1
|
Su A, Luo D, Li S, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for T4 polynucleotide kinase activity assay based on host-guest recognition between phosphate pillar[5]arene@MWCNTs and thionine. Analyst 2024; 149:1271-1279. [PMID: 38226548 DOI: 10.1039/d3an01863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
T4 polynucleotide kinase helps with DNA recombination and repair. In this study, an electrochemical biosensor was developed for a T4 polynucleotide kinase activity assay and inhibitor screening based on phosphate pillar[5]arene and multi-walled carbon nanotube nanocomposites. The water-soluble pillar[5]arene was employed as the host to complex thionine guest molecules. The substrate DNA with a 5'-hydroxyl group initially self-assembled on the gold electrode surface through chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 polynucleotide kinase. Titanium dioxide nanoparticles served as a bridge to link phosphorylated DNA and phosphate pillar[5]arene and multi-walled carbon nanotube composite due to strong phosphate-Ti4+-phosphate chemistry. Through supramolecular host-guest recognition, thionine molecules were able to penetrate the pillar[5]arene cavity, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 polynucleotide kinase concentration in the range of 10-5 to 15 U mL-1 with a detection limit of 5 × 10-6 U mL-1. It was also effective in measuring HeLa cell lysate-related T4 polynucleotide kinase activity and inhibitor screening. The proposed method offers a unique sensing platform for kinase activity measurement, holding great potential in nucleotide kinase-target drug development, clinical diagnostics, and inhibitor screening.
Collapse
Affiliation(s)
- Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Shixuan Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| |
Collapse
|
2
|
Luo D, Liu Z, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 2024; 266:124956. [PMID: 37499362 DOI: 10.1016/j.talanta.2023.124956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) is an important DNA repair-related enzyme that plays a crucial role in DNA recombination, replication and damage repair. Herein, an electrochemical biosensor was developed for detection of T4 PNK activity and inhibitor screening based on supramolecular host-guest recognition between phosphate pillar (Dumitrache and McKinnon, 2017) [5] arene (PP5) and methylene blue (MB). The water-soluble PP5 employed as the host for complexation of MB guest molecules. The substrate DNA with 5'-hydroxyl group was first self-assembled on the gold electrode surface through the chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 PNK and adenosine triphosphate (ATP). TiO2 served as a bridge to link phosphorylated DNA and PP5 via the robust phosphate-Ti4+-phosphate chemistry. The immobilized PP5 captured the MB on electrode surface via the supramolecular host-guest recognition interaction, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 PNK concentration in the range of 2 × 10-4 to 5 U mL-1 with a detection limit of 1 × 10-4 U mL-1. It was also successfully used for PNK inhibitor screening and PNK activity assay in HeLa cell lysates sample. The proposed strategy provides a novel sensing platform for kinase activity assay and inhibitor screening, holding a great potential in clinical diagnostics, inhibitor screening, and nucleotide kinase-target drug discovery.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zaiqiong Liu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| |
Collapse
|
3
|
Wu Y, Yi J, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for T4 polynucleotide kinase activity identification according to host-guest recognition among phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite and toluidine blue. Mikrochim Acta 2023; 190:394. [PMID: 37715009 DOI: 10.1007/s00604-023-05983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) helps with DNA recombination and repair. In this work, a phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite (PP5@PdNPs@rGO)-based electrochemical biosensor was created to identify T4 PNK activities. The PP5 used to complex toluidine blue (TB) guest molecules is water-soluble. With T4 PNK and ATP, the substrate DNA, which included a 5'-hydroxyl group, initially self-assembled over the gold electrode surface by chemical adsorption of the thiol units. Strong phosphate-Zr4+-phosphate chemistry allowed Zr4+ to act as a bridge between phosphorylated DNA and PP5@PdNPs@rGO. Through a supramolecular host-guest recognition connection, TB molecules were able to penetrate the PP5 cavity, where they produced a stronger electrochemical response. With a 5 × 10-7 U mL-1 detection limit, the electrochemical signal is linear in the 10-6 to 1 U mL-1 T4 PNK concentration range. It was also effective in measuring HeLa cell lysate-related PNK activities and screening PNK inhibitors. Nucleotide kinase-target drug development, clinical diagnostics, and screening for inhibitors all stand to benefit greatly from the suggested technology, which offers a unique sensing mechanism for kinase activity measurement.
