve injury. This study aims to investigate effects of interleukin-22 (IL-22) on SCs proliferation in vitro, as well as the corresponding mechanism. Rat SCs were treated with 100 ng/ml rat IL-22 for 48 h, and cell proliferation and apoptosis were detected using fluorescent staining and flow cytometry. After transcriptome sequencing, raw reads were filtered and mapped to reference genome rn5. Then, differentially expressed genes (DEGs) and long non-coding RNAs (DElncRNAs) between IL-22 and control groups were identified (tool: Cuffdiff). Functional and pathway enrichment analyses were performed (tool: GOFunction), and protein-protein interaction (PPI) network was constructed (tool: STRING and Cytoscape). Furthermore, Pearson's correlations between DEGs and DElncRNAs were analyzed, and regulatory network of DEGs, DElncRNAs, and transcription factors (TFs) was constructed. IL-22 significantly inhibited proliferation (p value < 0.05) and promoted apoptosis of Schwann cells. Totally, 932 DEGs and 118 DElncRNAs were identified, among which Ccl2 and Ccna2 were hub genes in PPI network. Up-regulated DEGs were enriched in apoptosis related terms, whereas down-regulated DEGs were enriched in proliferation related terms. DElncRNAs like NONRATT023505, NONRATG020400, and NONRATT022748 were correlated with multiple DEGs enriched in cell cycle and division. Moreover, up-regulated TFs Egr1, Cebpd, and Atf4 play crucial roles in regulatory network, and NONRATG020400-Cebpd-Ccl2, NONRATT023505/NONRATT022748-Atf4-Ccna2, and NONRATT022748-Egr1-Id1/Aldoc/Eno2/F3/Serpine1 regulatory pathways were identified in SCs after IL-22 treatment. IL-22 might influence SCs proliferation and apoptosis via regulating lncRNA-TF-gene pathways in SCs. However, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200032, China
| | - Haihui Gu
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaoqing Wang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chong Xie
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Depeng Meng
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lishan Wang
- Med-X Research Insitute of Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Mingyuan Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Colangelo-Lillis J, Wing BA, Raymond-Bouchard I, Whyte LG. Viral Induced Microbial Mortality in Arctic Hypersaline Spring Sediments. Front Microbiol 2017; 7:2158. [PMID: 28167930 PMCID: PMC5253365 DOI: 10.3389/fmicb.2016.02158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022] Open
Abstract
Viruses are a primary influence on microbial mortality in the global ocean. The impacts of viruses on their microbial hosts in low-energy environments are poorly explored and are the focus of this study. To investigate the role of viruses in mediating mortality in low-energy environments where contacts between viruses and microbes are infrequent, we conducted a set of in situ time series incubations in the outlet and channel sediments of two cold, hypersaline springs of the Canadian High Arctic. We found microbial and viral populations in dynamic equilibrium, indicating approximately equal birth and death rates for each population. In situ rates of microbial growth were low (0.5–50 × 103 cells cm-3 h-1) as were rates of viral decay (0.09–170 × 104 virions cm-3 h-1). A large fraction of the springs’ viral communities (49–100%) were refractory to decay over the timescales of our experiments. Microcosms amended with lactate or acetate exhibited increased microbial growth rates (up to three-fold) indicating organic carbon as one limiting resource for the microbial communities in these environments. A substantial fraction (15–71%) of the microbial populations contained inducible proviruses that were released- occasionally in multiple pulses- over the eight monitored days following chemical induction. Our findings indicate that viruses in low-energy systems maintain low rates of production and activity, have a small but notable impact on microbial mortality (8–29% attenuation of growth) and that successful viral replication may primarily proceed by non-lethal strategies. In cold, low biomass marine systems of similar character (e.g., subsurface sediments), viruses may be a relatively minor driver of community mortality compared to less energy-limited environments such as the marine water column or surface sediments.
