1
|
Srinivasan S, Ranganathan V, McConnell EM, DeRosa MC. Simple solution and paper-based fluorescent aptasensors for toxic metal ions, thallium(l) and lead(ll). Anal Bioanal Chem 2024:10.1007/s00216-024-05614-0. [PMID: 39460770 DOI: 10.1007/s00216-024-05614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Heavy metal ions, such as thallium(I) and lead(II) are environmental toxicants known to cause a severe threat to human and ecosystem health. This work investigates aptamers and intercalating chromophore-based complexes for the detection of these toxic species. In one method, a selective label-free "turn-on" biosensor was developed using a G-quadruplex-intercalating agent, berberine. Fluorescence, melting temperature (Tm), and circular dichroism analysis confirmed the affinity and selectivity results, illustrating the potential of these aptasensor methods for improving detection limits. These fluorescence assays were found to perform with a detection limit of 3.4 μM for Tl(I) and 0.84 nM for Pb(II). Furthermore, the assays were challenged successfully with Tl(I) and Pb(II) spiked into river water samples. We next developed paper-based fluorescent assays for Tl(I) and Pb(II), where the aptamer/berberine complex was spotted onto the paper test zone. When Tl(I) or Pb(II) ions solutions were spotted onto the top of the test zone and the spot was illuminated with a portable UV light (365 nm), a strong green fluorescence could be easily visualized with the naked eye. The lowest detection limits achieved with these fluorescent paper-based assays for Tl(I) and Pb(II) were 1.1 nM and 1.6 nM, respectively. The two fluorescent approaches presented here have the potential to be the basis of rapid, fast, and cost-efficient screening assays for these toxic species.
Collapse
Affiliation(s)
- Sathya Srinivasan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Velu Ranganathan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
2
|
Zarei A, Rezaei A, Shahlaei M, Asani Z, Ramazani A, Wang C. Selective and sensitive CQD-based sensing platform for Cu 2+ detection in Wilson's disease. Sci Rep 2024; 14:13183. [PMID: 38851799 PMCID: PMC11162432 DOI: 10.1038/s41598-024-63771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Excessive Cu2+ intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs. The presence of Cu2+ is strongly linked to the emergence and progression of Wilson's disease (WD), and accurately measuring the amount of copper is a crucial step in diagnosing WD at an early stage in a clinical setting. In this work, CQDs were fabricated through a facile technique as a novel fluorescence-based sensing platform for detecting Cu(II) in aqueous solutions, and in the serum samples of healthy and affected individuals by WD. The CQDs interact with Cu(II) ions to produce Turn-on and Turn-off states at nano-molar and micro-molar levels, respectively, with LODs of 0.001 µM and 1 µM. In fact, the Cu2+ ions can act like a bridge between two CQDs by which the charge and electron transfer between the CQDs may increase, possibly can have significant effects on the spectroscopic features of the CQDs. To the best of our knowledge, this is the first reported research that can detect Cu(II) at low levels using two different complexation states, with promising results in testing serum. The potential of the sensor to detect Cu(II) was tested on serum samples from healthy and affected individuals by WD, and compared to results obtained by ICP-OES. Astonishingly, the results showed an excellent correlation between the measured Cu(II) levels using the proposed technique and ICP-OES, indicating the high potential of the fluorimetric CQD-based probe for Cu(II) detection. The accuracy, sensitivity, selectivity, high precision, accuracy, and applicability of the probe toward Cu(II) ions make it a potential diagnostic tool for Wilson's disease in a clinical setting.