Collapse
Affiliation(s)
- Yongju Wu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Jinfei Yi
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| |
Collapse
|
4
|
An enzyme-free and label-free electrochemical biosensor for polynucleotide kinase. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Cui W, Fan X, Zhao W, Liu J, Zheng L, Zhou L, Zhang J, Zhang X, Wang X. A label-free fluorescent biosensor for amplified detection of T4 polynucleotide kinase activity based on rolling circle amplification and catalytic hairpin assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121938. [PMID: 36209712 DOI: 10.1016/j.saa.2022.121938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
T4 polynucleotide kinase (PNK) plays a key role in maintaining genome integrity and repairing DNA damage. In this paper, we proposed a label-free fluorescent biosensor for amplified detection of T4 PNK activity based on rolling circle amplification (RCA) and catalytic hairpin assembly (CHA). Firstly, we designed a padlock probe with a 5'-hydroxyl terminus for phosphorylation reaction, a complementary sequence of the primer for initiating RCA, and a complementary sequence of the trigger for triggering CHA. T4 PNK catalyzed the phosphorylation reaction by adding a phosphate group to the 5'-hydroxyl terminus of padlock probe, generating a phosphorylated padlock probe. Then it hybridized with the primer to generate a circular probe under the action of ligase. Subsequently, the primer initiated an RCA reaction along the circular probe to synthesize a large molecular weight product with repetitive trigger sequences. The triggers then triggered the cyclic assembly reactions between hairpin probe 1 and hairpin probe 2 to generate a large amount of complexes with free G-rich sequences. The free G-rich sequences folded into G-quadruplex structures, and the N-methylmesoporphyrin IXs were inserted into them to produce an amplified fluorescent signal. Benefiting from high amplification efficiency of RCA and CHA, this fluorescent biosensor could detect T4 PNK as low as 6.63 × 10-4 U mL-1, and was successfully applied to detect its activity in HeLa cell lysates. Moreover, this fluorescent biosensor could effectively distinguish T4 PNK from other alternatives and evaluate the inhibitory effect of inhibitor, indicating that it had great potential in drug screening and disease treatment.
Collapse
Affiliation(s)
- Wanling Cui
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China.
| | - Xiaoyang Fan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Wenqi Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jinrong Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | | | - Libing Zhou
- Laoling People's Hospital, Dezhou 253600, PR China
| | - Junye Zhang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Xiumei Zhang
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, PR China
| | - Xiaoxin Wang
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
6
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
7
|
Wei L, Kong X, Wang M, Zhang Y, Pan R, Cheng Y, Lv Z, Zhou J, Ming J. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation. Anal Bioanal Chem 2022; 414:7923-7933. [PMID: 36136111 DOI: 10.1007/s00216-022-04327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022]
Abstract
The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xianglong Kong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Mengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yixin Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yuanzheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Jingjing Ming
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
8
|
Zhang T, Shen Y, Ge J, Wang W, Qu L, Li Z. A highly sensitive fluorescence method for the detection of T4 polynucleotide kinase phosphatase based on polydopamine nanotubes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120594. [PMID: 34776378 DOI: 10.1016/j.saa.2021.120594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