Collapse
Affiliation(s)
- Jesse Colangelo-Lillis
- Department of Earth and Planetary Science, McGill University, MontrealQC, Canada; McGill Space Institute, McGill University, MontrealQC, Canada
| | - Boswell A Wing
- Department of Earth and Planetary Science, McGill University, MontrealQC, Canada; McGill Space Institute, McGill University, MontrealQC, Canada
| | | | - Lyle G Whyte
- McGill Space Institute, McGill University, MontrealQC, Canada; Department of Natural Resource Science, McGill University, MontrealQC, Canada
| |
Collapse
|
38
|
Spahn C, Glaesmann M, Gao Y, Foo YH, Lampe M, Kenney LJ, Heilemann M. Sequential Super-Resolution Imaging of Bacterial Regulatory Proteins: The Nucleoid and the Cell Membrane in Single, Fixed E. coli Cells. Methods Mol Biol 2017; 1624:269-289. [PMID: 28842890 DOI: 10.1007/978-1-4939-7098-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite their small size and the lack of compartmentalization, bacteria exhibit a striking degree of cellular organization, both in time and space. During the last decade, a group of new microscopy techniques emerged, termed super-resolution microscopy or nanoscopy, which facilitate visualizing the organization of proteins in bacteria at the nanoscale. Single-molecule localization microscopy (SMLM) is especially well suited to reveal a wide range of new information regarding protein organization, interaction, and dynamics in single bacterial cells. Recent developments in click chemistry facilitate the visualization of bacterial chromatin with a resolution of ~20 nm, providing valuable information about the ultrastructure of bacterial nucleoids, especially at short generation times. In this chapter, we describe a simple-to-realize protocol that allows determining precise structural information of bacterial nucleoids in fixed cells, using direct stochastic optical reconstruction microscopy (dSTORM). In combination with quantitative photoactivated localization microscopy (PALM), the spatial relationship of proteins with the bacterial chromosome can be studied. The position of a protein of interest with respect to the nucleoids and the cell cylinder can be visualized by super-resolving the membrane using point accumulation for imaging in nanoscale topography (PAINT). The combination of the different SMLM techniques in a sequential workflow maximizes the information that can be extracted from single cells, while maintaining optimal imaging conditions for each technique.
Collapse
Affiliation(s)
- Christoph Spahn
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mathilda Glaesmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Yunfeng Gao
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yong Hwee Foo
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Otto-Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Linda J Kenney
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- University of Illinois, Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
| |
Collapse
|
39
|
Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB. Use of Fluorescence Lifetime Imaging Microscopy (FLIM) as a Timer of Cell Cycle S Phase. PLoS One 2016; 11:e0167385. [PMID: 27973570 PMCID: PMC5156356 DOI: 10.1371/journal.pone.0167385] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2'-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Collapse
Affiliation(s)
- Irina A. Okkelman
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Western Road, Cork, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
40
|
Sun X, Zhang C, Jin H, Sun G, Tian Y, Shi W, Zhang D. Flow cytometric analysis of T lymphocyte proliferation in vivo by EdU incorporation. Int Immunopharmacol 2016; 41:56-65. [PMID: 27816727 DOI: 10.1016/j.intimp.2016.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
Monitoring T lymphocyte proliferation, especially in vivo, is essential for the evaluation of adaptive immune reactions. Flow cytometry-based proliferation assays have advantages in measuring cell division of different T lymphocyte subsets at the same time by multicolor labelling. In this study, we aimed to establish the use of 5-Ethynyl-2'-deoxyuridine (EdU) incorporation in vivo to monitor T lymphocyte proliferation by flow cytometry with an adoptive transfer model. We found that fixation followed by permeabilization preserved T cell surface antigens and had no obvious effects on the fluorescence intensity of APC, PE, PE-Cy7, FITC and PerCP-Cy5.5 when the concentration of the permeabilization reagents was optimized. However, the click reaction resulted in a significant decrease in the fluorescence intensity of PE and PE-Cy7, and surface staining after the click reaction improved the fluorescence intensity. Thus, an extra step of blocking with PBS with 3% FBS between the click reaction and cell surface staining is needed. Furthermore, the percentage of EdU-positive cells increased in a dose-dependent manner, and the saturated dose of EdU was 20mg/kg. Intraperitoneal and intravenous injection had no differences in lymphocyte proliferation detection with EdU in vivo. In addition, T cell proliferation measured by EdU incorporation was comparable to BrdU but was lower than CFSE labelling. In conclusion, we optimized the protocols for EdU administration in vivo and staining in vitro, providing a feasible method for the measurement of T lymphocyte proliferation with EdU incorporation by flow cytometry in vivo.
