1
|
Neri-Cruz CE, Chang L, Emidio Teixeira FM, Hakobyan S, Gutfreund P, Campana M, Zarbakhsh A, Gautrot JE. The formation and architecture of surface-initiated polymer brush gene delivery complexes. J Colloid Interface Sci 2025; 684:600-612. [PMID: 39809021 DOI: 10.1016/j.jcis.2024.12.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown. In this report, we characterise the binding capacity and adsorption kinetics of different types of nucleic acid materials for gene delivery (single and double stranded oligo RNA and DNA, mRNA and plasmid DNA) to PDMAEMA and PMETAC brushes, using surface plasmon resonance. The type and size of these nucleic acid macromolecules are found to have an important impact on their maximum surface density, and the association and adsorption constants of the resulting complexes. To gain further insight into the mechanisms that restrict the adsorption of higher molecular weight materials, and promote particularly effective RNA capture, the architecture of PDMAEMA brushes prior and after complexation is investigated by in situ ellipsometry and neutron reflectometry. Deep infiltration of oligonucleotides was found, irrespective of their binding capacity, suggesting that their infiltration is not a limiting factor in their dense capture on polymer brushes. In contrast, mRNA and pDNA were found to partially infiltrate within PDMAEMA brushes, although some of the nucleic acid materials could be found deep into the brush layer. This indicates that the size of these macromolecules and their partial infiltration may restrict further adsorption and high binding capacities, but also suggests that oligonucleotides will experience enhanced protection within polymer brushes, with fewer residues accessible for enzymatic degradation.
Collapse
Affiliation(s)
- Carlos E Neri-Cruz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Lan Chang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo 05403-000, Brazil
| | - Shoghik Hakobyan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Philipp Gutfreund
- Institute Laue Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mario Campana
- Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX
| | - Ali Zarbakhsh
- School of Physical and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Julien E Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
2
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
4
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
5
|
Voronovic E, Skripka A, Jarockyte G, Ger M, Kuciauskas D, Kaupinis A, Valius M, Rotomskis R, Vetrone F, Karabanovas V. Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39076-39087. [PMID: 34378375 PMCID: PMC8824430 DOI: 10.1021/acsami.1c10618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fluorophores with multifunctional properties known as rare-earth-doped nanoparticles (RENPs) are promising candidates for bioimaging, therapy, and drug delivery. When applied in vivo, these nanoparticles (NPs) have to retain long blood-circulation time, bypass elimination by phagocytic cells, and successfully arrive at the target area. Usually, NPs in a biological medium are exposed to proteins, which form the so-called "protein corona" (PC) around the NPs and influence their targeted delivery and accumulation in cells and tissues. Different surface coatings change the PC size and composition, subsequently deciding the fate of the NPs. Thus, detailed studies on the PC are of utmost importance to determine the most suitable NP surface modification for biomedical use. When it comes to RENPs, these studies are particularly scarce. Here, we investigate the PC composition and its impact on the cellular uptake of citrate-, SiO2-, and phospholipid micelle-coated RENPs (LiYF4:Yb3+,Tm3+). We observed that the PC of citrate- and phospholipid-coated RENPs is relatively stable and similar in the adsorbed protein composition, while the PC of SiO2-coated RENPs is larger and highly dynamic. Moreover, biocompatibility, accumulation, and cytotoxicity of various RENPs in cancer cells have been evaluated. On the basis of the cellular imaging, supported by the inhibition studies, it was revealed that RENPs are internalized by endocytosis and that specific endocytic routes are PC composition dependent. Overall, these results are essential to fill the gaps in the fundamental understanding of the nano-biointeractions of RENPs, pertinent for their envisioned application in biomedicine.