Collapse
Affiliation(s)
- Armin Zarei
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Asani
- Students Research Committee,, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
3
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
4
|
Van den Avont A, Sharma-Walia N. Anti-nucleolin aptamer AS1411: an advancing therapeutic. Front Mol Biosci 2023; 10:1217769. [PMID: 37808518 PMCID: PMC10551449 DOI: 10.3389/fmolb.2023.1217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted therapy is highly desirable, as it allows for selective cytotoxicity on diseased cells without off-target side effects. Nucleolin is a remarkable target for cancer therapy given its high abundance, selective presence on the plasma membrane, and multifaceted influence on the initiation and progression of cancer. Nucleolin is a protein overexpressed on the cell membrane in many tumors and serves as a binding protein for several ligands implicated in angiogenesis and tumorigenesis. Nucleolin is present in the cytoplasm, nucleoplasm, and nucleolus and is used by selected pathogens for cell entry. AS1411 is a guanosine-rich oligonucleotide aptamer that binds nucleolin and is internalized in the tumor cells. AS1411 is well tolerated at therapeutic doses and localizes to tumor cells overexpressing nucleolin. AS1411 has a good safety profile with efficacy in relapsed acute myeloid leukemia and renal cell carcinoma producing mild or moderate side effects. The promising potential of AS1411 is its ability to be conjugated to drugs and nanoparticles. When a drug is bound to AS1411, the drug will localize to tumor cells leading to targeted therapy with fewer systemic side effects than traditional practices. AS1411 can also be bound to nanoparticles capable of detecting nucleolin at concentrations far lower than lab techniques used today for cancer diagnosis. AS1411 has a promising potential to change cancer diagnoses and treatment.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
5
|
Kargari Aghmiouni D, Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties. Pharmaceutics 2023; 15:1214. [PMID: 37111700 PMCID: PMC10142803 DOI: 10.3390/pharmaceutics15041214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization. However, due to the unique surface or core features of each hybrid design, the eventual drug-carrier interactions, release, and penetration processes may vary. Our review article focused on the drug's loading, binding interactions, release, physiochemical, and surface functionalization features, as well as the varying internalization and cytotoxicity of each structure that may aid in the selection of an appropriate design. This was achieved by comparing the actions of uniform-surfaced hybrid particles (such as core-shell particles) to those of anisotropic, asymmetrical hybrid particles (such as Janus, multicompartment, or patchy particles). Information is provided on the use of homogeneous or heterogeneous particles with specified characteristics for the simultaneous delivery of various cargos, possibly enhancing the efficacy of treatment techniques for illnesses such as cancer.
Collapse
Affiliation(s)
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
6
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
7
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
8
|
Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J. Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 2022; 54:1399-1415. [PMID: 36018260 DOI: 10.1080/10408347.2022.2115287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heavy metals ions as metallic pollutants are a growing global issue due to their adverse effects on the aquatic ecosystem, and human health. Unfortunately, conventional detection methods such as atomic absorption spectrometry exhibit a relatively low limit of detection and hold numerous disadvantages, and therefore, the development of an efficient method for in-situ and real-time detection of heavy metal residues is of great importance. The aptamer-based sensors offer distinct advantages over antibodies and emerged as a robust sensing platform against various heavy metals due to their high sensitivity, ease of production, simple operations, excellent specificity, better stability, low immunogenicity, and cost-effectiveness. The nucleic acid aptamers in conjugation with nanomaterials can bind to the metal ions with good specificity/selectivity and can be used for on-site monitoring of metal ion residues. This review aimed to provide background information about nanomaterials-based aptasensor, recent advancements in aptamer conjunction on nanomaterials surface, the role of nanomaterials in improving signal transduction, recent progress of nanomaterials-based aptasening procedures (from 2010 to 2022), and future perspectives toward the practical applications of nanomaterials-based aptasensors against hazardous metal ions for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Salim Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zahid Hussain
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Edward Kamya
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Shah Mehmood
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| |
Collapse
|
9
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
10
|