Collapse
Affiliation(s)
- Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| |
Collapse
|
41
|
Ligasová A, Liboska R, Friedecký D, Mičová K, Adam T, Oždian T, Rosenberg I, Koberna K. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2'-deoxyuridine and 5-ethynyl-2'-deoxycytidine. Open Biol 2016; 6:150172. [PMID: 26740587 PMCID: PMC4736823 DOI: 10.1098/rsob.150172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
5-Ethynyl-2′-deoxyuridine (EdU) and 5-ethynyl-2′-deoxycytidine (EdC) are mainly used as markers of cellular replicational activity. Although EdU is employed as a replicational marker more frequently than EdC, its cytotoxicity is commonly much higher than the toxicity of EdC. To reveal the reason of the lower cytotoxicity of EdC, we performed a DNA analysis of five EdC-treated human cell lines. Surprisingly, not a single one of the tested cell lines contained a detectable amount of EdC in their DNA. Instead, the DNA of all the cell lines contained EdU. The content of incorporated EdU differed in particular cells and EdC-related cytotoxicity was directly proportional to the content of EdU. The results of experiments with the targeted inhibition of the cytidine deaminase (CDD) and dCMP deaminase activities indicated that the dominant role in the conversion pathway of EdC to EdUTP is played by CDD in HeLa cells. Our results also showed that the deamination itself was not able to effectively prevent the conversion of EdC to EdCTP, the conversion of EdC to EdCTP occurs with much lesser effectivity than the conversion of EdU to EdUTP and the EdCTP is not effectively recognized by the replication complex as a substrate for the synthesis of nuclear DNA.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, v.v.i., Prague 16610, Czech Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| | - Kateřina Mičová
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, v.v.i., Prague 16610, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Olomouc 77900, Czech Republic
| |
Collapse
|
42
|
Cui X, Fan X, Zhang D, Jia J. Enhanced Performance of Proliferation Assay of Bone Marrow Cells by Optimizing in vivo Incorporation of 5-Ethynyl-2′-Deoxyuridine and Cell Preparation for Flow Cytometry. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1135931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Seo S, Onizuka K, Nishioka C, Takahashi E, Tsuneda S, Abe H, Ito Y. Phosphorylated 5-ethynyl-2'-deoxyuridine for advanced DNA labeling. Org Biomol Chem 2016; 13:4589-95. [PMID: 25777799 DOI: 10.1039/c5ob00199d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.
Collapse
Affiliation(s)
- Siyoong Seo
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kath-Schorr S. Cycloadditions for Studying Nucleic Acids. Top Curr Chem (Cham) 2015; 374:4. [PMID: 27572987 DOI: 10.1007/s41061-015-0004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Cycloaddition reactions for site-specific or global modification of nucleic acids have enabled the preparation of a plethora of previously inaccessible DNA and RNA constructs for structural and functional studies on naturally occurring nucleic acids, the assembly of nucleic acid nanostructures, therapeutic applications, and recently, the development of novel aptamers. In this chapter, recent progress in nucleic acid functionalization via a range of different cycloaddition (click) chemistries is presented. At first, cycloaddition/click chemistries already used for modifying nucleic acids are summarized, ranging from the well-established copper(I)-catalyzed alkyne-azide cycloaddition reaction to copper free methods, such as the strain-promoted azide-alkyne cycloaddition, tetrazole-based photoclick chemistry and the inverse electron demand Diels-Alder cycloaddition reaction between strained alkenes and tetrazine derivatives. The subsequent sections contain selected applications of nucleic acid functionalization via click chemistry; in particular, site-specific enzymatic labeling in vitro, either via DNA and RNA recognizing enzymes or by introducing unnatural base pairs modified for click reactions. Further sections report recent progress in metabolic labeling and fluorescent detection of DNA and RNA synthesis in vivo, click nucleic acid ligation, click chemistry in nanostructure assembly and click-SELEX as a novel method for the selection of aptamers.
