1
|
Wu S, Yu W, Fu X, Yu X, Ye Z, Zhang M, Qiu Y, Ma B. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules 2024; 29:4972. [PMID: 39459340 PMCID: PMC11510534 DOI: 10.3390/molecules29204972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected.
Collapse
Affiliation(s)
| | | | - Xianshu Fu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (S.W.); (W.Y.); (X.Y.); (Z.Y.); (M.Z.); (Y.Q.); (B.M.)
| | | | | | | | | | | |
Collapse
|
2
|
Al-Hawary SIS, Saleh RO, Mansouri S, Noraldeen SAM, Alawadi AH, Kareem AH, Alsalamy A, Shakir MN, Alasheqi MQ, Mustafa YF. Isothermal amplification methods in cancer-related miRNA detection; a new paradigm in study of cancer pathology. Pathol Res Pract 2024; 254:155072. [PMID: 38228039 DOI: 10.1016/j.prp.2023.155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression. They are involved in a wide range of biological processes, including development, differentiation, cell cycle regulation, and response to stress. Numerous studies have demonstrated that miRNAs are present in different bodily fluids, which could serve as an important biomarker. The advancement of techniques and strategies for the identification of cancer-associated miRNAs in human specimens offers a novel opportunity to diagnose cancer in early stages, predict patient prognosis and evaluate response to treatment. Isothermal techniques including loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), or recombinase polymerase amplification (RPA) offer simplicity, efficiency, and rapidity in miRNA detection processes. In contrast to traditional PCR (polymerase chain reaction), these techniques analysis and quantify miRNA molecules in specimens using a single constant temperature. In this comprehensive review, we summarized the recent advances in cancer-related miRNA detection via highly sensitive isothermal amplification methods by more focusing on the involved mechanism.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, University of Najaf, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Song C, Ma Z, Zhang M, Liu C, Tang S, Zhang J, Song J, Yu H, Lee HK, Shen W. Multiplex Detection of Single Nucleotide Polymorphisms by Liquid Chromatography for Nonsmall Cell Lung Cancer Staging. Anal Chem 2024; 96:1054-1063. [PMID: 38190445 DOI: 10.1021/acs.analchem.3c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, an integrated strategy with excellent accuracy and high throughput is proposed for the precise indication of single nucleotide polymorphism (SNP) in nonsmall cell lung cancer diseases. Two types of point mutations (L858R and T790M) and the corresponding wild types could be identified together in a single high-performance liquid chromatographic run. Signal amplification was achieved through a series of enzyme ligation, primer extension, and enzyme cleavage strategies, and a large number of DNA probes with different fluorescence signals were finally generated. The factors affecting the spatiotemporal separation efficiency of four DNA probes were systematically investigated. The limits of detection of wild types (WTs) or mutant types (MTs) abbreviated as L858R-MT, L858R-WT, T790M-MT, and T790M-WT were 26, 24, 19, and 22 aM, respectively. In addition, the levels of mutant types and wild types in the serum of 40 nonsmall cell lung cancer patients at different stages were detected using the method, and the correlation between the mutation ratios and cancer stages was preliminarily verified. The proposed highly selective and sensitive method may serve as an alternative approach for early diagnosis and staging of nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Mengyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Juan Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| |
Collapse
|
4
|
Yan J, Wang J, Liu H, Wang L, Yu K, Deng L, Su J, Chen H. MiR-29b detection in serum using an electrochemical biosensor for the early diagnosis of gestational diabetes. Anal Biochem 2023:115209. [PMID: 37311517 DOI: 10.1016/j.ab.2023.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is a severe perinatal condition with serious consequences for the growth and development of the mother and baby. MicroRNA-29b (miR-29b) is essential to the pathogenesis of GDM and can be used as a molecular biomarker for diagnosis. Given the limitations of current GDM screening technologies, there is a pressing need for a sensitive detection approach to evaluate serum miR-29b in GDM patients, thus aiding in disease treatment. In this study, an electrochemical biosensor Co7Fe3-CN nanoparticles (NPs) was developed. Using a duplex-specific nuclease (DSN) signal amplification strategy with a linear range of 1-104 pM and a low detection limit of 0.79 pM, the ultra-sensitive detection and quantification of miR-29b were accomplished. The dependability and applicability of the developed biosensor were validated by the standard method of qRT-PCR, and the content of serum miR-29b in GDM patients was shown to be significantly lower than that in the control group (P = 0.03). Specifically, miR-29b concentrations could be detected from 2.0 to 7.5 and 2.4-7.3 pM using qRT-PCR and the biosensor, respectively. These similar results indicated that a biosensor based on miR-29b detection has the potential to be used in the point-of-care testing of GDM patients in clinical practice.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning, 530004, China