T4 polynucleotide kinase phosphatase (T4 PNKP) plays a critical role in various cellular events, such as DNA damage repair, replication, and recombination. Here, we have described a novel biosensor to detect the activity of T4 PNKP based on polydopamine nanotubes (PDANTs) mediated fluorescence resonance energy transfer (FRET). A FAM-labelled (6-carboxyl-fluorescein) hairpin DNA probe with 3'-phosphoryl terminal was designed as the substrate for T4 PNKP. With the addition of PDANTs, the fluorescence of FAM-labelled hairpin DNA probe could be quenched because of the high adsorption of hairpin DNA on PDANTs. When T4 PNKP dephosphorylated the DNA probe, a double-stranded DNA (dsDNA) product was obtained by Klenow fragment polymerase (KF polymerase) on its 3'-hydroxyl terminal, which could retain most of the fluorescence due to the week adsorption of dsDNA on PDANTs. The developed method demonstrates the sensitivity for T4 PNKP assay in the range from 0.05 to 1.5 U mL-1 with the detection limit of 0.005 U mL-1, which endows the proposed strategy with high enough sensitivity for practical detection in cell lysates. With the advantages mentioned above, this novel sensitive strategy has the potential in the study of DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Tuo Zhang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yanmei Shen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jia Ge
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Weixia Wang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Tao J, Liu Z, Zhu Z, Zhang Y, Wang H, Pang P, Yang C, Yang W. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe 3O 4@TiO 2 nanoparticles triggered by a rolling circle amplification strategy. Talanta 2022; 241:123272. [PMID: 35121542 DOI: 10.1016/j.talanta.2022.123272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022]
Abstract
An ultrasensitive electrochemical detection of the activity and inhibition of T4 polynucleotide kinase (T4 PNK) was developed by using magnetic Fe3O4@TiO2 core-shell nanoparticles, which was triggered by a rolling circle amplification strategy (Fe3O4@TiO2-RCA). We used Fe3O4@TiO2 as a substrate to anchor a DNA primer. DNA S1 with 5'-OH termini was phosphorylated in the presence of T4 PNK and ATP, which was adsorbed on the surface of Fe3O4@TiO2 NPs and served as the primer for subsequent RCA reactions. After adding circular template DNA S2, RCA was initiated in the presence of phi29 DNA polymerase and dNTPs. Then, Fc-labeled DNA S3 (Fc-S3) was hybridized with RCA. The obtained Fe3O4@TiO2-RCA was adsorbed on the surface of a magnetic gold electrode (MGE) by magnetic enrichment, resulting in an enhanced electrochemical signal. The T4 PNK activity can be monitored by measuring the electrochemical signal generated. This electrochemical assay is sensitive to the activity of T4 PNK with a dynamic linear range of 0.00001-20 U/mL and a low detection limit of 3.0 × 10-6 U/mL. The proposed strategy can be used to screen the T4 PNK inhibitors, so it has great potential in the discovery of nucleotide kinase-target drug and early clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Jinpeng Tao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zaiqiong Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zhenyu Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Chun Yang
- Shaanxi Geological Survey Center, Xi'an, 710068, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| |
Collapse
|
10
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
11
|
Zhang BY, Shi L, Ma XY, Liu L, Fu Y, Zhang XF. Advances in the Functional Nucleic Acid Biosensors for Detection of Lead Ions. Crit Rev Anal Chem 2021; 53:309-325. [PMID: 34304647 DOI: 10.1080/10408347.2021.1951648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lead ions (Pb2+) are destructive to the natural environment and public health, so the efficient detection of Pb2+ is particularly important. Although the instrumental analysis methods have high accuracy, they require high cost and precise operation, which limits their wide application. Therefore, many strategies have been extensively studied for detecting Pb2+ by biosensors. Functional nucleic acids have become an efficient tool in this field. This review focuses on the recent biosensors of detecting Pb2+ based on functional nucleic acids from 2010 to 2020, in which DNAzyme, DNA G-quadruplex and aptamer will be introduced. The biosensors are divided into three categories that colorimetric, fluorometric and electrochemical biosensors according to the different reported signals. The action mechanism and detection effect of each biosensor are explained. Finally, the present situation of nucleic acid biosensor for the detection of Pb2+ is summarized and the future research direction is prospected.