Guo Y, Shi M, Liu X, Liang H, Gao L, Liu Z, Li J, Yu D, Li K. Selection and preliminary application of DNA aptamer targeting A549 excreta in cell culture media. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Vinod SP, Vignesh R, Priyanka M, Tirumurugaan KG, Sivaselvam SN, Raj GD. Generation of single stranded DNA with selective affinity to bovine spermatozoa. Anim Biosci 2021; 34:1579-1589. [PMID: 32882770 PMCID: PMC8495356 DOI: 10.5713/ajas.20.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study was conducted to generate single stranded DNA oligonucleotides with selective affinity to bovine spermatozoa, assess its binding potential and explore its potential utility in trapping spermatozoa from suspensions. METHODS A combinatorial library of 94 mer long oligonucleotide was used for systematic evolution of ligands by exponential enrichment (SELEX) with bovine spermatozoa. The amplicons from sixth and seventh rounds of SELEX were sequenced, and the reads were clustered employing cluster database at high identity with tolerance (CD-HIT) and FASTAptamer. The enriched nucleotides were predicted for secondary structures by Mfold, motifs by Multiple Em for Motif Elicitation and 5' labelled with biotin/6-FAM to determine the binding potential and binding pattern. RESULTS We generated 14.1 and 17.7 million reads from sixth and seventh rounds of SELEX respectively to bovine spermatozoa. The CD-HIT clustered 78,098 and 21,196 reads in the top ten clusters and FASTAptamer identified 2,195 and 4,405 unique sequences in the top three clusters from the sixth and seventh rounds, respectively. The identified oligonucleotides formed secondary structures with delta G values between -1.17 to -26.18 kcal/mol indicating varied stability. Confocal imaging with the oligonucleotides from the seventh round revealed different patterns of binding to bovine spermatozoa (fluorescence of the whole head, spot of fluorescence in head and mid- piece and tail). Use of a 5'-biotin tagged oligonucleotide from the sixth round at 100 pmol with 4×106 spermatozoa could trap almost 80% from the suspension. CONCLUSION The binding patterns and ability of the identified oligonucleotides confirms successful optimization of the SELEX process and generation of aptamers to bovine spermatozoa. These oligonucleotides provide a quick approach for selective capture of spermatozoa from complex samples. Future SELEX rounds with X- or Y- enriched sperm suspension will be used to generate oligonucleotides that bind to spermatozoa of a specific sex type.
Collapse
Affiliation(s)
- Sivadasan Pathiyil Vinod
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| | - Rajamani Vignesh
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| | - Mani Priyanka
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| | - Krishnaswamy Gopalan Tirumurugaan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| | - Salem Nagalingam Sivaselvam
- Department of Animal Genetics and Breeding, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| | - Gopal Dhinakar Raj
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600051, India
| |
Collapse
|
13
|
Varty K, O’Brien C, Ignaszak A. Breast Cancer Aptamers: Current Sensing Targets, Available Aptamers, and Their Evaluation for Clinical Use in Diagnostics. Cancers (Basel) 2021; 13:cancers13163984. [PMID: 34439139 PMCID: PMC8391819 DOI: 10.3390/cancers13163984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women worldwide, and the rate of diagnosis continues to increase. Early detection and targeted treatment towards histological type is crucial to improving outcomes, but current screening methods leave some patients at risk of late diagnosis. The risk of late diagnosis and progressed disease is of particular concern for young women as current screening methods are not recommended early in life. Aptamers are oligonucleotides that can bind with high specificity to target molecules such as proteins, peptides, and other small molecules. They are relatively cheap to produce and are invariable from batch to batch, making them ideal for use in large-scale clinical or screening programs. The use of aptamers for breast cancer screening, diagnosis, and therapeutics is promising, but comparison of these aptamers and their corresponding biomarkers for use in breast cancer is significantly lacking. Here, we compare the currently available aptamers for breast cancer biomarkers and their respective biomarkers, as well as highlight the electrochemical sensors that are in development.
Collapse
|
14
|
Li T, Zhang Y, Sun X, Zhang Y, Wang Y, Nie Z. Dual dye-labeled G-quadruplex aptasensor for detection of thallium(I) using ratiometric fluorescence resonance energy transfer. Talanta 2021; 233:122508. [PMID: 34215123 DOI: 10.1016/j.talanta.2021.122508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
A fluorescent probe was developed for ratiometric detection of thallium ions in mineral water samples by modifying a G-rich aptamer (PS2.M - 7) with a fluorescence donor (Cyanine-3, Cy3) and a quencher (Cyanine-5, Cy5). The probe had a random coil structure that changed into a G-quadruplex structure upon binding with Tl+. This change in structure decreased the distance between the donor and acceptor moieties, which resulted in fluorescence resonance energy transfer between Cy3 and Cy5. Under optimized conditions, the limit of detection and linear concentration range for Tl+ were 30.1 μM (3σ) and 10 μM-10 mM (R2 = 0.9981), respectively. This simple and cost-effective fluorescence sensor provided satisfactory results for detection of thallium ions in spiked mineral water samples.