Collapse
Affiliation(s)
- Evelina Voronovic
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Life
Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
- Department
of Chemistry and Bioengineering, Vilnius
Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
| | - Artiom Skripka
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université
du Québec, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Greta Jarockyte
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Life
Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Marija Ger
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Dalius Kuciauskas
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Valius
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Biophotonics
Group of Laser Research Centre, Vilnius
University, Sauletekio
av. 9, LT-10222 Vilnius, Lithuania
| | - Fiorenzo Vetrone
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université
du Québec, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Vitalijus Karabanovas
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Department
of Chemistry and Bioengineering, Vilnius
Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
6
|
Yang M, Wu E, Tang W, Qian J, Zhan C. Interplay between nanomedicine and protein corona. J Mater Chem B 2021; 9:6713-6727. [PMID: 34328485 DOI: 10.1039/d1tb01063h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine is recognized as a promising agent for diverse biomedical applications; however, its safety and efficiency in clinical practice remains to be enhanced. A priority issue is the protein corona (PC), which imparts unique biological identities to prototype and determines the actual biological functions in biological fluids. Decades of work has already illuminated abundant considerations that influence the composition of the protein corona. Thereinto, the physical assets of nanomedicines (e.g., size and shape, surface properties, nanomaterials) and the biological environment collectively play fundamental roles in shaping the PC, including the types and quantities of plasma proteins. The properties of nanomedicines are dependent on certain factors. This review aims to explore the applications of nanomedicines by regulating their interplay with PC.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
| | - Ercan Wu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China. and MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
7
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Sánchez-Arribas N, Martínez-Negro M, Villar EM, Pérez L, Osío Barcina J, Aicart E, Taboada P, Guerrero-Martínez A, Junquera E. Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics 2020; 12:E791. [PMID: 32825658 PMCID: PMC7558209 DOI: 10.3390/pharmaceutics12090791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
A histidine-based gemini cationic lipid, which had already demonstrated its efficiency as a plasmid DNA (pDNA) nanocarrier, has been used in this work to transfect a small interfering RNA (siRNA) into cancer cells. In combination with the helper lipid monoolein glycerol (MOG), the cationic lipid was used as an antiGFP-siRNA nanovector in a multidisciplinary study. Initially, a biophysical characterization by zeta potential (ζ) and agarose gel electrophoresis experiments was performed to determine the lipid effective charge and confirm siRNA compaction. The lipoplexes formed were arranged in Lα lamellar lyotropic liquid crystal phases with a cluster-type morphology, as cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) studies revealed. Additionally, in vitro experiments confirmed the high gene knockdown efficiency of the lipid-based nanovehicle as detected by flow cytometry (FC) and epifluorescence microscopy, even better than that of Lipofectamine2000*, the transfecting reagent commonly used as a positive control. Cytotoxicity assays indicated that the nanovector is non-toxic to cells. Finally, using nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS), apolipoprotein A-I and A-II followed by serum albumin were identified as the proteins with higher affinity for the surface of the lipoplexes. This fact could be beyond the remarkable silencing activity of the histidine-based lipid nanocarrier herein presented.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - María Martínez-Negro
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Eva M. Villar
- Departamento de Física de Partículas, Facultad de Físicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (E.M.V.); (P.T.)
| | - Lourdes Pérez
- Departamento de Tensioactivos y Nanobiotecnología, IQAC-CSIC, 08034 Barcelona, Spain;
| | - José Osío Barcina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Emilio Aicart
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Pablo Taboada
- Departamento de Física de Partículas, Facultad de Físicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (E.M.V.); (P.T.)
