1
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
2
|
Ali R, Almousa R, Aly SM, Saleh SM. Nanoscale potassium sensing based on valinomycin-anchored fluorescent gold nanoclusters. Mikrochim Acta 2024; 191:299. [PMID: 38709371 DOI: 10.1007/s00604-024-06392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| | - Reem Almousa
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia
| | - Sanaa M Aly
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia
- Department of Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| |
Collapse
|
3
|
Zhang T, Liu J, Zhang L, Irfan M, Su X. Recent advances in aptamer-based biosensors for potassium detection. Analyst 2023; 148:5340-5354. [PMID: 37750217 DOI: 10.1039/d3an01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Maintaining a stable level of potassium is crucial for proper bodily function because even a slight imbalance can result in serious disorders like hyperkalemia and hypokalemia. Therefore, detecting and monitoring potassium ion (K+) levels are of utmost importance. Various biosensors have been developed for rapid K+ detection, with aptamer-based biosensors garnering significant attention due to their high sensitivity and specificity. This review focuses on aptamer-based biosensors for K+ detection, providing an overview of their signal generation strategies, including electrochemical, field-effect transistor, nanopore, colorimetric, and fluorescent systems. The analytical performance of these biosensors is evaluated comprehensively. In addition, factors that affect their efficiency, such as their physicochemical properties, regeneration for reusability, and linkers/spacers, are listed. Lastly, this review examines the major challenges faced by aptamer-based biosensors in K+ detection and discusses potential future developments.
Collapse
Affiliation(s)
- Tengfang Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Muhammad Irfan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem 2023; 415:5899-5924. [PMID: 37668672 DOI: 10.1007/s00216-023-04911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.
Collapse
Affiliation(s)
| | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
5
|
Cai K, Gao W, Li X, Lin Y, Li D, Quan W, Zhao R, Ren X. Development and Application of Portable Reflectometric Spectroscopy Combined with Solid-Phase Extraction for Determination of Potassium in Flue-Cured Tobacco Leaves. ACS OMEGA 2023; 8:20730-20738. [PMID: 37332809 PMCID: PMC10269270 DOI: 10.1021/acsomega.3c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Potassium (K) plays important roles in the energy and substance conversion of tobacco metabolism and is also regarded as one of the important indicators of tobacco quality evaluation. However, the K quantitative analytical method shows poor performance in terms of being easy-to-use, cost-effective, and portable. Here, we developed a rapid and simple method for the determination of K content in flue-cured tobacco leaves, including water extraction with 100 °C heating, purification with solid-phase extraction (SPE), and analysis with portable reflectometric spectroscopy based on K test strips. The method development consisted of optimization of the extraction and test strip reaction conditions, screening of SPE sorbent materials, and evaluation of the matrix effect. Under the optimum conditions, good linearity was observed in 0.20-0.90 mg/mL with a correlation coefficient >0.999. The extraction recoveries were found to be in the range of 98.0-99.5% with a repeatability and reproducibility of 1.15-1.98% and 2.04-3.26%, respectively. The sample measured range was calculated to be 0.76-3.68% K. Excellent agreement was found in accuracy between the developed reflectometric spectroscopy method and the standard method. The developed method was applied to analyze the K content in different cultivars, and the content varied greatly among the samples with lowest and highest contents for Y28 and Guiyan 5 cultivars, respectively. This study can provide a reliable approach for K analysis, which may become available on-site in a quick on-farm test.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| | - Weichang Gao
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| | - Xiang Li
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| | - Yechun Lin
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| | - Decheng Li
- State
Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil
Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenxuan Quan
- Key
Laboratory for Information System of Mountainous Area and Protection
of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Ruijuan Zhao
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| | - Xueliang Ren
- Guizhou
Academy of Tobacco Science, Guiyang 550081, China
| |
Collapse
|
6
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
7
|
Verdian A, Khoshbin Z, Chen CH, Hu Q. Attomolar analyte sensing technique for detection of Pb2+ and Hg2+ ions based on liquid crystal. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
9
|
Shi X, Liu F, Wang B, Yu S, Xu Y, Zhao W, Jiang D, Chen H, Xu J. Functional nucleic acid engineered double-barreled nanopores for measuring sodium to potassium ratio at single-cell level. EXPLORATION (BEIJING, CHINA) 2022; 2:20220025. [PMID: 37325507 PMCID: PMC10190848 DOI: 10.1002/exp.20220025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/17/2022] [Indexed: 06/17/2023]
Abstract
The use of double-barreled nanopipette (θ-nanopipette) to electrically sample, manipulate, or detect biomaterials has recently seen strong growth in single-cell studies, driven by the potential of the nanodevices and applications that they may enable. Considering the pivotal roles of Na/K ratio (RNa/K) at cellular level, herein we describe an engineered θ-nanopipette for measuring single-cell RNa/K. The two independently addressable nanopores, located within one nanotip, allow respective customization of functional nucleic acids but simultaneous deciphering of Na and K levels inside a single cell of a non-Faradic manner. Two ionic current rectification signals, corresponding to the Na- and K-specific smart DNA responses, could be easily used to derive the RNa/K. The applicability of this nanotool is validated by practical probing intracellular RNa/K during the drug-induced primary stage of apoptotic volume decrease. Especially, the RNa/K has been shown by our nanotool to be different in cell lines with different metastatic potential. This work is expected to contribute to futuristic study of single-cell RNa/K in various physiological and pathological processes.
