1
|
Wang T, Huang ZA, Zhou M, Wang R, Li Y, Guo L, Cao X, Huang J. Drug deconjugation-assisted peptide mapping by LC-MS/MS to identify conjugation sites and quantify site occupancy for antibody-drug conjugates. J Pharm Biomed Anal 2024; 243:116098. [PMID: 38493753 DOI: 10.1016/j.jpba.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Antibody-drug conjugates (ADCs) are a heterogeneous mixture of conjugated species with varied drug loadings. Depending on conjugation sites, linkers and drugs can exhibit different stability as influenced by the solvent-accessibility and local charge, resulting in different ADC efficacy, pharmacokinetics, and toxicity. Conjugation site analysis is critical for ADC structural characterization to assure product quality and consistency. It enables early conjugation studies at site-specific levels, confirms the absence of unexpected products to support conjugation process development, and aids in ensuring lot-to-lot consistency for comparability studies. Peptide mapping using liquid chromatography-tandem mass spectrometry is the industry standard method for analyzing conjugation sites. However, some concerns remain for this approach as the large and hydrophobic drug moieties often result in poor MS/MS fragmentation quality and impede the identification of conjugation sites. Additionally, the ionization discrepancy between conjugated and unconjugated peptides can lead to a relatively large bias for site occupancy calculation. In this work, we present a simple drug deconjugation-assisted peptide mapping method to identify and quantify the drug conjugation for ADCs with protease-cleavable linkers. Papain-based drug deconjugation was used to remove the highly hydrophobic drug moiety, which significantly improved the quantitation accuracy of conjugation level and the fragmentation quality. Sample preparation conditions were optimized to avoid introducing artificial modifications, allowing the tracking of initial sample status and subsequent changes of quality attributes during process development and stability assessment. This method was applied to analyze thermally-stressed ADC samples to monitor changes of site-specific conjugation levels, DAR, succinimide hydrolysis of the linker, and various PTMs. We believe this is an effective and straightforward tool for conjugation site analysis while simultaneously monitoring multiple quality attributes for ADCs with protease-cleavable linkers.
Collapse
Affiliation(s)
- Tongdan Wang
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| | - Zi-Ao Huang
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Moyin Zhou
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ruxin Wang
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yufei Li
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Longyun Guo
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaolin Cao
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jincui Huang
- Mass Spectrometry Center of Excellence, Analytical Sciences, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
2
|
Li W, Huang W, Yu X, Chen C, Yuan Y, Liu D, Wang F, Yu J, Diao X. A validated LC-MS/MS method for the quantitation of daratumumab in rat serum using rapid tryptic digestion without IgG purification and reduction. J Pharm Biomed Anal 2024; 243:116083. [PMID: 38447348 DOI: 10.1016/j.jpba.2024.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Daratumumab, a humanized monoclonal antibody utilized in treating immunoglobulin light-chain amyloidosis and relapsed/refractory multiple myeloma, was quantified in rat serum through a simple, economical and effective liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. A surrogate peptide, LLIYDASNR, derived from trypsin hydrolysis, was quantitatively analyzed with LLIYDASN [13C6, 15N4] RAT as an internal standard. This corrected variations from sample pretreatment and mass spectrometry response, involving denaturation and trypsin hydrolysis in a two-step process lasting approximately 1 hour. Methodological validation demonstrated a linear range of 1 µg/mL to 1000 µg/mL in rat serum. Precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference met acceptance criteria. The validated LC-MS/MS approach was successfully applied to a pharmacokinetic study of daratumumab in rats at an intravenous dose of 15 mg/kg.
Collapse
Affiliation(s)
- Weiqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensi Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yali Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Donghui Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyu Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Thomas JD, Yurkovetskiy AV, Yin M, Bodyak ND, Tang S, Protopopova M, Kelleher E, Jones B, Yang L, Custar D, Catcott KC, Demady DR, Collins SD, Xu L, Bu C, Qin L, Ter-Ovanesyan E, Damelin M, Toader D, Lowinger TB. Development of a Novel DNA Mono-alkylator Platform for Antibody-Drug Conjugates. Mol Cancer Ther 2024; 23:541-551. [PMID: 38354416 DOI: 10.1158/1535-7163.mct-23-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Although microtubule inhibitors (MTI) remain a therapeutically valuable payload option for antibody-drug conjugates (ADC), some cancers do not respond to MTI-based ADCs. Efforts to fill this therapeutic gap have led to a recent expansion of the ADC payload "toolbox" to include payloads with novel mechanisms of action such as topoisomerase inhibition and DNA cross-linking. We present here the development of a novel DNA mono-alkylator ADC platform that exhibits sustained tumor growth suppression at single doses in MTI-resistant tumors and is well tolerated in the rat upon repeat dosing. A phosphoramidate prodrug of the payload enables low ADC aggregation even at drug-to-antibody ratios of 5:1 while still delivering a bystander-capable payload that is effective in multidrug resistant (MDR)-overexpressing cell lines. The platform was comparable in xenograft studies to the clinical benchmark DNA mono-alkylator ADC platform DGN459 but with a significantly better tolerability profile in rats. Thus, the activity and tolerability profile of this new platform make it a viable option for the development of ADCs.