Collapse
Affiliation(s)
- Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Bonn, Germany.
| |
Collapse
|
45
|
Schmidt N, Hennig T, Serwa RA, Marchetti M, O'Hare P. Remote Activation of Host Cell DNA Synthesis in Uninfected Cells Signaled by Infected Cells in Advance of Virus Transmission. J Virol 2015; 89:11107-15. [PMID: 26311877 PMCID: PMC4621119 DOI: 10.1128/jvi.01950-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis. IMPORTANCE We show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine effector. The field has had no conception that this process occurs, and the work changes our interpretation of virus-host interaction during advancing infection and has implications for understanding controls of host DNA synthesis. Our findings demonstrate the utility of chemical biology techniques in analysis of infection processes, reveal distinct processes when infection is examined in multiround transmission versus single-step growth curves, and reveal a hitherto-unknown process in virus infection, likely relevant for other viruses (and other infectious agents) and for remote signaling of other processes, including transcription and protein synthesis.
Collapse
Affiliation(s)
- Nora Schmidt
- Section of Virology, St. Mary's Medical School, Imperial College, London, United Kingdom
| | - Thomas Hennig
- Section of Virology, St. Mary's Medical School, Imperial College, London, United Kingdom
| | - Remigiusz A Serwa
- Section of Virology, St. Mary's Medical School, Imperial College, London, United Kingdom Department of Chemistry, Imperial College London, London, United Kingdom
| | - Magda Marchetti
- Section of Virology, St. Mary's Medical School, Imperial College, London, United Kingdom Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Peter O'Hare
- Section of Virology, St. Mary's Medical School, Imperial College, London, United Kingdom
| |
Collapse
|
46
|
Endaya B, Cavanagh B, Alowaidi F, Walker T, de Pennington N, Ng JMA, Lam PYP, Mackay-Sim A, Neuzil J, Meedeniya ACB. Isolating dividing neural and brain tumour cells for gene expression profiling. J Neurosci Methods 2015; 257:121-33. [PMID: 26432933 DOI: 10.1016/j.jneumeth.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. NEW METHOD We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. RESULTS 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. COMPARISON WITH EXISTING METHOD BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. CONCLUSIONS The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation.