Collapse
Affiliation(s)
- Xiao‐Mei Shi
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Fang‐Qing Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Bing Wang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Si‐Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China
| |
Collapse
|
10
|
Zhu M, Yang W, Zhi H, Huangfu C, Zhang X, Feng L. A sensitive biosensor for ochratoxin A detection based on triple-helix aptaswitch and bioorthogonal capture enabled signal amplification. Anal Chim Acta 2022; 1228:340334. [DOI: 10.1016/j.aca.2022.340334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/01/2022]
|
11
|
Chitbankluai K, Thavarungkul P, Kanatharana P, Kaewpet M, Buranachai C. Newly found K +-Thioflavin T competitive binding to DNA G-quadruplexes and the development of a label-free fluorescent biosensor with extra low detection limit for K + determination in urine samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121244. [PMID: 35429866 DOI: 10.1016/j.saa.2022.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The determination of potassium ion K+ in body fluids is important in health monitoring and diagnoses. One of the interesting and simple methods for K+ detection is the use of label-free biosensors based on DNA G-quadruplexes (GQs) coupled with a specific fluorescent probe, such as Thioflavin T (ThT), which lights up when bound with K+-stabilized GQs. However, these biosensors are not generally sensitive. In this work, we found a solution: at a low concentration, K+ competes with ThT in binding to a bimolecular GQ or a tetramolecular GQ, resulting in a decrease in ThT fluorescence emission with increasing K+. Therefore, we developed a label-free turn-off fluorescent K+ sensor. The sensor provides a very low detection limit of 21.87 ± 0.59 nM. Other possible interfering components in urine did not exert any effect even at quantities that were 10-fold greater than their upper limit of normal concentrations found in urine samples. With its only requirement of diluting samples, the developed low-cost label-free probe and simple sensor was successfully applied to the direct detection of K+ in normal urine samples with high accuracy (recoveries ranged from 90% to 100%).
Collapse
Affiliation(s)
- Khwanrudee Chitbankluai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Morakot Kaewpet
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
|
13
|
Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, Stefanelli M, Di Natale C, Paolesse R. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2649. [PMID: 35408267 PMCID: PMC9002670 DOI: 10.3390/s22072649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.
Collapse
Affiliation(s)
- Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mario Luigi Naitana
- Department of Science, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Lorena Di Zazzo
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Martini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Francesco Pizzoli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mounika Muduganti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Federica Mandoj
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| |
Collapse
|
14
|
Chu X, Zhu D, Liu M, Kong L, Ai S. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the ultrasensitive biosensing of special genes. (I: traditional molecular beacon detection method; II: scissor DFTHMS; III: three cases of BHQ-1-TFO).
