1
|
Sánchez-Rodríguez R, Tezze C, Agnellini AHR, Angioni R, Venegas FC, Cioccarelli C, Munari F, Bertoldi N, Canton M, Desbats MA, Salviati L, Gissi R, Castegna A, Soriano ME, Sandri M, Scorrano L, Viola A, Molon B. OPA1 drives macrophage metabolism and functional commitment via p65 signaling. Cell Death Differ 2023; 30:742-752. [PMID: 36307526 PMCID: PMC9984365 DOI: 10.1038/s41418-022-01076-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Macrophages are essential players for the host response against pathogens, regulation of inflammation and tissue regeneration. The wide range of macrophage functions rely on their heterogeneity and plasticity that enable a dynamic adaptation of their responses according to the surrounding environmental cues. Recent studies suggest that metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the metabolic pathways orchestrating macrophage activation are still under scrutiny. Optic atrophy 1 (OPA1) is a mitochondria-shaping protein controlling mitochondrial fusion, cristae biogenesis and respiration; clear evidence shows that the lack or dysfunctional activity of this protein triggers the accumulation of metabolic intermediates of the TCA cycle. In this study, we show that OPA1 has a crucial role in macrophage activation. Selective Opa1 deletion in myeloid cells impairs M1-macrophage commitment. Mechanistically, Opa1 deletion leads to TCA cycle metabolite accumulation and defective NF-κB signaling activation. In an in vivo model of muscle regeneration upon injury, Opa1 knockout macrophages persist within the damaged tissue, leading to excess collagen deposition and impairment in muscle regeneration. Collectively, our data indicate that OPA1 is a key metabolic driver of macrophage functions.
Collapse
Affiliation(s)
- Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Caterina Tezze
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Roberta Angioni
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Francisca C Venegas
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Chiara Cioccarelli
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Nicole Bertoldi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Marcella Canton
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
| | - Maria Andrea Desbats
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Environment, 70125, Bari, Italy
| | - Alessandra Castegna
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy
- Department of Biosciences, Biotechnologies and Environment, 70125, Bari, Italy
| | | | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Department of Medicine, McGill University, Montreal, Montreal (Quebec), H4A 3J1, Canada
| | - Luca Scorrano
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy.
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
- Istituto di Ricerca Pediatrica IRP- Fondazione Città della Speranza, 35127, Padova, Italy.
| |
Collapse
|
2
|
López-Torres CD, Torres-Mena JE, Castro-Gil MP, Villa-Treviño S, Arellanes-Robledo J, Del Pozo-Yauner L, Pérez-Carreón JI. Downregulation of Indolethylamine N-methyltransferase is an early event in the rat hepatocarcinogenesis and is associated with poor prognosis in hepatocellular carcinoma patients. J Gene Med 2022; 24:e3439. [PMID: 35816441 DOI: 10.1002/jgm.3439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide, often preceded by cirrhosis and usually diagnosed at advanced stages; therefore, identifying molecular changes at early stages is an attractive strategy for detection and timely treatment. Here, we investigated the progressive transcriptomic changes during experimental hepatocarcinogenesis to identify novel early tumor markers in an HCC model induced by chronic administration of sublethal doses of diethylnitrosamine. An analysis of differentially expressed genes showed that four processes associated with oxidation-reduction and detoxification were significantly overrepresented during hepatocarcinogenesis progression, of which the Nuclear Factor, Erythroid 2 Like 2 (NRF2) pathway showed several dysregulated genes. Interestingly, we also identified 91 genes dysregulated at early HCC stages, but the expression of the indolethylamine N-methyltransferase gene (Inmt), as well as the level of its encoding protein, were strongly downregulated. INMT was increased in perivenular hepatocytes of normal livers but decreased in livers of experimental HCC. Furthermore, a gene expression and survival analysis performed using data from the liver hepatocellular carcinoma project of The Cancer Genome Atlas Program revealed that INMT is also significantly downregulated in human HCC and is associated with poor overall survival. In conclusion, by performing a transcriptome analysis of the HCC progression, we identified that INMT is early downregulated in the rat hepatocarcinogenesis and is associated with poor prognosis in human HCC, suggesting that INMT downregulation may be a promising prognostic marker for HCC in high-risk populations.