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| |
Collapse
|
10
|
Sánchez-Arribas N, Martínez-Negro M, Villar EM, Pérez L, Aicart E, Taboada P, Guerrero-Martínez A, Junquera E. Biocompatible Nanovector of siRNA Consisting of Arginine-Based Cationic Lipid for Gene Knockdown in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34536-34547. [PMID: 32657573 DOI: 10.1021/acsami.0c06273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the use of small interfering RNAs (siRNAs) as therapeutic agents through the knockdown expression of pathogenic proteins, transportation and delivery of such siRNAs into cells continue to be under investigation. Within nonviral vectors, cationic lipids that include amino acid residues in their structures, and that have already demonstrated their suitability as plasmid DNA nanocarriers, may be also considered as potential siRNA vehicles. A double-chain cationic lipid based on the amino acid arginine mixed with a helper lipid has been the object of this biophysical study. First, ζ-potential measurements and agarose gel electrophoresis experiments confirmed the siRNA compaction, while small-angle X-ray scattering analysis (SAXS) revealed the structural pattern of the lipoplexes. Two bicontinuous cubic phases were found to coexist: the double-gyroid phase (QIIG) and the double-diamond phase (QIID), with Pn3m and Ia3d as crystallographic space groups, respectively; the siRNA is known to be located inside their bicontinuous aqueous channels. Second, in vitro studies in HeLa-green fluorescent protein (GFP) and T731-GFP cell lines (modified for GFP overexpression) showed moderate to high gene knockdown levels (determined by flow cytometry and epifluorescence microscopy) with remarkable cell viabilities (CCK-8 assay). Finally, nano-liquid chromatography/mass spectrometry (nanoLC-MS/MS) was used to identify the nature of the proteins adhered to the surface of the lipoplexes after incubation with human serum, simulating their behavior in biological fluids. The abundant presence of lipoproteins and serum albumin in such protein corona, together with the coexistence of the bicontinuous cubic phases, may be behind the remarkable silencing activity of these lipoplexes. The results reported herein show that the use of amino-acid-based cationic lipids mixed with a suitable helper lipid, which have already provided good results as DNA plasmid nanocarriers in cellular transfection processes, may also be a biocompatible option, and so far little investigated, in gene silencing in vitro strategies.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Martínez-Negro
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva M Villar
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Lourdes Pérez
- Departamento de Tecnologı́a Quı́mica y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain
| | - Emilio Aicart
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Taboada
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Junquera
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Ghavami M, Shiraishi T, Nielsen PE. Enzyme-Triggered Release of the Antisense Octaarginine-PNA Conjugate from Phospholipase A2 Sensitive Liposomes. ACS APPLIED BIO MATERIALS 2020; 3:1018-1025. [DOI: 10.1021/acsabm.9b01022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahdi Ghavami
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
12
|
La Barbera G, Capriotti AL, Caracciolo G, Cavaliere C, Cerrato A, Montone CM, Piovesana S, Pozzi D, Quagliarini E, Laganà A. A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: The evolution towards the lipid corona. Talanta 2019; 209:120487. [PMID: 31892008 DOI: 10.1016/j.talanta.2019.120487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
When drug nanocarriers enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BMC) mainly constituted by proteins. Although a deep investigation has been performed on the composition of BMC in terms of proteins, scarce attention has been posed to low molecular weight metabolites present in human plasma. In this work, for the first time, the investigation of the BMC of liposomal nanoparticles (NPs) constituted by 1,2-dioleoyl-3-trimethylammonium-propane polar lipid has been carried out by an ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry based untargeted metabolomics approach. Compounds were tentatively identified based on matches with online databases and comparison of MS/MS spectra with available spectral libraries. Moreover, a comparison of three metabolite extraction strategies, including an ultrafiltration membrane based protocol, a methanol extraction based protocol, and Wessel & Flügge protocol, was performed. Methanol extraction procedure resulted in the widest metabolic coverage of liposomal NP BMC. A total of 193 metabolites has been tentatively identified, 166 of which belonged to the class of lipids including phospholipids, steroids, carnitines, fatty alcohols, diglycerides and fatty acids. The high abundance of lipids in the BMC can be explained by the adsorption of plasma lipoproteins onto liposome surface, confirming previous works on other kinds of NPs. Lipids are important bioactive molecules, which could impact NP circulation and uptake by cells. Extending the investigation of BMC beyond the protein corona and towards the "lipid corona" may be the keystone of a better understanding and control of NP fate in human body.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy; Department of Nutrition, Exercise and Sports, University of Copenhagen, Norré Alle 51, 2200, Copenhagen, Denmark.
| | - Anna Laura Capriotti
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, University of Rome "La Sapienza", Viale Regina Elena 291, Rome, 00161, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Andrea Cerrato
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Carmela Maria Montone
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Susy Piovesana
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, University of Rome "La Sapienza", Viale Regina Elena 291, Rome, 00161, Italy.
| | - Erica Quagliarini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy.