Collapse
Affiliation(s)
- Xiuling Chu
- Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China
| | - Desong Zhu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| | - Min Liu
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
15
|
Development of a novel liquid crystal Apta-sensing platform using P-shape molecular switch. Biosens Bioelectron 2021; 199:113882. [PMID: 34923309 DOI: 10.1016/j.bios.2021.113882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Described herein is a liquid crystal (LC)-based aptasensor via employing the reorientation of LC triggered by the conformational changes of a P-shaped DNA structure. The structure consists of a short linker sequence as an immobilizer probe with ability to hybridize with the central part of the intact aptamer (Apt) sequence and an Apt terminal-locker (ATL) strand with complementary segments of the Apt terminal fragments. Bindings of two arm segments of the Apt sequence with the ATL strand enforces it to form a P-shaped configuration on the sensing platform. The selective interaction between the Apt strand and OTA leads to the disassembly of the Apt-ATL hybrid, collapse of the P-shaped structure, and consequently, transition of the optical appearance of the aptasensor texture. Determination of Ochratoxin A (OTA) in foods is an urgent demand in attempt to minimize food safety risks. To demonstrate the feasibility of our aptasensing design, the OTA specific aptamer was selected as a model. The developed LC aptasensor possesses a wide linear range from 0.01 aM to 100 pM, ultra-low limit of detection (LOD) of 0.0078 aM, and quantitative recoveries of 91-103.51% for OTA in rice and grape juice samples. This study proposes a novel and universal LC-based platform for facile, ultra-sensitive, and precision sensing of hazardous analytes in real samples.
Collapse
|
16
|
Housaindokht MR, Janati‐Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Fatemeh Janati‐Fard
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Narges Ashraf
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
17
|
Using MoS2/Fe3O4 as Ion-Electron Transduction Layer to Manufacture All-Solid-State Ion-Selective Electrode for Determination of Serum Potassium. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As an essential electrolyte for the human body, the potassium ion (K+) plays many physiological roles in living cells, so the rapid and accurate determination of serum K+ is of great significance. In this work, we developed a solid-contact ion-selective electrode (SC-ISE) using MoS2/Fe3O4 composites as the ion-to-electron transducer to determine serum K+. The potential response measurement of MoS2/Fe3O4/K+-ISE shows a Nernst response by a slope of 55.2 ± 0.1 mV/decade and a low detection limit of 6.3 × 10−6 M. The proposed electrode exhibits outstanding resistance to the interference of O2, CO2, light, and water layer formation. Remarkably, it also presents a high performance in potential reproducibility and long-term stability.
Collapse
|
18
|
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021; 229:122274. [PMID: 33838776 DOI: 10.1016/j.talanta.2021.122274] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The emerging aptamer, developed through the systematic evolution of ligands by exponential enrichment (SELEX) process, has revolutionized and facilitated the discoveries in basic research. Among all SELEX technology, Capture-SELEX is a variant of the in vitro selection process, which is suitable for isolating aptamers against small molecules. Capture-SELEX library was developed to enable the immobilization of the oligonucleotides instead of the target molecules during the aptamer selection process. The review provides an update on the recent-advances in this new screening method with particular emphasis on key points of capture protocol and its applications. The limitations and the prospects of the Capture-SELEX are also discussed. We hope that present review will inspire more researchers to understand the selection problems from the perspective of Capture-SELEX. Moreover, it will open new pave to improve the efficiency and success of screening to meet the growing demand for aptasensor discovery in small molecules.
Collapse
Affiliation(s)
- Chen Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China.
| |
Collapse
|
19
|
Verdian A, Rouhbakhsh Z, Fooladi E. An ultrasensitive platform for PCB77 detection: New strategy for liquid crystal-based aptasensor fabrication. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123531. [PMID: 32721640 DOI: 10.1016/j.jhazmat.2020.123531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 05/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are considered persistent bio-accumulative toxicants which threats global food safety and environmental health. Traditional analytical techniques for detection of PCBs are time-consuming and they do not satisfy urgent need for rapid and accurate monitoring of these persistent pollutants. Biosensor technology may be promising in this respect. Here we demonstrate a novel liquid crystal (LC)-based aptasensing platform as a promising label-free and rapid biosensor for PCB77 detection. This novel molecular strategy utilize triple-helix molecular conformational switch which is mediated formation of duplex on sensing platform in presence of target. Duplex forming leads to optical change from dark to bright in a liquid crystal based aptasensor. The limit of quantification of the LC-aptasensor to PCB77 is 1.5 × 10-5 μg/L with comparable selectivity. Besides, we also demonstrated that this system is able to detect PCB77 in tap water, environmental water and milk. This strategy has potential for label-free and portable detection of different targets without any aptamer sequence length restrictions.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Zeinab Rouhbakhsh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