Collapse
Affiliation(s)
- Bu-Yue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiao-Ying Ma
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiu-Feng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
12
|
Zhang X, Zheng C, Ding L, Wu Y, Xu H, Sun Y, Zeng Y, Liu X, Liu J. CRISPR-Cas12a coupled with terminal deoxynucleotidyl transferase mediated isothermal amplification for sensitive detection of polynucleotide kinase activity. SENSORS AND ACTUATORS B: CHEMICAL 2021; 330:129317. [DOI: 10.1016/j.snb.2020.129317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
13
|
Pillon MC, Stanley RE. Nonradioactive Assay to Measure Polynucleotide Phosphorylation of Small Nucleotide Substrates. J Vis Exp 2020. [PMID: 32449708 DOI: 10.3791/61258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polynucleotide kinases (PNKs) are enzymes that catalyze the phosphorylation of the 5' hydroxyl end of DNA and RNA oligonucleotides. The activity of PNKs can be quantified using direct or indirect approaches. Presented here is a direct, in vitro approach to measure PNK activity that relies on a fluorescently-labeled oligonucleotide substrate and polyacrylamide gel electrophoresis. This approach provides resolution of the phosphorylated products while avoiding the use of radiolabeled substrates. The protocol details how to set up the phosphorylation reaction, prepare and run large polyacrylamide gels, and quantify the reaction products. The most technically challenging part of this assay is pouring and running the large polyacrylamide gels; thus, important details to overcome common difficulties are provided. This protocol was optimized for Grc3, a PNK that assembles into an obligate pre-ribosomal RNA processing complex with its binding partner, the Las1 nuclease. However, this protocol can be adapted to measure the activity of other PNK enzymes. Moreover, this assay can also be modified to determine the effects of different components of the reaction, such as the nucleoside triphosphate, metal ions, and oligonucleotides.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
14
|
Zhao H, Yan Y, Chen M, Hu T, Wu K, Liu H, Ma C. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Analyst 2020; 144:6689-6697. [PMID: 31598619 DOI: 10.1039/c9an01659g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sensitive and label-free fluorometric method has been developed for the determination of polynucleotide kinase (PNK) activity, by employing exonuclease III (Exo III)-assisted cyclic signal amplification and poly(thymine)-templated copper nanoparticles (polyT-CuNPs). In the presence of PNK, cDNA with 5'-hydroxyl termini was phosphorylated and then hybridized with tDNA to form the cDNA/tDNA duplex, which subsequently triggered the λ exonuclease cleavage reaction, eventually resulting in the release of tDNA. The released tDNA could unfold the hairpin structure of HP DNA to generate partially complementary duplex (tDNA/HP DNA), wherein the HP DNA possessed T-rich sequences (T30) and tDNA recognition sequence. With the help of Exo III digestion, the tDNA was able to initiate the cycle for the generation of T-rich sequences, the template for the formation of fluorescent CuNPs. Conversely, the cDNA could not be cleaved by λ exonuclease without PNK and individual HP DNA could not be hydrolyzed by Exo III. The T-rich sequence was caged in HP DNA, resulting in a weak fluorescence signal. Under optimized conditions, the fluorescence intensity was linearly correlated to a concentration range of 0.001 to 1 U mL-1 with a low detection limit of 2 × 10-4 U mL-1. Considering the intriguing analytical performance, this approach could be explored to screen T4 PNK inhibitors and hold promising applications in drug discovery and disease therapy.
Collapse
Affiliation(s)
- Han Zhao
- School of Life Sciences, Central South University, Changsha 410013, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
LIU ZL, TAO CA, WANG JF. Progress on Applications of G-quadruplex in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Li XY, Cui YX, Du YC, Tang AN, Kong DM. Isothermal cross-boosting extension–nicking reaction mediated exponential signal amplification for ultrasensitive detection of polynucleotide kinase. Analyst 2020; 145:3742-3748. [DOI: 10.1039/c9an02569c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel nucleic acid-based isothermal signal amplification strategy, named cross-boosting extension–nicking reaction (CBENR) is developed and successfully used for rapid and ultrasensitive detection of polynucleotide kinase (PNK) activity.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| |
Collapse
|
17
|
Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles. Anal Chim Acta 2019; 1085:85-90. [DOI: 10.1016/j.aca.2019.07.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
|
18
|
Gong X, Li X, Qing T, Zhang P, Feng B. Amplified colorimetric detection of tetracycline based on an enzyme-linked aptamer assay with multivalent HRP-mimicking DNAzyme. Analyst 2019; 144:1948-1954. [PMID: 30694262 DOI: 10.1039/c8an02284d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetracycline (TC) is widely used to treat bacterial infections in humans and animals due to its low price and good antibacterial properties. The abuse of tetracycline has led to TC residues in daily food that could seriously affect human health. Thus, it is imperative to develop highly sensitive and selective methods for TC detection. In this work, we developed a colorimetric method for TC detection based on an enzyme-linked aptamer assay (ELAA) with multivalent HRP-mimicking DNAzyme. An aptamer was used as an alternative recognition element in the enzyme-linked immunosorbent assay (ELISA). Multivalent HRP-mimicking DNAzyme, assembled via hybridization chain reactions (HCR), was used for catalytic substrate color rendering in ELAA. The multivalent HRP-mimicking DNAzyme exhibited enhanced catalytic capacity and improved the detection sensitivity greatly. The limit of detection was 8.1 × 10-2 ng mL-1 with a linear range from 1.0 × 10-2 ng mL-1 to 1.0 × 104 ng mL-1 toward TC in buffer. To challenge the practical application capability of this strategy, the detection of TC in milk samples was also investigated and showed similar linear relationships. Due to the introduction of an aptamer, this ELAA strategy shows high selectivity towards TC and has potential for the detection of a wide spectrum of analytes.