Collapse
Affiliation(s)
- Carlos David López-Torres
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| | | | - María Paulette Castro-Gil
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular. Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional. Ciudad de México, México
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México.,Dirección de Cátedras. Consejo Nacional de Ciencia y Tecnología. Ciudad de México, México
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama. Alabama, USA
| | - Julio Isael Pérez-Carreón
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| |
Collapse
|
3
|
Castro-Gil MP, Torres-Mena JE, Salgado RM, Muñoz-Montero SA, Martínez-Garcés JM, López-Torres CD, Mendoza-Vargas A, Gabiño-López NB, Villa-Treviño S, Del Pozo-Yauner L, Arellanes-Robledo J, Krötzsch E, Pérez-Carreón JI. The transcriptome of early GGT/KRT19-positive hepatocellular carcinoma reveals a downregulated gene expression profile associated with fatty acid metabolism. Genomics 2021; 114:72-83. [PMID: 34861383 DOI: 10.1016/j.ygeno.2021.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.
Collapse
Affiliation(s)
| | | | - Rosa M Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | - Said A Muñoz-Montero
- Department of Computational Genomics, National Institute of Genomic Medicine, CDMX, Mexico
| | | | | | | | | | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, CDMX, Mexico
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology, CDMX, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | | |
Collapse
|
4
|
Luo D, Li H, Hu J, Zhang M, Zhang S, Wu L, Han B. Development and Validation of Nomograms Based on Gamma-Glutamyl Transpeptidase to Platelet Ratio for Hepatocellular Carcinoma Patients Reveal Novel Prognostic Value and the Ratio Is Negatively Correlated With P38MAPK Expression. Front Oncol 2020; 10:548744. [PMID: 33344225 PMCID: PMC7744698 DOI: 10.3389/fonc.2020.548744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Early prediction of recurrence and death risks is significant to the treatment of hepatocellular carcinoma (HCC) patients. We aimed to develop and validate prognosis nomogram models based on the gamma-glutamyl transpeptidase (GGT)-to-platelet (PLT) ratio (GPR) for HCC and to explore the relationship between the GPR and inflammation-related signaling pathways. Methods All data were obtained from 2000 to 2012 in the Affiliated Hospital of Qingdao University. In the training cohort, factors included in the nomograms were determined by univariate and multivariate analyses. In the training and validation cohorts, the concordance index (C-index) and calibration curves were used to assess predictive accuracy, and receiver operating characteristic curves were used to assess discriminative ability. Clinical utility was evaluated using decision curve analysis. Moreover, improvement of the predictive accuracy of the nomograms was evaluated by calculating the decision curve analysis, the integrated discrimination improvement, and the net reclassification improvement. Finally, the relationship between the GPR and inflammation-related signaling pathways was evaluated using the independent-samples t-test. Results A larger tumor size and higher GPR were common independent risk factors for both disease-free survival (DFS) and overall survival (OS) in HCC (P < 0.05). Good agreement between our nomogram models' predictions and actual observations was detected by the C-index and calibration curves. Our nomogram models showed significantly better performance in predicting the HCC prognosis compared to other models (P < 0.05). Online webserver and scoring system tables were built based on the proposed nomogram for convenient clinical use. Notably, including the GPR greatly improved the predictive ability of our nomogram models (P < 0.05). In the validation cohort, p38 mitogen-activated protein kinase (P38MAPK) expression was significantly negatively correlated with the GPR (P < 0.01) and GGT (P = 0.039), but was not correlated with PLT levels (P = 0.063). And we found that P38MAPK can regulate the expression of GGT by quantitative real-time PCR and Western blotting experiments. Conclusions The dynamic nomogram based on the GPR provides accurate and effective prognostic predictions for HCC, and P38MAPK-GGT may be a suitable therapeutic target to improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Hu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Meda S, Freund N, Norman KJ, Thompson BS, Sonntag KC, Andersen SL. The use of laser capture microdissection to identify specific pathways and mechanisms involved in impulsive choice in rats. Heliyon 2019; 5:e02254. [PMID: 31485508 PMCID: PMC6716106 DOI: 10.1016/j.heliyon.2019.e02254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Background Microinjections, lesions, viral-mediated gene transfer, or designer receptors exclusively activated by designer drugs (DREADDs) can identify brain signaling pathways and their pharmacology in research animals. Genetically modified animals are used for more precise assessment