20
|
Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020; 5:3721-3738. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The existence of contaminants in food poses a serious threat to human health. In recent years, aptamer sensors (aptasensors) have been developed rapidly for the detection of food contaminants because of their high specificity, design flexibility, and high efficiency. However, the development of high-throughput, highly sensitive, on-site, and cost-effective methods for simultaneous detection of food contaminants is still restricted due to multiple signal overlap or mutual interference and cross-reaction between different analytes with similar molecular structures. To overcome these problems, this Review summarizes some effective strategies from the articles published in recent years about multiplexed aptasensors for the simultaneous detection of food contaminants. This work focuses on the application of multiplexed aptasensors to simultaneously detect antibiotics, pathogens, and mycotoxins in food. These aptasensors mainly contain fluorescent aptasensors, electrochemical aptasensors, surface-enhanced Raman scattering-based aptasensors, microfluidic chip aptasensors, and paper-based multiplexed aptasensors. In addition, this Review also covers the application of nucleic acid cycle amplification and nanomaterial amplification strategies to improve the detection sensitivity. Finally, the limitations and challenges in the design of multiplexed aptasensor are also taken into account.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Hongyang Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, P.R. China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ning Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| |
Collapse
|
21
|
Deore PS, Manderville RA. Ratiometric fluorescent sensing of the parallel G-quadruplex produced by PS2.M: implications for K + detection. Analyst 2020; 145:1288-1293. [PMID: 31895357 DOI: 10.1039/c9an02122a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent ligands that selectively bind to a specific G-quadruplex (GQ) topology (antiparallel, hybrid or parallel) are highly sought after for aptasensor development and nanodevice construction. The coumarin-benzothiazole hybrid (BnBtC) is an internal charge transfer (ICT) ratiometric fluorescent probe, which displays two well-resolved emission bands at ∼450 nm for the coumarin component and ∼650 nm for the ICT band. The red ICT emission of BnBtC displays turn-on responses to protic solvent polarity and upon binding GQ structures, especially those produced by the hemin binding aptamer (PS2.M). In the present work, BnBtC was found to exhibit enhanced ICT emission upon binding the parallel GQ topology of PS2.M that is selectively produced in the presence of K+. This ability to discriminate K+ from other cationic metal ions through a turn-on ratiometric fluorescent response demonstrates the potential utility of the BnBtC probe for biosensor applications.
Collapse
Affiliation(s)
- Prashant S Deore
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
22
|
Huang L, Xiang L, Zhang Y, Wang Y, Nie Z. Simultaneous quantitative analysis of K + and Tl + in serum and drinking water based on UV-Vis spectra and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118392. [PMID: 32445977 DOI: 10.1016/j.saa.2020.118392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous detection of K+ and Tl+ can serve as a toxicological diagnostic tool for thallium poisoning. Colorimetric-reaction-based nanoprobes have emerged as promising sensors for the rapid and ultrasensitive detection of molecular species in simple systems. However, the development of viable screening tools for multicomponent analysis in complex systems remains challenging owing to interference from coexisting materials in the media. Herein, a simple chemical sensor array based on the peroxidase-like activity of gold nanoparticles modified with single-stranded DNA (AuNPs-ssDNA) and chemometrics was developed for the simultaneous detection of K+ and Tl+ in aqueous solutions and serum. The use of a K+ adapter conferred high selectivity to the developed method. Optimized AuNPs-ssDNAs were used to construct a sensor array, which together with chemometrics provided fingerprints that can facilitate the simultaneous analysis of multiple components. The developed colorimetric reaction in combination with the chemometrics assay was directly used as a biosensor array, which exhibited detection limits of 107.33 nM for K+ and 19.26 nM for Tl+. The developed method could potentially serve as a diagnostic technique for investigating thallium poisoning and toxicology.