| | - Jiayu Wang
- Medical College, Guangxi University, Guangxi Nanning, 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Li Deng
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Junyou Su
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Hongfei Chen
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| |
Collapse
|
5
|
Pitikultham P, Putnin T, Pimalai D, Sathirapongsasuti N, Kitiyakara C, Jiang Q, Ding B, Japrung D. Ultrasensitive Detection of MicroRNA in Human Saliva via Rolling Circle Amplification Using a DNA-Decorated Graphene Oxide Sensor. ACS OMEGA 2023; 8:15266-15275. [PMID: 37151566 PMCID: PMC10157686 DOI: 10.1021/acsomega.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are a family of conserved small noncoding RNAs whose expression is associated with many diseases, including cancer. Salivary miRNAs are gaining popularity as noninvasive diagnostic biomarkers for cancer and other systemic disorders, but their use is limited by their low abundance and complicated detection procedure. Herein, we present a novel self-assembly approach based on rolling circle amplification (RCA) and graphene oxide (GO) for the ultrasensitive detection of miRNA21 and miRNA16 (miRNA oral cancer biomarkers in human saliva). First, target miRNA hybridizes with the RCA template. In the presence of DNA polymerase, the RCA reaction is induced and sequences matching the template are generated. Then, a nicking enzyme cuts the long ssDNA product into tiny pieces to obtain the amplified products. The DNA-decorated GO sensor was fabricated by preabsorbing the ssDNA fluorescence-labeled probe on the GO surface, resulting in fluorescence quenching. The DNA-decorated GO sensor could detect the amplified product via the self-assembly of dsDNA, leading to the desorption and recovery of the fluorescence-labeled probe. Under optimal conditions, the proposed system exhibited ultrasensitive detection; the detection limits of miRNA16 and miRNA21 were 8.81 and 3.85 fM, respectively. It showed a wide range of detection between 10 fM and 100 pM for miRNA16 and between 10 fM and 1 nM for miRNA16. It demonstrated high selectivity, distinguishing between 1- and 3-mismatch nucleotides in target miRNA. Overall, our proposed DNA-decorated GO sensor can accurately detect the salivary miRNAs and may potentially be used for the diagnosis and screening of early-stage oral cancer.
Collapse
Affiliation(s)
- Piyawat Pitikultham
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Thitirat Putnin
- National
Nanotechnology Center, National Science and Technology Department
Agency, Thailand Science Park, Pathumthani 10120, Thailand
| | - Dechnarong Pimalai
- National
Nanotechnology Center, National Science and Technology Department
Agency, Thailand Science Park, Pathumthani 10120, Thailand
| | - Nuankanya Sathirapongsasuti
- Program
in Translational Medicine, Chakri Naruebodindra Medical Institute,
Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pli, Samutprakarn 10540, Thailand
| | - Chagriya Kitiyakara
- Department
of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Qiao Jiang
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Deanpen Japrung
- National
Nanotechnology Center, National Science and Technology Department
Agency, Thailand Science Park, Pathumthani 10120, Thailand
| |
Collapse
|
6
|
Liu J, Xie G, Lv S, Xiong Q, Xu H. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Xiang Y, Hu C, Wu G, Xu S, Li Y. Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Goyat R, Saharan Y, Singh J, Umar A, Akbar S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022; 27:6433. [PMID: 36234970 PMCID: PMC9571129 DOI: 10.3390/molecules27196433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The term graphene was coined using the prefix "graph" taken from graphite and the suffix "-ene" for the C=C bond, by Boehm et al. in 1986. The synthesis of graphene can be done using various methods. The synthesized graphene was further oxidized to graphene oxide (GO) using different methods, to enhance its multitude of applications. Graphene oxide (GO) is the oxidized analogy of graphene, familiar as the only intermediate or precursor for obtaining the latter at a large scale. Graphene oxide has recently obtained enormous popularity in the energy, environment, sensor, and biomedical fields and has been handsomely exploited for water purification membranes. GO is a unique class of mechanically robust, ultrathin, high flux, high-selectivity, and fouling-resistant separation membranes that provide opportunities to advance water desalination technologies. The facile synthesis of GO membranes opens the doors for ideal next-generation membranes as cost-effective and sustainable alternative to long existing thin-film composite membranes for water purification applications. Many types of GO-metal oxide nanocomposites have been used to eradicate the problem of metal ions, halomethanes, other organic pollutants, and