| | - Aldo Laganà
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, Rome, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
13
|
Zhao J, Wu S, Qin J, Shi D, Wang Y. Electrical-Charge-Mediated Cancer Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in a Simulated Physiological Environment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41986-41998. [PMID: 30426746 DOI: 10.1021/acsami.8b15098] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A critical issue in nanomedicine is on the understanding of nano-bio interface behaviors, particularly when the nanoparticles are inevitably decorated by protein coronas in the physiological fluids. In this study, the effects of particle surface corona on cancer cell targeting were investigated in simulated physiological fluids. Cell targeting was achieved by two strategies: (1) using conventional epithelial cell adhesion molecule antibody-functionalized Fe3O4 nanoparticles and (2) rendering the same but naked magnetic nanoparticles electrically positively charged, enabling them to electrostatically bind onto the negatively charged cancer cells. The cell-particle electrostatic binding was found to be much stronger with faster reaction kinetics than the immunological interactions even at 4 nC. Both types of nanoparticles were decorated with various protein coronas by administration in a simulated physiological system. Well-decorated by protein coronas, the electrically charged particles retained strong electrostatic interactions with cancer cells, even upon reversal of the particle zeta potential from positive to negative. This behavior was explained by a nonuniform corona modulation of the particle surface charge distributions, exposing locally positively charged regions, capable of strong electrostatic cell binding and magnetic capturing in a physiological environment. This fundamental discovery paves new way for sensitive detection of circulating tumor cells in whole blood in clinical settings.
Collapse
Affiliation(s)
- Jian Zhao
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , No. 53 Zhengzhou Road , Qingdao 266042 , China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , P. R. China
| | - Donglu Shi
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , P. R. China
- The Materials Science and Engineering Program, College of Engineering and Applied Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , P. R. China
| |
Collapse
|
14
|
CE Separation and ICP-MS Detection of Gold Nanoparticles and Their Protein Conjugates. Chromatographia 2017; 80:1695-1700. [PMID: 29170563 PMCID: PMC5681605 DOI: 10.1007/s10337-017-3387-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/25/2022]
Abstract
A full understanding and mediation of nanoparticle-serum protein interactions is key to design nanoparticles with vivid functions within the body, and to solve this problem one needs to differentiate and characterize individual nano-protein conjugates. In this paper, the authors applied capillary electrophoresis combined with inductively coupled plasma mass spectrometry detection to study the behavior of gold nanoparticles of different geometry, size and surface functionalization upon interacting with serum proteins and their mixtures. Due to high-resolution and -sensitivity benefits of this combined technique baseline separations were attained for free nanoparticles (at real-life doses) and different protein conjugates, and the conversion into the protein-bound form was scrutinized in terms of reaction time.
Collapse
|
15
|
Khalid A, Persano S, Shen H, Zhao Y, Blanco E, Ferrari M, Wolfram J. Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin Drug Deliv 2017; 14:865-877. [PMID: 27690153 PMCID: PMC5584706 DOI: 10.1080/17425247.2017.1243527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ultimate goal in the field of drug delivery is to exclusively direct therapeutic agents to pathological tissues in order to increase therapeutic efficacy and eliminate side effects. This goal is challenging due to multiple transport obstacles in the body. Strategies that improve drug transport exploit differences in the characteristics of normal and pathological tissues. Within the field of oncology, these concepts have laid the groundwork for a new discipline termed transport oncophysics. Areas covered: Efforts to improve drug biodistribution have mainly focused on nanocarriers that enable preferential accumulation of drugs in diseased tissues. A less common approach to enhance drug transport involves priming strategies that modulate the biological environment in ways that favor localized drug delivery. This review discusses a variety of priming and nanoparticle design strategies that have been used for drug delivery. Expert opinion: Combinations of priming agents and nanocarriers are likely to yield optimal drug distribution profiles. Although priming strategies have yet to be widely implemented, they represent promising solutions for overcoming biological transport barriers. In fact, such strategies are not restricted to priming the tumor microenvironment but can also be directed toward healthy tissue in order to reduce nanoparticle uptake.
Collapse
Affiliation(s)
- Ayesha Khalid
- Medical Program, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Abstract
After administration of nanoparticle (NP) into biological fluids, an NP-protein complex is formed, which represents the "true identity" of NP in our body. Hence, protein-NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment.
Collapse
Affiliation(s)
- Van Hong Nguyen
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
17
|
Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells. Int J Pharm 2017; 520:1-13. [DOI: 10.1016/j.ijpharm.2017.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 01/04/2023]
|
18
|
Miceli E, Kar M, Calderón M. Interactions of organic nanoparticles with proteins in physiological conditions. J Mater Chem B 2017; 5:4393-4405. [DOI: 10.1039/c7tb00146k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The efficacy of nanoparticles in biomedical applications is strongly influenced by their ability to bind proteins onto their surface. The analysis of organic nanoparticles interacting with proteins in physiological conditions may help in the successful design of next generation nanoparticles with improved biodistributions and therapeutic performances.