Collapse
Affiliation(s)
- Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Longyan Xiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
23
|
A novel resonance Rayleigh scattering aptasensor for dopamine detection based on an Exonuclease III assisted signal amplification by G - quadruplex nanowires formation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Zou R, Ma Y, Li C, Zhang F, Chen C, Cai C. A label-free resonance light scattering biosensor for nucleic acids using triple-helix molecular switch and G-quadruplex nanowires. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020; 597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Mercury (Hg2+) and silver (Ag+) ions possess the harmful effects on public health and environment that makes it essential to develop the sensing techniques with great sensitivity for the ions. Metal ions commonly coexist in the different biological and environmental systems. Hence, it is an urgent demand to design a simple method for the simultaneous detection of metal ions, peculiarly in the case of coexisting Hg2+ and Ag+. This study introduces a low-cost paper-based aptasensor to monitor Hg2+ and Ag+, simultaneously. The strategy of the sensing array is according to the conformational changes of Hg2+- and Ag+-specific aptamers and their release from the GO surface after the injection of the target sample on the sensing platform. Through monitoring the fluorescence recovery changes against the concentrations of the ions, Hg2+ and Ag+ can be determined as low as 1.33 and 1.01 pM. The paper-based aptasensor can simultaneously detect the ions within about 10 min. The aptasensor is applied prosperously to monitor Hg2+ and Ag+ in human serum, water, and milk. The designed aptasensor with the main advantages of simplicity and feasibility holds the supreme potential to develop a cost-effective sensing method for environmental monitoring, food control, and human diagnostics.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
27
|
Tu C, Dai Y, Zhang Y, Wang W, Wu L. A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117415. [PMID: 31374352 DOI: 10.1016/j.saa.2019.117415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
A simple fluorescent strategy based on the formation of triple-helix molecular switch (THMS) between a signal transduction probe (STP) and an aptamer (Apt) was constructed for the determination of chloramphenicol (CAP). A weak fluorescence intensity was observed for STP solution due to the proximity of fluorophore and quencher through intramolecular DNA hybridization, causing the fluorescence quenching. The fluorescence intensity of the system was significantly enhanced after the addition of Apt. It was attributed to the formation of THMS between the Apt and STP through the Watson-Crick and Hoogsteen base pairing, resulting in the restoration of fluorescence because of the long distance between the fluorophore and quencher of STP. The fluorescence intensity of the system decreased due to the release of STP caused by the specific binding between Apt and CAP. The quantitative analysis of CAP could be achieved based on the decreased fluorescence intensity. The parameters affecting the performance of THMS including the Apt arm length, pH of buffer solution, Mg2+ concentration and the formation time of THMS were investigated in detail. Under the optimal conditions (Apt arm length of 9 bases, pH of 6.5, 2.5 × 103 μmol L-1 Mg2+, THMS formation time of 30 min), the decreased fluorescence intensity and the concentration of chloramphenicol were linear in the range of 5.0 × 10-3-2.0 × 10-1 μmol L-1 with the correlation coefficient of 0.9963. The limit of detection was 1.2 nmol L-1. Subsequently, the developed method was applied to the analysis of chloramphenicol in honey sample, and the recovery was between 84.5% and 103.0% with relative standard deviation less than 4.6%.
Collapse
Affiliation(s)
- Chunyan Tu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
28
|
Heydari M, Gholoobi A, Ranjbar G, Rahbar N, Sany SBT, Mobarhan MG, Ferns GA, Rezayi M. Aptamers as potential recognition elements for detection of vitamins and minerals: a systematic and critical review. Crit Rev Clin Lab Sci 2019; 57:126-144. [PMID: 31680587 DOI: 10.1080/10408363.2019.1678566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Vitamin and mineral deficiencies are prevalent globally, and extensive efforts have been made to assess their status. Most traditional methods are expensive and time-consuming; therefore, developments of rapid, simple, specific, and sensitive methods for the assessment of vitamins and minerals in biological samples are of high importance in research. Aptamers are synthetic nucleic acid single-stranded DNA or RNA that can be synthesized in vitro. They can be engineered to be analyte-specific and have been suggested as a substitute for monoclonal antibodies, due to their high sensitivity and affinity. In addition, aptamers can be chemically synthesized and readily modified for use as biosensors. These features make aptamers a promising tool for the detection of biological analytes. In this review, we provide an overview of the potential use of aptamer-based biosensors.Methods: Search terms were conducted on several online databases, including Google Scholar, PubMed, Scopus, and Science Direct from January 2000 to August 2019. Eligibility criteria were used and quality evaluation was performed. Following the review of 4349 articles, 39 articles met the inclusion criteria.Results: Aptasensors have recently been developed for the detection of vitamins by using optical methods, with a detection range from 74 pM to 204 pM, and lower limit of detection of 2.4 pM. Both electrochemical and optical methods have been used for detection of minerals, however electrochemical methods show a wider linear range and lower detection limits compared to optical methods with a wide linear range from 0.2 fM to 1.0 mM and limit of detection of 14.7 fM.Conclusion: The current report reviews recent developments in aptamer-based biosensors for detection of vitamins and minerals. Studies have shown that aptasensors' properties are suitable for the quantification of vitamins and minerals with high sensitivity, affinity, and specificity. Nevertheless, the limitations and future directions of aptamers require further research and new technological innovation.