Collapse
Affiliation(s)
- Tongtong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Xiaohong Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yanjin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
15
|
Feng H, Fu Q, Du W, Zhu R, Ge X, Wang C, Li Q, Su L, Yang H, Song J. Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS NANO 2021; 15:3402-3414. [PMID: 33508938 DOI: 10.1021/acsnano.0c10407] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cu2+ is closely related to the occurrence and development of Wilson's disease (WD), and quantitative detection of various copper indicators (especially liver Cu2 and urinary Cu2+) is the key step for the early diagnosis of WD in the clinic. However, the clinic Cu2+ detection approach was mainly based on testing the liver tissue through combined invasive liver biopsy and the ICP-MS method, which is painful for the patient and limited in determining WD status in real-time. Herein, we rationally designed a type of Cu2+-activated nanoprobe based on nanogapped gold nanoparticles (AuNNP) and poly(N-isopropylacrylamide) (PNIPAM) to simultaneously quantify the liver Cu2+ content and urinary Cu2+ in WD by photoacoustic (PA) imaging and ratiometric surface-enhanced Raman scattering (SERS), respectively. In the nanoprobe, one Raman molecule of 2-naphthylthiol (NAT) was placed in the nanogap of AuNNP. PNIPAM and the other Raman molecule mercaptobenzonitrile (MBN) were coated on the AuNNP surface, named AuNNP-NAT@MBN/PNIPAM. Cu2+ can efficiently coordinate with the chelator PNIPAM and lead to aggregation of the nanoprobe, resulting in the absorption red-shift and increased PA performance of the nanoprobe in the NIR-II window. Meanwhile, the SERS signal at 2223 cm-1 of MBN is amplified, while the SERS signal at 1378 cm-1 of NAT remains stable, generating a ratiometric SERS I2223/I1378 signal. Both NIR-II PA1250 nm and SERS I2223/I1378 signals of the nanoprobe show a linear relationship with the concentration of Cu2+. The nanoprobe was successfully applied for in vivo quantitative detection of liver Cu2+ of WD mice through NIR-II PA imaging and accurate quantification of urinary Cu2+ of WD patients by ratiometric SERS. We anticipate that the activatable nanoprobe might be applied for assisting an early, precise diagnosis of WD in the clinic in the future.
Collapse
Affiliation(s)
- Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Khajavian Z, Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A highly sensitive, simple and label-free fluorescent aptasensor for tobramycin sensing based on PicoGreen intercalation into DNA duplex regions of three-way junction origami. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Babaei M, Abnous K, Taghdisi SM, Taghavi S, Sh Saljooghi A, Ramezani M, Alibolandi M. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm 2020; 156:84-96. [PMID: 32882423 DOI: 10.1016/j.ejpb.2020.08.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Simultaneous drug and gene delivery to cancer cells has been introduced to provide advantages of the synergistic effects of gene to sensitize the cancer cells to chemotherapeutic agent. In the current study, nucleolin-targeted co-delivery system, based on PEGylated rod-shaped mesoporous silica NPs was developed as a biocompatible nanocarrier for simultaneous delivery of camptothecin and survivin shRNA-expressing plasmid (iSur-DNA) to colon adenocarcinoma. The structural characterization including hydrodynamic radius and morphological characteristics of the prepared system demonstrated the mesoporous rod-shaped structure of the prepared system with 100-150 nm diameter. Camptothecin was loaded into the rod-shaped MSN NPs with encapsulation efficiency of 32%. At the next stage, the prepared camptothecin-loaded system was PEGylated and then iSur-DNA was condensed with C/P ratio of 6 to form PEG@MSNR-CPT/Sur. Then, the prepared camptothecin-iSur-DNA loaded PEGylated rod-shaped mesoporous silica NPs were tagged with AS1411 DNA aptamer (Apt-PEG@MSNR-CPT/Sur) in order to provide selective therapy against colorectal adenocarcinoma. The obtained results showed that the prepared platform controlled the release of anticancer drug, camptothecin. The experimental results indicated potent synergistic effect of iSur-pDNA and CPT in in vitro cytotoxicity, apoptosis induction and in vivo antitumor effect. In addition, tagging the system with AS1411 DNA aptamer facilitated drug uptake into nucleolin positive colorectal cancer cells leading to higher cellular toxicity and apoptosis induction in C26 cells compared to nucleolin-negative CHO cell line. Apt-PEG@MSNR-CPT/Sur system significantly supressed tumor growth rate in C26 tumor bearing mice while improving survival rate and pharmacokinetics of the platform in comparison with PEG@MSNR-CPT and PEG@MSNR-CPT/Sur. It could be concluded that the developed nucelolin targeted nanomedicine for co-delivery of camptothecin and iSur-DNA could serve as a versatile nanotherapeutic system against colorectal cancer.