Collapse
Affiliation(s)
- Xin Gong
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | | | | | | | | |
Collapse
|
19
|
Li J, Ma J, Zhang Y, Zhang Z, He G. A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe. Mikrochim Acta 2019; 186:48. [DOI: 10.1007/s00604-018-3157-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022]
|
20
|
Dang X, Gu W, Zheng X, Fei X, Tian F, Xing H, Hu X. A Rapid and Sensitive Aptasensor for Cyromazine Detection in Raw Milk Based on a Nanogold Probe and G-Quadruplex Formation. Aust J Chem 2019. [DOI: 10.1071/ch19052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, a rapid, facile, and colourimetric sensor for the detection of cyromazine in raw milk is reported using an aptamer based on gold nanoparticles (AuNPs). A sequence-specific aptamer for cyromazine called Tcyr1 is designed to absorb on the surface of AuNPs and electrostatically interacts with poly(diallyldimethylammonium chloride) (PDDA), which prevents AuNPs from aggregating. It can also self-assemble to form a G-quadruplex-CYR complex with cyromazine. Because of its specificity and stability, the introduction of cyromazine in raw milk would influence the protection thus the following cationic polymer could aggregate AuNPs and cause a remarkable change in colour. According to this, the presence of cyromazine can be determined by the naked eye and means of absorbance. This sensor is selective for the detection of cyromazine in raw milk and has a limit of detection of 200 ppb by the naked eye and of 5.8 ppb by spectrophotometer, and has a detection range from 0.1 to 1 ppm.
Collapse
|
21
|
Chen H, Wang Z, Chen X, Lou K, Sheng A, Chen T, Chen G, Zhang J. New method for detection of T4 polynucleotide kinase phosphatase activity through isothermal EXPonential amplification reaction. Analyst 2019; 144:1955-1959. [DOI: 10.1039/c8an02368a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new method has been developed for the sensitive detection of T4 PNKP activity based on the isothermal EXPonential amplification reaction.
Collapse
Affiliation(s)
- Huinan Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Zihan Wang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xu Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Kai Lou
- Shenzhen Shineway Hi-Tech Co
- Ltd
- P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
22
|
Gu P, Zhang G, Deng Z, Tang Z, Zhang H, Khusbu FY, Wu K, Chen M, Ma C. A novel label-free colorimetric detection of l-histidine using Cu 2+-modulated G-quadruplex-based DNAzymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:195-200. [PMID: 29864643 DOI: 10.1016/j.saa.2018.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
We proposed a colorimetric method for l-histidine detection based on Cu2+-mediated DNAzyme and G-quadruplex-hemin complex catalyzed oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). In this system, after the addition of l-histidine, the formation of G-quadruplex-hemin complex will be disturbed, thus the colorimetric signal intensity conversely corresponds to the concentration of histidine. In this assay, a lower detection limit of l-histidine (50 nM) is addressed comparing to previously reported colorimetric methods. The cost is extremely low as the proposed design is both label-free and enzyme-free. All the more vitally, the colorimetric detection procedure is substantially straightforward with no further modification processes. By and large, the sensor can provide a promising plan for the detection of l-histidine.