of neural circuits. However, only a few of the gene-based pathway modifications are available for use in outbred rat strains. New method Behaviorally characterized Sprague-Dawley rats undergo tract tracing through microinjection of fluorospheres, followed by laser capture microdissection (LCM) and qPCR for detecting mRNA of pathway-associated gene products. Correlations between mRNA expression and behavior identify specific involvement of pharmacologically relevant molecules within cells of interest. Here, we examined this methodology in an impulsive choice paradigm and targeted projections from the orbital and medial prefrontal cortex. Results In this proof of concept study, we demonstrate relationships between measures of impulsive choice with distinct neurotransmitter receptor expression in cell populations from four different signaling pathways. Comparisons with existing methods Combining behavior, tract tracing, LCM, and gene expression profiling provides more cellular selectivity than localized lesions and DREADDs, and greater pharmacological specificity than microinjections and viral-mediated gene transfer due to targeting identified neurons. Furthermore, the assessment of inter-individual pathways provides insight into the complex nature of underlying mechanisms involved in typical and atypical behavior. Conclusions The novel combination of behavior, tract tracing, LCM, and single gene or potential whole genome transcriptome analysis allows for a more targeted understanding of the interconnection of neural circuitry with behavior, and holds promise to identify more specific drug targets that are relevant to behavioral phenotypes.
Collapse
Affiliation(s)
- Shirisha Meda
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, USA
| | - Nadja Freund
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, USA.,Experimental and Molecular Psychiatry, Ruhr-University, Germany
| | - Kevin J Norman
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, USA
| | - Britta S Thompson
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, USA
| | - Kai-C Sonntag
- Laboratory for Translational Research on Neurodegeneration, Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, USA.,Basic Neuroscience Division, McLean Hospital, Harvard Medical School, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, USA
| | - Susan L Andersen
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, USA.,Basic Neuroscience Division, McLean Hospital, Harvard Medical School, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, USA
| |
Collapse
|
6
|
Martínez-Rivera FJ, Martínez NA, Martínez M, Ayala-Pagán RN, Silva WI, Barreto-Estrada JL. Neuroplasticity transcript profile of the ventral striatum in the extinction of opioid-induced conditioned place preference. Neurobiol Learn Mem 2019; 163:107031. [PMID: 31173919 PMCID: PMC6689252 DOI: 10.1016/j.nlm.2019.107031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Persistent drug-seeking behavior has been associated with deficits in neural circuits that regulate the extinction of addictive behaviors. Although there is extensive data that associates addiction phases with neuroplasticity changes in the reward circuit, little is known about the underlying mechanisms of extinction learning of opioid associated cues. Here, we combined morphine-conditioned place preference (CPP) with real-time polymerase chain reaction (RT-PCR) to identify the effects of extinction training on the expression of genes (mRNAs) associated with synaptic plasticity and opioid receptors in the ventral striatum/nucleus accumbens (VS/NAc). Following morphine extinction training, we identified two animal subgroups showing either extinction (low CPP) or extinction-resistance (high CPP). A third group were conditioned to morphine but did not receive extinction training (sham-extinction; high CPP). RT-PCR results showed that brain derived neurotrophic factor (Bdnf) was upregulated in rats showing successful extinction. Conversely, the lack of extinction training (sham-extinction) upregulated genes associated with kinases (Camk2g), neurotrophins (Ngfr), synaptic connectivity factors (Ephb2), glutamate neurotransmission (Grm8) and opioid receptors (μ1, Δ1). To further identify genes modulated by morphine itself, comparisons with their saline-counterparts were performed. Results revealed that Bdnf was consistently upregulated in the extinction group. Alternatively, widespread gene modulation was observed in the group with lack of extinction training (i.e. Drd2, Cnr1, Creb, μ1, Δ1) and the group showing extinction resistance (i.e. Crem, Rheb, Tnfa). Together, our study builds on the identification of putative genetic markers for the extinction learning of drug-associated cues.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Namyr A Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Magdiel Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Roxsana N Ayala-Pagán
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Walter I Silva
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA.