Collapse
Affiliation(s)
- Berwini Endaya
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Brenton Cavanagh
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Faisal Alowaidi
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tom Walker
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Nicholas de Pennington
- Human Adult Neural Stem Cell Facility, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jin-Ming A Ng
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Paula Y P Lam
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jiri Neuzil
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| | - Adrian C B Meedeniya
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
47
|
Choi JS, Berdis AJ. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:165-76. [PMID: 26004088 DOI: 10.1016/j.bbapap.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Nucleosides and their corresponding mono-, di-, and triphosphates play important roles in maintaining cellular homeostasis. In addition, perturbations in this homeostasis can result in dysfunctional cellular processes that cause pathological conditions such as cancer and autoimmune diseases. This review article discusses contemporary research areas applying nucleoside analogs to probe the mechanistic details underlying the complexities of nucleoside metabolism at the molecular and cellular levels. The first area describes classic and contemporary approaches used to quantify the activity of nucleoside transporters, an important class of membrane proteins that mediate the influx and efflux of nucleosides and nucleobases. A focal point of this section is describing how biophotonic nucleosides are replacing conventional assays employing radiolabeled substrates to study the mechanism of these proteins. The second section describes approaches to understand the utilization of nucleoside triphosphates by cellular DNA polymerases during DNA synthesis. Emphasis here is placed on describing how novel nucleoside analogs such as 5-ethynyl-2'-deoxyuridine are being used to quantify DNA synthesis during normal replication as well as during the replication of damaged DNA. In both sections, seminal research articles relevant to these areas are described to highlight how these novel probes are improving our understanding of these biological processes. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, 11000 Euclid Avenue, Cleveland, OH 44106, USA; Red5 Pharmaceuticals, LLC, 10000 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW. A Bioorthogonal Chemical Reporter of Viral Infection. Angew Chem Int Ed Engl 2015; 54:7911-4. [PMID: 25974835 PMCID: PMC7159598 DOI: 10.1002/anie.201500250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Pathogen‐selective labeling was achieved by using the novel gemcitabine metabolite analogue 2′‐deoxy‐2′,2′‐difluoro‐5‐ethynyluridine (dF‐EdU) and click chemistry. Cells infected with Herpes Simplex Virus‐1 (HSV‐1), but not uninfected cells, exhibit nuclear staining upon the addition of dF‐EdU and a fluorescent azide. The incorporation of the dF‐EdU into DNA depends on its phosphorylation by a herpes virus thymidine kinase (TK). Crystallographic analyses revealed how dF‐EdU is well accommodated in the active site of HSV‐1 TK, but steric clashes prevent dF‐EdU from binding human TK. These results provide the first example of pathogen‐enzyme‐dependent incorporation and labeling of bioorthogonal functional groups in human cells.
Collapse
Affiliation(s)
- Anne B Neef
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | - Lucile Pernot
- Pharmaceutical Biochemistry, University of Geneva (Switzerland)
| | - Verena N Schreier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | | | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com.
| |
Collapse
|
49
|
Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW. A Bioorthogonal Chemical Reporter of Viral Infection. ACTA ACUST UNITED AC 2015; 127:8022-8025. [PMID: 32313318 PMCID: PMC7159771 DOI: 10.1002/ange.201500250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/16/2015] [Indexed: 01/05/2023]
Abstract
Pathogen‐selective labeling was achieved by using the novel gemcitabine metabolite analogue 2′‐deoxy‐2′,2′‐difluoro‐5‐ethynyluridine (dF‐EdU) and click chemistry. Cells infected with Herpes Simplex Virus‐1 (HSV‐1), but not uninfected cells, exhibit nuclear staining upon the addition of dF‐EdU and a fluorescent azide. The incorporation of the dF‐EdU into DNA depends on its phosphorylation by a herpes virus thymidine kinase (TK). Crystallographic analyses revealed how dF‐EdU is well accommodated in the active site of HSV‐1 TK, but steric clashes prevent dF‐EdU from binding human TK. These results provide the first example of pathogen‐enzyme‐dependent incorporation and labeling of bioorthogonal functional groups in human cells.
Collapse
Affiliation(s)
- Anne B Neef
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | - Lucile Pernot
- Pharmaceutical Biochemistry, University of Geneva (Switzerland)
| | - Verena N Schreier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | | | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| |
Collapse
|
50
|
Cappella P, Gasparri F, Pulici M, Moll J. Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex Antibody Staining. ACTA ACUST UNITED AC 2015; 72:7.34.1-7.34.17. [DOI: 10.1002/0471142956.cy0734s72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paolo Cappella
- Department of Biology, Drug Discovery Oncology, Nerviano Medical Sciences Srl Milan Italy
| | - Fabio Gasparri
- Department of Biology, Drug Discovery Oncology, Nerviano Medical Sciences Srl Milan Italy
| | - Maurizio Pulici
- Department of Chemistry, Drug Discovery Oncology, Nerviano Medical Sciences Srl Milan Italy
| | - Jürgen Moll
- Department of Biology, Drug Discovery Oncology, Nerviano Medical Sciences Srl Milan Italy
| |
Collapse
|