different colors from water bodies, making water fit for further use. Furthermore, to enhance the applications of GO/metal oxide nanocomposites, they were deposited on polymeric membranes for water purification due to their relatively low-cost, clear pore-forming mechanism and higher flexibility compared to inorganic membranes. Along with other applications, using these nanocomposites in the preparation of membranes not only resulted in excellent fouling resistance but also could be a possible solution to overcome the trade-off between water permeability and solute selectivity. Hence, a GO/metal oxide nanocomposite could improve overall performance, including antibacterial properties, strength, roughness, pore size, and the surface hydrophilicity of the membrane. In this review, we highlight the structure and synthesis of graphene, as well as graphene oxide, and its decoration with a polymeric membrane for further applications.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Isothermal Amplification Technology for Disease Diagnosis. BIOSENSORS 2022; 12:bios12090677. [PMID: 36140062 PMCID: PMC9496038 DOI: 10.3390/bios12090677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Isothermal amplification (IA) is a nucleic acid amplification technology (NAAT) that has contributed significantly to the healthcare system. The combination of NAAT with a suitable detection platform resulted in higher sensitivity, specificity, and rapid disease diagnosis. Traditional NAAT, such as polymerase chain reaction (PCR), is widely applied in the general healthcare system but is rarely accessed in resource-limited hospitals. Some IA methods provide a rapid, sensitive, specific, and simple method for disease diagnosis. However, not all IA techniques have been regularly used in clinical applications because different biomarkers and sample types affect either the enzyme in the IA system or sample preparation. This review focuses on the application of some IA techniques that have been applied in the medical field and have the potential for use at points of care.
Collapse
Affiliation(s)
- Poramin Boonbanjong
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Kiatnida Treerattrakoon
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Wassa Waiwinya
- Multidisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyawat Pitikultham
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-2-117-6665
| |
Collapse
|
10
|
Role of Nano-miRNAs in Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23126836. [PMID: 35743278 PMCID: PMC9223810 DOI: 10.3390/ijms23126836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Collapse
|
11
|
Treerattrakoon K, Roeksrungruang P, Dharakul T, Japrung D, Faulds K, Graham D, Bamrungsap S. Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1938-1945. [PMID: 35441184 DOI: 10.1039/d2ay00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection of miR-29a, a biomarker of cancers, using SERS tags and magnetic separation is described. The assay was designed to detect the miR-29a sequence by taking the complementary sequence and splitting it into a capture and detection probe. The SERS tags comprised the highly Raman active molecule 4-mercaptobenzoic acid (4-MBA) and DNA detection probes assembled onto the surface of gold nanorods (AuNRs) through the self-assembly process. The capture DNA conjugated magnetic nanoparticles (MNPs) were applied as capture probes. The detection was based on the hybridisation and sandwich complex formation. The resultant hybridisation-dependent complexes were recovered and enriched from the samples by magnetic separation. The enriched solution containing target miRNA hybridised with capture probes were dropped on a foil-covered slide to form a droplet for SERS analysis. A characteristic spectrum of 4-MBA was observed to indicate the presence of the miR-29a in the samples. The sensitivity of the assay is examined by measuring the SERS signal of the samples containing different concentrations of the miR-29a. The SERS intensity appears to increase with the concentration of miR-29a. The limit of detection (LOD) was found to be 10 pM without any amplification process. In addition, the selectivity and feasibility of the assay in complex media are evaluated with the non-target miRNAs comprising different sequences from the target miR-29a. The system was capable of detecting the target miR-29a specifically with high selectivity. These results suggest that this solution-based SERS platform has a significant capability for simple, sensitive, and selective miR-29a analysis.
Collapse
Affiliation(s)
- Kiatnida Treerattrakoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Tararaj Dharakul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
12
|
Gao YP, Huang KJ, Wang FT, Hou YY, Xu J, Li G. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications. Analyst 2022; 147:3396-3414. [DOI: 10.1039/d2an00556e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rolling circle amplification (RCA) is a simple and isothermal DNA amplification technique that is used to generate thousands of repeating DNA sequences using circular templates under the catalysis of DNA polymerase.