Collapse
Affiliation(s)
- Enrico Miceli
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| | - Mrityunjoy Kar
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| |
Collapse
|
19
|
Amici A, Caracciolo G, Digiacomo L, Gambini V, Marchini C, Tilio M, Capriotti AL, Colapicchioni V, Matassa R, Familiari G, Palchetti S, Pozzi D, Mahmoudi M, Laganà A. In vivo protein corona patterns of lipid nanoparticles. RSC Adv 2017. [DOI: 10.1039/c6ra25493d] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vitro and in vivo biological identity of nanoparticles are substantially different.
Collapse
|
20
|
Pozzi D, Caracciolo G, Capriotti AL, Cavaliere C, La Barbera G, Anchordoquy TJ, Laganà A. Surface chemistry and serum type both determine the nanoparticle-protein corona. J Proteomics 2015; 119:209-17. [PMID: 25731725 PMCID: PMC4441341 DOI: 10.1016/j.jprot.2015.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/20/2015] [Indexed: 02/02/2023]
Abstract
The protein corona that forms around nanoparticles in vivo is a critical factor that affects their physiological response. The potential to manipulate nanoparticle characteristics such that either proteins advantageous for delivery are recruited and/or detrimental proteins are avoided offers exciting possibilities for improving drug delivery. In this work, we used nanoliquid chromatography tandem mass spectrometry to characterize the corona of five lipid formulations after incubation in mouse and human plasma with the hope of providing data that may contribute to a better understanding of the role played by both the nanoparticle properties and the physiological environment in recruiting specific proteins to the corona. Notably, we showed that minor changes in the lipid composition might critically affect the protein corona composition demonstrating that the surface chemistry and arrangement of lipid functional groups are key players that regulate the liposome-protein interactions. Notably, we provided evidence that the protein corona that forms around liposomes is strongly affected by the physiological environment, i.e., the serum type. These results are likely to suggest that the translation of novel pharmaceutical formulations from animal models to the clinic must be evaluated on a case-by-case basis. BIOLOGICAL SIGNIFICANCE In the present work nanoliquid chromatography tandem mass spectrometry was used to characterize the protein corona of five different liposome formulations after exposure to mouse and human plasma. The modern proteomic methods employed have clarified that the arrangement of lipid functional groups is a key player that regulates the liposome-protein interactions. We also clarified that the protein corona enrichment and complexity depend on the serum type. Our results suggest that the translational of novel pharmaceutical formulations from animal models to the clinic must be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Daniela Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giorgia La Barbera
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Aldo Laganà
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Liposome–protein corona in a physiological environment: Challenges and opportunities for targeted delivery of nanomedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:543-57. [DOI: 10.1016/j.nano.2014.11.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022]
|
22
|
Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomater Sci 2015. [DOI: 10.1039/c4bm00317a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro fate of designed low aggregated magnetic polyethyleneimine/DNA (MPD-cc) complexes and in vivo study via systemic administration.
Collapse
Affiliation(s)
- Li Xie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yiyan He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Dong Yue
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
23
|
Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, Amenitsch H, Laganà A. Lipid composition: a “key factor” for the rational manipulation of the liposome–protein corona by liposome design. RSC Adv 2015. [DOI: 10.1039/c4ra13335h] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
When liposomes are exposed to biological fluids, a dynamic protein coating immediately covers them forming a ‘protein corona’. Those proteins can interact with receptors (over)expressed on the plasma membrane of target cells bringing the liposomes to their final destination.
Collapse
Affiliation(s)
- G. Caracciolo
- Department of Molecular Medicine
- ‘Sapienza’ University of Rome
- 00161 Rome
- Italy
| | - D. Pozzi
- Department of Molecular Medicine
- ‘Sapienza’ University of Rome
- 00161 Rome
- Italy
| | - A. L. Capriotti
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - C. Cavaliere
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - S. Piovesana
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - H. Amenitsch
- Institute of inorganic Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - A. Laganà
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
24
|
Colombo S, Cun D, Remaut K, Bunker M, Zhang J, Martin-Bertelsen B, Yaghmur A, Braeckmans K, Nielsen HM, Foged C. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles. J Control Release 2014; 201:22-31. [PMID: 25540904 DOI: 10.1016/j.jconrel.2014.12.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 01/05/2023]
Abstract
Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.