| |
Collapse
|
7
|
Kato Y, Masago Y, Kondo C, Yogo E, Torii M, Hishikawa A, Izawa T, Kuwamura M, Yamate J. Comparison of Acute Gene Expression Profiles of Islet Cells Obtained via Laser Capture Microdissection between Alloxan- and Streptozotocin-treated Rats. Toxicol Pathol 2018; 46:660-670. [PMID: 29929439 DOI: 10.1177/0192623318783957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify the molecular profiles of islets from alloxan (ALX)- and streptozotocin (STZ)-treated rats, a microarray-based global gene expression analysis was performed on frozen islets isolated via laser capture microdissection. At 6 weeks old, rats were injected with ALX (40 mg/kg) or STZ (50 or 100 mg/kg) and then euthanized 24 hr later. Histopathological analysis showed β-cell necrosis, macrophage infiltration, and islet atrophy. The extent of these changes was more notable in the STZ groups than in the ALX group. Transcriptome analysis demonstrated a significant up- or downregulation of cell cycle arrest-related genes in the p53 signaling pathway. Cyclin D2 and cyclin-dependent kinase inhibitor 1A, mediators of G1 arrest, were remarkably altered in STZ-treated rats. In contrast, cyclin-B1 and cyclin-dependent kinase 1, mediators of G2 arrest, were remarkably changed in ALX-treated rats. Genes involved in the intrinsic mitochondria-mediated apoptotic pathway were upregulated in the ALX and STZ groups. Moreover, heat-shock 70 kDA protein 1A ( Hspa1a), Hsp90ab1, and Hsph1 were upregulated in ALX-treated rats, suggesting that ALX treatment injures β cells via endoplasmic reticulum stress. These results contribute to a better understanding of gene expression in the pathogenesis of islet toxicity.
Collapse
Affiliation(s)
- Yuki Kato
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan.,2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yusaku Masago
- 3 Discovery Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Chiaki Kondo
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Erika Yogo
- 3 Discovery Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Mikinori Torii
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuko Hishikawa
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Izawa
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
8
|
Torres-Mena JE, Salazar-Villegas KN, Sánchez-Rodríguez R, López-Gabiño B, Del Pozo-Yauner L, Arellanes-Robledo J, Villa-Treviño S, Gutiérrez-Nava MA, Pérez-Carreón JI. Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC. Dig Dis Sci 2018; 63:934-944. [PMID: 29383608 DOI: 10.1007/s10620-018-4943-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/20/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. AIMS To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. METHODS Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. RESULTS The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. CONCLUSIONS Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.
Collapse
Affiliation(s)
- Julia Esperanza Torres-Mena
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| | - Karla Noemí Salazar-Villegas
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico
| | - Ricardo Sánchez-Rodríguez
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico
| | - Belém López-Gabiño
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico
| | - Luis Del Pozo-Yauner
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| | - María Angélica Gutiérrez-Nava
- Laboratorio de Ecología Microbiana, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Mexico, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610, Mexico, CDMX, Mexico.