Collapse
Affiliation(s)
- Yong-ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China
- Analysis and Testing Center, Xinyang College, Xinyang 464000, PR China
| | - Ke-Jing Huang
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi Minzu University, Nanning 530008, PR China
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China
| |
Collapse
|
13
|
Kuntip N, Japrung D, Pongprayoon P. What Happens When a Complementary DNA Meets miR-29a Cancer Biomarker in Complex with a Graphene Quantum Dot. ACS APPLIED BIO MATERIALS 2021; 4:8368-8376. [PMID: 35005926 DOI: 10.1021/acsabm.1c00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs), short single-stranded noncoding RNA molecules, serve as potential cancer biomarkers due to their involvement in cancer development. One of the strategies to extract miRNAs is to perform the miRNA adsorption on nanomaterials and dissociation by a complementary DNA strand (DNA probe). Recently, graphene quantum dots (GQDs) were found to show a good ability to absorb miRNAs. Thus, in this work, the mechanism of the GQD-adhered miRNA capture by its complementary DNA is revealed using molecular dynamics simulations. miR-29a, a potential cancer biomarker, is used as a miRNA model. Three systems containing one and four chains of miR-29a in addition to one and four complementary DNA probes (1R1D, 1R4D, and 4R4D) were studied. GQDs are the prime targets of a DNA attack. The full coverage of GQDs is required to protect the adsorption of DNA probes on the GQD face. The nucleobase-backbone interactions are the main contributors to miR-DNA interactions in this work. The interbase paring becomes small because most nucleobases of miR-29a and their probe are stacked to maintain their secondary structures, and some are absorbed on the GQD surface. Apparently, weakening of the nucleobase-GQD π-π stacking and the intrabase-pairing strength is needed for extracting miR-29a by a probe. Although no GQD-absorbed miR-29a desorption is found here, the basic principles obtained can be useful for further utilization of GQDs and their derivatives for miRNA extraction and detection.
Collapse
Affiliation(s)
- Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
14
|
Zhao Y, Xiang J, Cheng H, Liu X, Li F. Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification. Biosens Bioelectron 2021; 194:113581. [PMID: 34461568 DOI: 10.1016/j.bios.2021.113581] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Precise microRNA (miRNA) analysis is significant importance for early disease diagnosis. Herein, a novel flexible photoelectrochemical (PEC) biosensor for miRNA determination was developed by employing CdS NPs-modified carbon cloth (CC) on polyimide (PI) film as photoelectric material to provide the PEC responses and an efficient four-stage reaction system as the target recognition and signal amplification unit to improve the analytical performance. In this PEC biosensor, the presence of target miR-21 would trigger the catalytic hairpin assembly (CHA) and the following hybridization chain reaction (HCR) to produce a long dsDNA labeled with numerous biotins, which would further capture a large amount of alkaline phosphatase (ALP) for catalyzing the generation of ascorbic acid (AA). As an efficient electron donor, AA could be oxidized by the photoelectrode, which would initiate a redox cycling amplification process to regenerate AA, resulting in the enhancement of the photocurrent response. Benefitting from the synergistic nucleic acid-based, enzyme catalytic, and chemical signal amplification strategies, the proposed biosensing strategy enabled ultrasensitive miRNA determination. As expected, the PEC biosensor performed satisfactory analytical performances with a linear range of 1 fM to 1 nM and the detection limit down to 0.41 fM. Furthermore, the PEC biosensing strategy exhibited recommendable selectivity, stability, flexibility, and practical applicability. Therefore, this sensing platform provides promising potential for application in bioassay and early diagnosis of disease.
Collapse
Affiliation(s)
- Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Junzhu Xiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Hao Cheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
15
|
Zhao J, Wu J, Wu X, Deng G, Liu Y, Lin F, Zhu L. A self-quenching fluorescence probe-mediated exponential isothermal amplification system for highly sensitive and specific detection of microRNAs. Chem Commun (Camb) 2021; 57:12599-12602. [PMID: 34786586 DOI: 10.1039/d1cc05522d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We designed an efficient self-quenching fluorescence probe and constructed this probe-mediated exponential isothermal amplification system for miRNA detection. Owing to the significant improvement in the detective signal-to-background ratio, a wide dynamic range of 9 orders of magnitude and a limit of detection as low as 0.08 aM can be easily achieved in a single step. Furthermore, benefiting from the additional advantages of high specificity and biocompatibility, the proposed method has been demonstrated to be capable of accurately quantifying miRNA biomarkers in serum, which will provide promising perspectives for clinical diagnosis.