Collapse
Affiliation(s)
- Stefano Colombo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark
| | - Dongmei Cun
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, Wenhua Road 103, 110016, China.
| | - Katrien Remaut
- Biophotonic Imaging Group, Lab of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Matt Bunker
- Molecular Profiles Ltd, 8 Orchard Place, Nottingham Business Park, Nottingham NG8 6PX, UK
| | - Jianxin Zhang
- Molecular Profiles Ltd, 8 Orchard Place, Nottingham Business Park, Nottingham NG8 6PX, UK
| | - Birte Martin-Bertelsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark
| | - Kevin Braeckmans
- Biophotonic Imaging Group, Lab of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium; Centre for Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark
| |
Collapse
|
25
|
Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, La Barbera G, Amici A, Laganà A. The liposome–protein corona in mice and humans and its implications for in vivo delivery. J Mater Chem B 2014; 2:7419-7428. [DOI: 10.1039/c4tb01316f] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opin Drug Deliv 2014; 11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Efficient delivery of plasmid DNA using cholesterol-based cationic lipids containing polyamines and ether linkages. Int J Mol Sci 2014; 15:7293-312. [PMID: 24786091 PMCID: PMC4057673 DOI: 10.3390/ijms15057293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022] Open
Abstract
Cationic liposomes are broadly used as non-viral vectors to deliver genetic materials that can be used to treat various diseases including cancer. To circumvent problems associated with cationic liposome-mediated delivery systems such as low transfection efficiency and serum-induced inhibition, cholesterol-based cationic lipids have been synthesized that resist the effects of serum. The introduction of an ether-type linkage and extension of the aminopropyl head group on the cholesterol backbone increased the transfection efficiency and DNA binding affinity compared to a carbamoyl-type linkage and a mono aminopropyl head group, respectively. Under optimal conditions, each liposome formulation showed higher transfection efficiency in AGS and Huh-7 cells than commercially available cationic liposomes, particularly in the presence of serum. The following molecular structures were found to have a positive effect on transfection properties: (i) extended aminopropyl head groups for a strong binding affinity to plasmid DNA; (ii) an ether linkage that favors electrostatic binding to plasmid DNA; and (iii) a cholesterol backbone for serum resistance.
Collapse
|
28
|
|
29
|
Pozzi D, Caracciolo G, Capriotti AL, Cavaliere C, Piovesana S, Colapicchioni V, Palchetti S, Riccioli A, Laganà A. A proteomics-based methodology to investigate the protein corona effect for targeted drug delivery. ACTA ACUST UNITED AC 2014; 10:2815-9. [DOI: 10.1039/c4mb00292j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we introduce a proteomics methodology based on nanoliquid-chromatography tandem mass spectrometry (nanoLC/MS-MS) to investigate the “protein corona effect for targeted drug delivery”.