Collapse
Affiliation(s)
- Maryam Heydari
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aida Gholoobi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Chemistry Departments, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health Education and Health Promotion, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Rezayi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Direct detection of potassium and lead (II) ions based on assembly-disassembly of a chiral cyanine dye /TBA complex. Talanta 2019; 201:490-495. [PMID: 31122455 DOI: 10.1016/j.talanta.2019.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022]
Abstract
A highly selective and sensitive direct detection of potassium (K+) and lead (Pb2+) ions was developed by using the assembly and disassembly of a chiral cyanine dye/TBA complex. The dye DMSB (3-ethyl-2-[3-(3-ethyl-3H-benzoselenazol-2-ylidene)-2-methylprop-1-enyl] benzoselenazolium bromide) loses the ability of self-assembly, but it can be activated by thrombin-binding aptamer (TBA) G-quadruplex structure. And only the TBA G-quadruplex formed in the presence of K+, can strongly induce J-aggregate signals of DMSB. Because the Pb2+ ions can bind and stabilize the TBA G-quadruplex with much higher efficiency than K+, the J-aggregate signals of DMSB falls sharply when the Pb2+ is present. As a result, the assembly and disassembly of DMSB allows the selective detection of 10 μM K+ and 20 nM Pb2+ respectively, even the competitive sodium ion (Na+) was as high as 145 mM. The linear correlation existed between the J-aggregate intensity and the concentration of K+ and Pb2+ over the range of 0.5-5.0 mM and 200-2000 nM, respectively. Moreover, the concentration of K+ (∼3 mM) and Pb2+ (below 20 nM) in human blood serum samples were determined by the present method, which agreed well with inductively coupled plasma mass spectrometry (ICP-MS). This work not only opens a door for the further development of G-quadruplex-based aptasensor in complex real system, but also provides a simple and versatile sensing platform for ion detection in clinic.
Collapse
|
30
|
Qin Y, Li D, Yuan R, Xiang Y. Silver ion-stabilized DNA triplexes for completely enzyme-free and sensitive fluorescence detection of transcription factors via catalytic hairpin assembly amplification. J Mater Chem B 2019; 7:763-767. [DOI: 10.1039/c8tb03042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new silver ion-stabilized DNA triplex enables enzyme-free and amplified sensitive fluorescence detection of transcription factors.
Collapse
Affiliation(s)
- Yao Qin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
31
|
Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018; 122:263-283. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Antibiotics are a type of antimicrobial drug with the ubiquitous presence in foodstuff that effectively applied to treat the diseases and promote the animal growth worldwide. Chloramphenicol as one of the antibiotics with the broad action spectrum against Gram-positive and Gram-negative bacteria is widely applied for the effective treatment of infectious diseases in humans and animals. Unfortunately, the serious side effects of chloramphenicol, such as aplastic anemia, kidney damage, nausea, and diarrhea restrict its application in foodstuff and biomedical fields. Development of the sufficiently sensitive methods to detect chloramphenicol residues in food and clinical diagnosis seems to be an essential demand. Biosensors have been introduced as the promising tools to overcome the requirement. As one of the newest types of the biosensors, aptamer-based biosensors (aptasensors) are the efficient sensing platforms for the chloramphenicol monitoring. In the present review, we summarize the recent achievements of the accessible aptasensors for qualitative detection and quantitative determination of chloramphenicol as a candidate of the antibiotics. The present chloramphenicol aptasensors can be classified in two main optical and electrochemical categories. Also, the other formats of the aptasensing assays like the high performance liquid chromatography (HPLC) and microchip electrophoresis (MCE) have been reviewed. The enormous interest in utilizing the diverse nanomaterials is also highlighted in the fabrication of the chloramphenicol aptasensors. Finally, some results are presented based on the advantages and disadvantages of the studied aptasensors to achieve a promising perspective for designing the novel antibiotics test kits.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of food safety and quality control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
32
|
Javidi M, Housaindokht MR, Verdian A, Razavizadeh BM. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples. Anal Chim Acta 2018; 1039:116-123. [PMID: 30322542 DOI: 10.1016/j.aca.2018.07.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
In this paper, a novel apta-sensing colorimetric platform for rapid detection of chloramphenicol (CAP) in raw milk was developed. The AuNPs are stabilized by short-sequences aptamers against salt induced aggregation and this is the base of most colorimetric aptasensors development. However, the statute shows low sensitivity for the long-sequence aptamers. Herein, we propose an alternative strategy that use intact long-sequence aptamers for develop a highly sensitive AuNP-based colorimetric aptasensor. Determination of CAP in animal derived foods is an urgent demanded in the effort to minimize food safety risk. Therefore, we chose it as the representative model to construct the colorimetric sensing platform based on aptamer terminal-lock (ATL). In the ATL, intact aptamer was used as a molecular recognition element and a short-sequence oligonucleotide serving as a locker probe (LP) which is complementary of aptamer terminal fragments. By formation of aptamer/target complex, the LP leaves the ATL and adsorbs on the surface of AuNPs, leading to the AuNPs stabilization against salt-induced aggregation. This aptasensor shows a low limit of detection (0.03 nM) with high selectivity toward CAP. Moreover, the designed sensing platform was successfully applied to detect CAP in the milk samples. These results demonstrate our introduced label-free method for CAP detection is simple, sensitive, and highly selective.