Collapse
Affiliation(s)
| | | | - Mao Yin
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Shuyi Tang
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Brian Jones
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Liping Yang
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Daniel Custar
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Damon R Demady
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Ling Xu
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Charlie Bu
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - LiuLiang Qin
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Marc Damelin
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Dorin Toader
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
4
|
Wang S, Wang F, Wang L, Liu Z, Liu M, Li S, Wang Y, Sun X, Jiang J. Detection of antibody-conjugate payload in cynomolgus monkey serum by a high throughput capture LC-MS/MS bioanalysis method. J Pharm Biomed Anal 2023; 227:115069. [PMID: 36854219 DOI: 10.1016/j.jpba.2022.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Antibody-drug conjugate (ADC) plays a vital role in oncology indications. The efficacy and toxicity of ADC generally depend on the concentration of the drugs in the body system, and physiologically-based pharmacokinetic (P.K.) is a quantitative tool to understand the drug concentration in the body. To characterize the whole drug carefully, sophisticated bioanalysis was required. ADC bioanalysis generally needs multiple analysis strategies, which can accurately quantify total antibody (TAb), antibody-drug conjugate (ADC), antibody-conjugate payload (ac-payload), and free-payload. In this work, we mainly described and validated a high throughput capture Liquid Chromatography tandem-Mass Spectrometry (LC-MS/MS) bioanalysis method to detect the concentrations of ac-payload (such as MMAE) in cynomolgus monkey serum. This method was allowed to determinate the Drug to Antibody Ratio (DAR), obtained by n of ac-payload/ n of TAb. In addition, the technique could significantly improve the throughput of the pre-coated antibody on a 96-well plate. Besides, this method had no interference or carryover in endogenous substances and showed linearity (R2 ≥0.99) in the concentration range within 15.6-2000.0 ng/mL. The inter-run accuracy ranged from 75.8 % to 120.0 %, and precision was within ≤ 20.0 %. Meanwhile, selectivity and the benchtop stability of the method were also validated. This optimization method was successfully applied to the change of average DAR in P.K. study.
Collapse
Affiliation(s)
- Shujuan Wang
- RemeGen, Ltd, Yantai 264000, Shandong, China; Rongchang Industry College, Yantai 264003, Shandong, China
| | - Fengzhu Wang
- RemeGen, Ltd, Yantai 264000, Shandong, China; School of Biological Sciences, University of California, Irvine, CA 92697, United States
| | - Ling Wang
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Zhihao Liu
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Meiling Liu
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Shenjun Li
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Ying Wang
- Pharmaron (Beijing) Inc., Beijing 100176, China
| | | | - Jing Jiang
- Rongchang Industry College, Yantai 264003, Shandong, China; Department of Pharmacology, Binzhou Medical University, Yantai 264003, Shandong, China.
| |
Collapse
|
5
|
Beaumont K, Pike A, Davies M, Savoca A, Vasalou C, Harlfinger S, Ramsden D, Ferguson D, Hariparsad N, Jones O, McGinnity D. ADME and DMPK considerations for the discovery and development of antibody drug conjugates (ADCs). Xenobiotica 2022; 52:770-785. [PMID: 36314242 DOI: 10.1080/00498254.2022.2141667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.