Collapse
Affiliation(s)
- D. Pozzi
- Department of Molecular Medicine
- “Sapienza” University of Rome
- 00161 Rome, Italy
| | - G. Caracciolo
- Department of Molecular Medicine
- “Sapienza” University of Rome
- 00161 Rome, Italy
| | - A. L. Capriotti
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome, Italy
| | - C. Cavaliere
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome, Italy
| | - S. Piovesana
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome, Italy
| | - V. Colapicchioni
- Istituto Italiano di Tecnologia
- Center for Life Nano Science@Sapienza
- Rome, Italy
| | - S. Palchetti
- Department of Anatomy
- Histology
- Forensic Medicine and Orthopaedics
- Section of Histology and Medical Embryology
- “Sapienza” University of Rome
| | - A. Riccioli
- Department of Anatomy
- Histology
- Forensic Medicine and Orthopaedics
- Section of Histology and Medical Embryology
- “Sapienza” University of Rome
| | - A. Laganà
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome, Italy
| |
Collapse
|
30
|
Caracciolo G, Cardarelli F, Pozzi D, Salomone F, Maccari G, Bardi G, Capriotti AL, Cavaliere C, Papi M, Laganà A. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13171-9. [PMID: 24245615 DOI: 10.1021/am404171h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A possible turning point in drug delivery has been recently reached: the protein shell, which covers nanocarriers in vivo, can be used for targeting. Here, we show that nanoparticles can acquire a selective targeting capability with a protein corona adsorbed on the surface. We demonstrate that lipid particles made of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and DNA, upon interaction with human plasma components, spontaneously become coated with vitronectin that promotes efficient uptake in cancer cells expressing high levels of the vitronectin ανβ3 integrin receptor.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome , Viale Regina Elena 291, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shannahan JH, Brown JM, Chen R, Ke PC, Lai X, Mitra S, Witzmann FA. Comparison of nanotube-protein corona composition in cell culture media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2171-81. [PMID: 23322550 PMCID: PMC3725593 DOI: 10.1002/smll.201202243] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/25/2012] [Indexed: 04/14/2023]
Abstract
In biological environments, nanomaterials associate with proteins forming a protein corona (PC). The PC may alter the nanomaterial's pharmacokinetics and pharmacodynamics, thereby influencing toxicity. Using a label-free mass spectrometry-based proteomics approach, the composition of the PC is examined for a set of nanotubes (NTs) including unmodified and carboxylated single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), polyvinylpyrrolidone (PVP)-coated MWCNT (MWCNT-PVP), and nanoclay. NTs are incubated for 1 h in simulated cell culture conditions, then washed, resuspended in PBS, and assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for their associated PC. To determine those attributes that influence PC formation, the NTs are extensively characterized. NTs had negative zeta potentials in water (SWCNT-COOH < MWCNT-COOH < unmodified NTs) while carboxylation increases their hydrodynamic sizes. All NTs are also found to associate a common subset of proteins including albumin, titin, and apolipoproteins. SWCNT-COOH and MWCNT-COOH are found to bind the greatest number of proteins (181 and 133 respectively) compared to unmodified NTs (<100), suggesting covalent binding to protein amines. Modified NTs bind a number of unique proteins compared to unmodified NTs, implying hydrogen bonding and electrostatic interactions are involved in PC formation. PVP-coating of MWCNT did not influence PC composition, further reinforcing the possibility of hydrogen bonding and electrostatic interactions. No relationships are found between PC composition and corresponding isoelectric point, hydropathy, or aliphatic index, implying minimal roles of hydrophobic interaction and pi-stacking.
Collapse
Affiliation(s)
- Jonathan H. Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, 27834, USA
| | - Jared M. Brown
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, 27834, USA
| | - Ran Chen
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
| | - Pu Chun Ke
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
| | - Xianyin Lai
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Somenath Mitra
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Frank A. Witzmann
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
32
|
Caracciolo G. The protein corona effect for targeted drug delivery. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.12.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Bae YU, Kim BK, Park JW, Seu YB, Doh KO. Endocytic Pathway and Resistance to Cholesterol Depletion of Cholesterol Derived Cationic Lipids for Gene Delivery. Mol Pharm 2012; 9:3579-85. [DOI: 10.1021/mp300458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Bieong-Kil Kim
- School of Life Sciences and
Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | - Young-Bae Seu
- School of Life Sciences and
Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | |
Collapse
|
34
|
Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Anal Bioanal Chem 2012; 405:635-45. [PMID: 22274284 DOI: 10.1007/s00216-011-5691-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/12/2022]
Abstract
A shotgun proteomics approach was used to compare human plasma protein binding capability with cationic liposomes, DNA-cationic lipid complexes (lipoplexes), and lipid-polycation-DNA (LPD) complexes. Nano-high-performance liquid chromatography coupled with a high-resolution LTQ Orbitrap XL mass spectrometer was used to characterize and compare their protein corona. Spectral counting and area under curve methods were used to perform label-free quantification. Substantial qualitative and quantitative differences were found among proteins bound to the three different systems investigated. Protein variety found on lipoplexes and LPD complexes was richer than that found on cationic liposomes. There were also significant differences between the amounts of protein. Such results could help in the design of gene-delivery systems, because some proteins could be more selectively bound rather than others, and their bio-distribution could be driven in vivo for more efficient and effective gene therapy.
Collapse
|