Collapse
Affiliation(s)
- Mahbobeh Javidi
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bibi Marzieh Razavizadeh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
33
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
34
|
Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 2018; 111:1-9. [PMID: 29627731 DOI: 10.1016/j.bios.2018.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed.
Collapse
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Zainudin AA, Fen YW, Yusof NA, Al-Rekabi SH, Mahdi MA, Omar NAS. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:111-115. [PMID: 29024848 DOI: 10.1016/j.saa.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K+) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K+ in solution with and without C-GO-V thin film. The K+ can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K+ in solution. The sensor produces a linear response for K+ ion up to 100ppm with sensitivity and detection limit of 0.00948°ppm-1 and 0.001ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K+ that has been proved by the SPR measurement.
Collapse
Affiliation(s)
- Afiq Azri Zainudin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nor Azah Yusof
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sura Hmoud Al-Rekabi
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
36
|
Chen TX, Ning F, Liu HS, Wu KF, Li W, Ma CB. Label-free fluorescent strategy for sensitive detection of tetracycline based on triple-helix molecular switch and G-quadruplex. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Su H, Ruan W, Ye S, Liu Y, Sui H, Li Z, Sun X, He C, Zhao B. Detection of physiological potassium ions level in human serum by Raman scattering spectroscopy. Talanta 2016; 161:743-747. [DOI: 10.1016/j.talanta.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
|
38
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
39
|
Liu X, Li Y, Liang J, Zhu W, Xu J, Su R, Yuan L, Sun C. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid. Talanta 2016; 160:99-105. [PMID: 27591592 DOI: 10.1016/j.talanta.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/26/2016] [Accepted: 07/03/2016] [Indexed: 02/02/2023]
Abstract
In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.
Collapse
Affiliation(s)
- Xin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jing Liang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wenyue Zhu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingyue Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lei Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
40
|
Ma DL, Wang W, Mao Z, Kang TS, Han QB, Chan PWH, Leung CH. Utilization of G-Quadruplex-Forming Aptamers for the Construction of Luminescence Sensing Platforms. Chempluschem 2016; 82:8-17. [DOI: 10.1002/cplu.201600036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/07/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; 224 Waterloo Road, Kowloon Tong Hong Kong 852 P. R. China
| | - Wanhe Wang
- Department of Chemistry; Hong Kong Baptist University; 224 Waterloo Road, Kowloon Tong Hong Kong 852 P. R. China
| | - Zhifeng Mao
- Department of Chemistry; Hong Kong Baptist University; 224 Waterloo Road, Kowloon Tong Hong Kong 852 P. R. China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao 999078 P. R. China
| | - Quan-Bin Han
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Hong Kong 852 P. R. China
| | - Philip Wai Hong Chan
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
- Department of Chemistry; University of Warwick; Coventry CV4 7AL United Kingdom
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao 999078 P. R. China
| |
Collapse
|
41
|
Jung IY, Lee EH, Suh AY, Lee SJ, Lee H. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection. Anal Bioanal Chem 2016; 408:2383-406. [PMID: 26781106 DOI: 10.1007/s00216-015-9212-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.