Collapse
Affiliation(s)
- Kevin Beaumont
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Andy Pike
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Michael Davies
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Adriana Savoca
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Christina Vasalou
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Steffi Harlfinger
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Owen Jones
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Dermot McGinnity
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| |
Collapse
|
6
|
Zhu X, Huo S, Xue C, An B, Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal 2020; 10:209-220. [PMID: 32612867 PMCID: PMC7322744 DOI: 10.1016/j.jpha.2020.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023] Open
Abstract
The past few years have witnessed enormous progresses in the development of antibody-drug conjugates (ADCs). Consequently, comprehensive analysis of ADCs in biological systems is critical in supporting discovery, development and evaluation of these agents. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a promising and versatile tool for ADC analysis across a wide range of scenarios, owing to its multiplexing ability, rapid method development, as well as the capability of analyzing a variety of targets ranging from small-molecule payloads to the intact protein with a high, molecular resolution. However, despite this tremendous potential, challenges persist due to the high complexity in both the ADC molecules and the related biological systems. This review summarizes the up-to-date LC-MS-based strategies in ADC analysis and discusses the challenges and opportunities in this rapidly-evolving field.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Chao Xue
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bo An
- Exploratory Biomarker, In-vitro/In-vivo Translation, R&D Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| |
Collapse
|
7
|
IQ consortium perspective: complementary LBA and LC–MS in protein therapeutics bioanalysis and biotransformation assessment. Bioanalysis 2020; 12:257-270. [DOI: 10.4155/bio-2019-0279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasingly diverse large molecule modalities have driven the need for complex bioanalysis and biotransformation assessment involving both traditional ligand-binding assays (LBA) and more recent hybrid immunoaffinity LC–MS platforms. Given the scientific expertise in LBA and LC–MS typically resides in different functions within the industry, this has presented operational challenges for an integrated approach for bioanalysis and biotransformation assessment. Encouragingly, over time, the industry has recognized the complementary value of the two platforms. This has not been an easy transition as organizational structures vary widely within the industry. However, there are tremendous benefits in adopting fully integrated strategies for biopharma. This IQ consortium paper presents current perspectives across the biopharma industry. It highlights the technical and operational challenges in current large molecule bioanalysis, the value of collaborations across LBA and LC–MS, and scientific expertise for fully integrated strategies for bioanalysis and biotransformation.
Collapse
|
8
|
Xu L, Zhang Z, Xu S, Xu J, Lin ZJ, Lee DH. Simultaneous quantification of total antibody and antibody-conjugated drug for XMT-1522 in human plasma using immunocapture-liquid chromatography/mass spectrometry. J Pharm Biomed Anal 2019; 174:441-449. [DOI: 10.1016/j.jpba.2019.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
9
|
Hyung SJ, Li D, Koppada N, Kaur S, Saad OM. Method development of a novel PK assay for antibody-conjugated drug measurement of ADCs using peptide-linker drug analyte. Anal Bioanal Chem 2019; 411:2587-2596. [PMID: 30828756 DOI: 10.1007/s00216-019-01701-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
Abstract
Pharmacokinetic analysis of antibody-drug conjugates (ADCs) requires characterization and quantification of both the antibody-conjugated cytotoxic drug molecule (acDrug) as well as the antibody vehicle, among other analytes, in order to assess the safety and efficacy of ADCs. Due to the complexity of biological matrices, immunoaffinity capture is widely used for enrichment of the biotherapeutic, followed by enzymatic or chemical release of the drug and LC-MS/MS analysis to provide the concentration of acDrug. This bioanalytical strategy has been used successfully with ADCs, but is limited to ADCs having cleavable linkers. Herein, we developed a sensitive and specific method that involved subjecting the ADC to tryptic digestion, and measured a peptide that included cysteine conjugated to the drug to provide quantification of acDrug. Using this method for a THIOMAB™ antibody-drug conjugate (TDC) conjugated to MMAE via a cleavable linker, valine-citrulline, we compared peptide-linker MMAE data from the new assay format with earlier MMAE data for acDrug. This showed that the new assay format provides robust acDrug as well as total antibody concentration to study in vitro stability of the TDC in multiple matrices and in vivo pharmacokinetic models of TDC in rat and mouse. The data from the two orthogonal modes of acDrug analysis showed good agreement with each other, allowing us to successfully quantify acDrug to study the stability in vitro and the pharmacokinetic parameters in vivo. This new assay strategy allows acDrug quantification for ADCs with non-cleavable linkers where the resulting acDrug analyte is a peptide-linker drug.