Collapse
Affiliation(s)
- Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
He Y, Wang M, Fu M, Yuan X, Luo Y, Qiao B, Cao J, Wang Z, Hao L, Yuan G. Iron(II) phthalocyanine Loaded and AS1411 Aptamer Targeting Nanoparticles: A Nanocomplex for Dual Modal Imaging and Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020; 15:5927-5949. [PMID: 32848397 PMCID: PMC7429213 DOI: 10.2147/ijn.s254108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose A multi-functional nanoplatform with diagnostic imaging and targeted treatment functions has aroused much interest in the nanomedical research field and has been paid more attention in the field of tumor diagnosis and treatment. However, some existing nano-contrast agents have encountered difficulties in different aspects during clinical promotion, such as complicated preparation process and low specificity. Therefore, it is urgent to find a nanocomplex with good targeting effect, high biocompatibility and significant therapeutic effect for the integration of diagnosis and treatment and clinical transformation. Materials and Methods Nanoparticles (NPs) targeting breast cancer were synthesized by phacoemulsification which had liquid fluorocarbon perfluoropentane(PFP) in the core and were loaded with Iron(II) phthalocyanine (FePc) on the shell. The aptamer (APT) AS1411 was outside the shell used as a molecular probe. Basic characterization and targeting abilities of the NPs were tested, and their cytotoxicity and biological safety in vivo were evaluated through CCK-8 assay and blood bio-chemical analysis. The photoacoustic (PA) and ultrasound (US) imaging system were used to assess the effects of AS1411-PLGA@FePc@PFP (A-FP NPs) as dual modal contrast agent in vitro and in vivo. The effects of photothermal therapy (PTT) in vitro and in vivo were evaluated through MCF-7 cells and tumor-bearing nude mouse models. Results A-FP NPs, with good stability, great biocompatibility and low toxicity, were of 201.87 ± 1.60 nm in diameter, and have an active targeting effect on breast cancer cells and tissues. With the help of PA/US imaging, it was proved to be an excellent dual modal contrast agent for diagnosis and guidance of targeted therapy. Meanwhile, it can heat up under near-infrared (NIR) laser irradiation and has achieved obvious antitumor effect both in vitro and in vivo experiments. Conclusion As a kind of nanomedicine, A-FP NPs can be used in the integration of diagnosis and treatment. The treatment effects and biocompatibility in vivo may provide new thoughts in the clinical transformation of nanomedicine and early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yubei He
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mengzhu Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ming Fu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xun Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Bin Qiao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jin Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Gengbiao Yuan
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
19
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
20
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|
21
|
Roxo C, Kotkowiak W, Pasternak A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019; 24:E3781. [PMID: 31640176 PMCID: PMC6832456 DOI: 10.3390/molecules24203781] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes constitute a unique class of nucleic acid structures formed by G-rich oligonucleotides of DNA- or RNA-type. Depending on their chemical nature, loops length, and localization in the sequence or structure molecularity, G-quadruplexes are highly polymorphic structures showing various folding topologies. They may be formed in the human genome where they are believed to play a pivotal role in the regulation of multiple biological processes such as replication, transcription, and translation. Thus, natural G-quadruplex structures became prospective targets for disease treatment. The fast development of systematic evolution of ligands by exponential enrichment (SELEX) technologies provided a number of G-rich aptamers revealing the potential of G-quadruplex structures as a promising molecular tool targeted toward various biologically important ligands. Because of their high stability, increased cellular uptake, ease of chemical modification, minor production costs, and convenient storage, G-rich aptamers became interesting therapeutic and diagnostic alternatives to antibodies. In this review, we describe the recent advances in the development of G-quadruplex based aptamers by focusing on the therapeutic and diagnostic potential of this exceptional class of nucleic acid structures.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|