| |
Collapse
|
9
|
Sánchez-Rodríguez R, Torres-Mena JE, Quintanar-Jurado V, Chagoya-Hazas V, Rojas Del Castillo E, Del Pozo Yauner L, Villa-Treviño S, Pérez-Carreón JI. Ptgr1 expression is regulated by NRF2 in rat hepatocarcinogenesis and promotes cell proliferation and resistance to oxidative stress. Free Radic Biol Med 2017; 102:87-99. [PMID: 27867096 DOI: 10.1016/j.freeradbiomed.2016.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Prostaglandin reductase-1 (Ptgr1) is an alkenal/one oxidoreductase that is involved in the catabolism of eicosanoids and lipid peroxidation such as 4-hydroxynonenal (4-HNE). Recently, we reported that Ptgr1 is overexpressed in human clinical and experimentally induced samples of hepatocellular carcinoma (HCC). However, how the expression of this gene is regulated and its role in carcinogenesis are not yet known. Here, we studied parameters associated with antioxidant responses and the mechanisms underlying the induction of Ptgr1 expression by the activation of Nuclear Factor (erythroid-derived-2)-like-2 (NRF2). For these experiments, we used two protocols of induced hepatocarcinogenesis in rats. Furthermore, we determined the effect of PTGR1 on cell proliferation and resistance to oxidative stress in cell cultures of the epithelial liver cell line, C9. Ptgr1 was overexpressed during the early phase in altered hepatocyte foci, and this high level of expression was maintained in persistent nodules until tumors developed. Ptgr1 expression was regulated by NRF2, which bound to an antioxidant response element at -653bp in the rat Ptgr1 gene. The activation of NRF2 induced the activation of an antioxidant response that included effects on proteins such as glutamate-cysteine ligase, catalytic subunit, NAD(P)H dehydrogenase quinone-1 (NQO1) and glutathione-S-transferase-P (GSTP1). These effects may have produced a reduced status that was associated with a high proliferation rate in experimental tumors. Indeed, when Ptgr1 was stably expressed, we observed a reduction in the time required for proliferation and a protective effect against hydrogen peroxide- and 4-HNE-induced cell death. These data were consistent with data showing colocalization between PTGR1 and 4-HNE protein adducts in liver nodules. These findings suggest that Ptgr1 and antioxidant responses act as a metabolic adaptation and could contribute to proliferation and cell-death evasion in liver tumor cells. Furthermore, these data indicate that Ptgr1 could be used to design early diagnostic tools or targeted therapies for HCC.
Collapse
Affiliation(s)
| | - Julia Esperanza Torres-Mena
- Instituto Nacional de Medicina Genómica, Mexico; Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | | | | | | | - Saul Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | |
Collapse
|
10
|
Zúñiga-García V, Chávez-López MDG, Quintanar-Jurado V, Gabiño-López NB, Hernández-Gallegos E, Soriano-Rosas J, Pérez-Carreón JI, Camacho J. Differential Expression of Ion Channels and Transporters During Hepatocellular Carcinoma Development. Dig Dis Sci 2015; 60:2373-83. [PMID: 25842354 DOI: 10.1007/s10620-015-3633-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/13/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ion channels and transporters are potential markers and therapeutic targets for several cancers. However, their expression during hepatocellular carcinoma (HCC) development remains unclear. AIM To investigate the mRNA expression of Na(+), K(+) and Ca(2+) channels and ABC transporters during rat HCC development, as well as Abcc3 protein in human liver biopsies. METHODS Wistar rats were treated with diethylnitrosamine (DEN) and developed both cirrhosis (12 weeks of treatment) and either pre-neoplastic lesions (16 weeks of treatment) or multinodular HCC (16 weeks of treatment plus 2 weeks DEN-free). The mRNA expression of 12 ion channels and two ABC transporters was studied using real-time RT-PCR. Tumor-containing or tumor-free liver sections were isolated by laser-capture microdissection. Abcc3 protein expression was studied by immunohistochemistry in healthy, cirrhotic and HCC human biopsies. RESULTS We observed expression changes in seven genes. Kcna3, Kcnn4, Kcnrg and Kcnj11 potassium channel mRNA expression reached peak values at the end of DEN treatment, while Scn2a1 sodium channel, Trpc6 calcium channel and Abcc3 transporter mRNA expression reached their highest levels in the presence of HCC (18 weeks). Whereas Kcnn4 and Scn2a1 channel expression was similar in non-tumor and tumor tissue, the Abcc3 transporter and Kcna3 potassium channels were preferentially overexpressed in the tumor sections. We observed differential Abcc3 protein subcellular localization and expression in human samples. CONCLUSIONS The ion channel/transporter expression profile observed suggests that these genes are potential early markers or therapeutic targets of HCC. The differential localization of Abcc3 may be useful in the diagnosis of cirrhosis and HCC.
Collapse
Affiliation(s)
- Violeta Zúñiga-García
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, C.P. 07360, Mexico City, Mexico,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Boone DR, Micci MA, Taglialatela IG, Hellmich JL, Weisz HA, Bi M, Prough DS, DeWitt DS, Hellmich HL. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One 2015; 10:e0127287. [PMID: 26016641 PMCID: PMC4446038 DOI: 10.1371/journal.pone.0127287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Isabella G. Taglialatela
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Judy L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Min Bi
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
- * E-mail:
| |
Collapse
|