Collapse
Affiliation(s)
- Suk-Joon Hyung
- Department of BioAnalytical Sciences - Assay Development and Technologies, Genentech, Inc., South San Francisco, CA, 94080, USA.
| | - Dongwei Li
- Pre-clinical and Translational Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Neelima Koppada
- Department of BioAnalytical Sciences - Assay Development and Technologies, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Surinder Kaur
- Department of BioAnalytical Sciences - Assay Development and Technologies, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ola M Saad
- Department of BioAnalytical Sciences - Assay Development and Technologies, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Multiplex LC-MS/MS Assays for Clinical Bioanalysis of MEDI4276, an Antibody-Drug Conjugate of Tubulysin Analogue Attached via Cleavable Linker to a Biparatopic Humanized Antibody against HER-2. Antibodies (Basel) 2019; 8:antib8010011. [PMID: 31544817 PMCID: PMC6640689 DOI: 10.3390/antib8010011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 01/14/2023] Open
Abstract
Bioanalysis of complex biotherapeutics, such as antibody-drug conjugates (ADCs), is challenging and requires multiple assays to describe their pharmacokinetic (PK) profiles. To enable exposure-safety and exposure-efficacy analyses, as well as to understand the metabolism of ADC therapeutics, three bioanalytical methods are typically employed: Total Antibody, Antibody Conjugated Toxin or Total ADC and Unconjugated Toxin. MEDI4276 is an ADC comprised of biparatopic humanized antibody attached via a protease-cleavable peptide-based maleimidocaproyl linker to a tubulysin toxin (AZ13599185) with an approximate average drug-antibody ratio of 4. The conjugated payload of MEDI4276 can undergo ester hydrolysis to produce the conjugated payload AZ13687308, leading to the formation of MEDI1498 (de-acetylated MEDI4276). In this report, we describe the development, validation and application of three novel multiplex bioanalytical methods. The first ligand-binding liquid chromatography coupled with tandem mass spectrometry (LBA-LC-MS/MS) method was developed and validated for simultaneous measurement of total antibody and total ADC (antibody-conjugated AZ13599185) from MEDI4276. The second LBA-LC-MS/MS assay quantified total ADC (antibody-conjugated AZ13687308) from MEDI1498. The third multiplex LC-MS/MS assay was used for simultaneous quantification of unconjugated AZ13599185 and AZ13687308. Additional stability experiments confirmed that quantification of the released warhead in the presence of high concentrations of MEDI4276 was acceptable. Subsequently, the assays were employed in support of a first-in-human clinical trial (NCT02576548).
Collapse
|
11
|
Perspectives on potentiating immunocapture-LC-MS for the bioanalysis of biotherapeutics and biomarkers. Bioanalysis 2018; 10:1679-1690. [PMID: 30371100 DOI: 10.4155/bio-2018-0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The integration of ligand-binding assay and LC-MS/MS (immunocapture-LC-MS) has unleashed the combined advantages of both powerful techniques for addressing the ever increasing bioanalytical challenges for biotherapeutics and biomarker assays. The highly specific, selective and sensitive characteristics of the immunocapture-LC-MS-based assays have enabled the determination of biotherapeutics and biomarkers in biomatrices with ease of method development, less requirements on key reagents as well as structural specificity for endogenous and engineered biomolecules. In addition, the versatile immunocapture-LC-MS technology has expanded into many challenging areas to enhance mechanistic studies of drug interactions with their targets. This paper intends to summarize our perspectives on enhancing the use of immunocapture-LC-MS in drug discovery and development for emerging new modalities.
Collapse
|
12
|
Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis 2018; 10:1651-1665. [DOI: 10.4155/bio-2018-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Alternative scaffold proteins have emerged as novel platforms for development of therapeutic applications. One such application is in protein–drug conjugates (PDCs), which are analogous to antibody–drug conjugates. Methodology: Liquid chromatography–mass spectrometry methods for quantitation of total protein, conjugate and free payload for a PDC based on Centyrin scaffold were developed. Tryptic peptides generated from a region of the Centyrin that does not contain a conjugation site, and another that has the conjugation site with the linker-payload attached were used as surrogates of the total and conjugated Centyrin, respectively. Conclusion: The methods were successfully applied to analysis of samples from mice to quantify the plasma and tissue concentrations. This same workflow can potentially be applied to other PDCs and site-specific antibody–drug conjugates.
Collapse
|
13
|
Investigating the utility of minimized sample preparation and high-resolution mass spectrometry for quantification of monoclonal antibody drugs. J Pharm Biomed Anal 2018; 159:384-392. [DOI: 10.1016/j.jpba.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|
14
|
Dong L, Li C, Locuson C, Chen S, Qian MG. A Two-Step Immunocapture LC/MS/MS Assay for Plasma Stability and Payload Migration Assessment of Cysteine–Maleimide-Based Antibody Drug Conjugates. Anal Chem 2018; 90:5989-5994. [DOI: 10.1021/acs.analchem.8b00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Linlin Dong
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Inc., 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Chao Li
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Inc., 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Charles Locuson
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Inc., 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Susan Chen
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Inc., 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Mark G. Qian
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Inc., 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|