Collapse
Affiliation(s)
- Pan Gu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Gehou Zhang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhiyi Deng
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhenwei Tang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Huifang Zhang
- School of Life Sciences, Central South University, Changsha 410013, China
| | | | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Mingjian Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
23
|
Graphitic C 3N 4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers. Talanta 2018; 192:400-406. [PMID: 30348410 DOI: 10.1016/j.talanta.2018.09.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
Here we first reported that graphitic carbon nitride nanosheet (g-C3N4 NS) could effectively quench the chemiluminescence (CL) of luminol-hydrogen peroxide (H2O2) system. According to the new discovery, a label-free and homogeneous CL aptasensing platform was designed for sensitive detecting of biomarkers. In the absence of target, DNA probe containing hemin/G-quadruplex DNAzyme structure was adsorbed on the surface of g-C3N4 NS, causing the CL quenching of luminol through an electron transfer process. However, in the presence of the target, a DNA-DNA duplex was formed due to DNA hybridization reaction and target recognition effect, which could not be adsorbed onto the g-C3N4 NS surface because of its weak affinity. Thus, the electron transfer was blocked and the CL emission of luminol could be enhanced. The proposed CL aptasensor could detect carcinoembryonic antigen (CEA) with a detection limit of 63.0 pg/mL and it can also be used as a general detecting strategy for adenosinetriphosphate (ATP) detection. This aptasensing platform exhibited high sensitivity toward biomarkers and the probe need not be labeled, showing great promise for disease diagnosis.
Collapse
|
24
|
Xing H, Gu W, Xu D, Tian F, Yao L, Wang Z, Hu X. A simple fluorescent assay for cyromazine detection in raw milk by using CYR-stabilized G-quadruplex formation. RSC Adv 2018; 8:2418-2425. [PMID: 35546964 PMCID: PMC9088062 DOI: 10.1039/c7ra12970j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022] Open
Abstract
A rapid biosensor for the detection of cyromazine in milk is reported based on a fluorescence quenching result. When an FAM labelled G-rich ssDNA Tcy2 is treated with cyromazine, it can form a G-quadruplex-CYR complex and cause a change in fluorescence. As a result, the presence of cyromazine can be determined by fluorescence quenching. This sensor is selective for the detection of cyromazine in raw milk and has a limit of detection of 0.68 ppb and a detection range from 0 to 200 ppb. A rapid biosensor for the detection of cyromazine in milk is reported based on a fluorescence quenching result.![]()
Collapse
Affiliation(s)
- Haibo Xing
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Wenchao Gu
- Putuo District Center for Disease Control and Prevention
- Shanghai
- China
| | - Dang Xu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Linyun Yao
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Zhenwei Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
25
|
Zhang Y, Fang X, Zhu Z, Lai Y, Xu C, Pang P, Wang H, Yang C, Barrow CJ, Yang W. A sensitive electrochemical assay for T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy. RSC Adv 2018; 8:38436-38444. [PMID: 35559107 PMCID: PMC9090566 DOI: 10.1039/c8ra07745b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
An ultrasensitive electrochemical biosensor was developed for detection of T4 polynucleotide kinase (T4 PNK) activity based on titanium dioxide nanotubes (TiO2 NTs) and a rolling circle amplification (RCA) strategy. In this study, the immobilized T4 PNK substrate probe with a 5′ terminus hydroxyl was phosphorylated by T4 PNK in the presence of adenosine triphosphate (ATP), and the resulting 5-phosphoryl can be linked with the TiO2 NTs and further conjugated with the phosphate-labeled primer. RCA was initiated by adding circular template, phi29 DNA polymerase and deoxyribonucleoside 5-triphosphate mixture (dNTPs). Biotin-labeled probes are chosen as a signal indicator by strong biotin–streptavidin interaction and the high loading of horseradish peroxidase–streptavidin (HRP–SA) for electrochemical signal generation and amplification. A dual-signaling amplification strategy has been established, which exhibited an excellent performance with a wide linear range from 0.0001–15 U mL−1 and a low detection limit of 0.00003 U mL−1 for T4 PNK detection. The inhibition effect of (NH4)2SO4 on the activity of T4 PNK is also evaluated. This new dual-signaling electrochemical biosensor can be used for the detection of the activity and inhibition of other nucleic acid enzymes. An ultrasensitive electrochemical biosensor was developed for detection of T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy.![]()
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Xiang Fang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Zhenyu Zhu
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Yanqiong Lai
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Chunli Xu
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Pengfei Pang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Hongbin Wang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Chun Yang
- Shaanxi Geological Survey Center
- Xi'an 710068
- P. R. China
| | - Colin J. Barrow
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| |
Collapse
|
26
|
Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, Zhang H. DNAzyme-Mediated Assays for Amplified Detection of Nucleic Acids and Proteins. Anal Chem 2017; 90:190-207. [DOI: 10.1021/acs.analchem.7b04926] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanyong Peng
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Ashley M. Newbigging
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Wenchan Deng
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|