Collapse
Affiliation(s)
- Il Young Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ah Young Suh
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
42
|
Rapid and sensitive detection of potassium ion based on K(+)-induced G-quadruplex and guanine chemiluminescence. Anal Bioanal Chem 2016; 408:1863-9. [PMID: 26781100 DOI: 10.1007/s00216-015-9285-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
A simple and rapid method for detection of potassium ion (K(+)) based on a guanine chemiluminescence (CL) system is presented. In this system, one guanine-rich DNA molecule is used as the recognition element. K(+) can cause the guanine-rich DNA to form a G-quadruplex conformation, resulting in remarkable quenching of the guanine CL intensity of guanine-rich DNA. The CL intensity of this CL system decreased with increasing K(+) concentration, revealing a linear relationship in K(+) concentration range from 3 × 10(-5) to 1 × 10(-3) M. A complete detection process can be accomplished in about 5 min. Other common cations (such as Na(+), NH4 (+), Mg(2+), Ca(2+), Zn(2+), and Pb(2+)) did not notably interfere with K(+) detection. The mechanism of this strategy is also discussed. The sensing strategy is low cost and simple without the requirement of complex labeling of probe DNA. The scheme is applicable to the detection of other guanine-rich aptamer-binding chemicals or biomolecules.
Collapse
|
43
|
Yang S, Sun J, Zhu C, He P, Peng Z, Ding G. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions. Analyst 2016; 141:1052-9. [PMID: 26730814 DOI: 10.1039/c5an02270c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
Collapse
Affiliation(s)
- Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200500, China.
| | | | | | | | | | | |
Collapse
|
44
|
Shamsipur M, Taherpour A(A, Pashabadi A. Interrupting the flux of delocalized electrons on a dibenzo-18-crown-6-embedded graphite sheet and its relative counteraction in the presence of potassium ions. Analyst 2016; 141:4227-34. [DOI: 10.1039/c6an00592f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interrupting of the flux of delocalized electrons on the graphite sheet can be counteracted by K+.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Analytical Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | | | - Afshin Pashabadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| |
Collapse
|
45
|
Zhang Y, Fan J, Nie J, Le S, Zhu W, Gao D, Yang J, Zhang S, Li J. Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosens Bioelectron 2015; 73:13-18. [DOI: 10.1016/j.bios.2015.04.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
|
46
|
Li L, Li W. Colorimetric kinetic determination of potassium ions based on the use of a specific aptamer and catalytically active gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1581-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Housaindokht MR, Verdian-Doghaei A. Biophysical probing of the binding properties of a Cu(II) complex with G-quadruplex DNA: an experimental and computational study. LUMINESCENCE 2015; 31:22-9. [DOI: 10.1002/bio.2916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/08/2015] [Accepted: 03/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Asma Verdian-Doghaei
- Biophysical Chemistry Laboratory, Department of Chemistry; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
48
|
A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 2015; 70:181-7. [PMID: 25814407 DOI: 10.1016/j.bios.2015.03.040] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023]
Abstract
Detection methods of antibiotic residues in blood serum and animal derived foods are of great interest. In this study a colorimetric aptasensor was designed for sensitive, selective and fast detection of tetracycline based on triple-helix molecular switch (THMS) and gold nanoparticles (AuNPs). As a biosensor, THMS shows distinct advantages including high stability, sensitivity and preserving the selectivity and affinity of the original aptamer. In the absence of tetracycline, THMS is stable, leading to the aggregation of AuNPs by salt and an obvious color change from red to blue. In the presence of tetracycline, aptamer binds to its target, signal transduction probe (STP) leaves the THMS and adsorbs on the surface of AuNPs. So the well-dispersed AuNPs remain stable against salt-induced aggregation with a red color. The presented aptasensor showed high selectivity toward tetracyclines with a limit of detection as low as 266 pM for tetracycline. The designed aptasensor was successfully applied to detect tetracycline in serum and milk.
Collapse
|
49
|
Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K. A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead(ii). RSC Adv 2015. [DOI: 10.1039/c5ra06326d] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lead (Pb) is a serious environmental contaminant and one of the most toxic heavy metals.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Parirokh Lavaee
- Academic Center For Education
- Culture and Research (ACECR)-Mashhad Branch
- Mashhad
- Iran
- Department of Chemistry
| | | | - Mohammad Ramezani
- Nanotechnology Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|