Collapse
Affiliation(s)
- Jun Zhao
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaosong Wu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqing Deng
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Yong Liu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Francis Lin
- University of Manitoba, Winnipeg R3T2N2, Canada.
| | - Ling Zhu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
16
|
Gao Z, Ren F, Yang G, Feng G, Wu L, Huang G, Chen Q. A highly sensitive electrochemical aptasensor for vascular endothelial growth factor detection based on toehold-mediated strand displacement reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4934-4940. [PMID: 34612218 DOI: 10.1039/d1ay01263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An electrochemical aptasensor with high sensitivity, specificity, and good intra-day reproducibility is reported to meet the detection needs of vascular endothelial growth factor (VEGF). The toehold-mediated strand displacement recycling amplification and VEGF aptamer are integrated in the biosensor. The probe A is hybridized with the VEGF aptamer to form the probe A-aptamer complex. When VEGF is introduced, the aptamer specifically binds with VEGF, and probe A can be liberated. Then, the free probe A captures the toehold region of the Hp1, leading the exposure of the toehold region on the other end of Hp1. Similarly, Hp2 and Hp3 are also immobilized on the surface of the electrode; thus, the methylene blue labelled on Hp2 and Hp3 causes the current response. With the signal transduction mechanism, the expression level of VEGF can be detected quantitatively. With a series of optimizations of sensor parameters, high sensitivity and specificity of the VEGF detection sensor can be achieved with a detection limit as low as 10 pg mL-1. This significant performance has good intra-day reproducibility, and it can be applied to human biological samples such as serum, urine, and saliva to detect the VEGF content.
Collapse
Affiliation(s)
- Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China.
| | - Fangling Ren
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guangyi Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Guangjun Feng
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guiling Huang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Yangtze University, Health Science Center, Jingzhou, Hubei, 434025, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| |
Collapse
|
17
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
18
|
A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron 2021; 178:113027. [DOI: 10.1016/j.bios.2021.113027] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
|
19
|
Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front Genet 2020; 11:603552. [PMID: 33193750 PMCID: PMC7658393 DOI: 10.3389/fgene.2020.603552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis is a complex process that involved in various genetic and epigenetic alterations during the progression of breast cancer. Recent evidences have indicated that the mutation in the genome sequence may not be the key factor for increasing metastatic potential. Epigenetic changes were revealed to be important for metastatic phenotypes transition with the development in understanding the epigenetic basis of breast cancer. Herein, we aim to present the potential epigenetic drivers that induce dysregulation of genes related to breast tumor growth and metastasis, with a particular focus on histone modification including histone acetylation and methylation. The pervasive role of major histone modification enzymes in cancer metastasis such as histone acetyltransferases (HAT), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and so on are demonstrated and further discussed. In addition, we summarize the recent advances of next-generation sequencing technologies and microfluidic-based devices for enhancing the study of epigenomic landscapes of breast cancer. This feature also introduces several important biotechnologists for identifying robust epigenetic biomarkers and enabling the translation of epigenetic analyses to the clinic. In summary, a comprehensive understanding of epigenetic determinants in metastasis will offer new insights of breast cancer progression and can be achieved in the near future with the development of innovative epigenomic mapping tools.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Garafutdinov RR, Gilvanov AR, Kupova OY, Sakhabutdinova AR. Effect of metal ions on isothermal amplification with Bst exo- DNA polymerase. Int J Biol Macromol 2020; 161:1447-1455. [DOI: 10.1016/j.ijbiomac.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023]
|
21
|
Sakhabutdinova AR, Mirsaeva LR, Oscorbin IP, Filipenko ML, Garafutdinov RR. Elimination of DNA Multimerization Arising from Isothermal Amplification in the Presence of Bst Exo– DNA Polymerase. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Garafutdinov RR, Sakhabutdinova AR, Kupryushkin MS, Pyshnyi DV. Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase. Biochimie 2019; 168:259-267. [PMID: 31765671 DOI: 10.1016/j.biochi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
Over the last two decades, isothermal amplification of nucleic acids has gained more attention due to a number of advantages over the widely used polymerase chain reaction. For isothermal amplification, DNA polymerases with strand-displacement activity are needed, and Bst exo- polymerase is one of the most commonly used. Unfortunately, Bst exo- causes nonspecific DNA amplification (so-called multimerization) under isothermal conditions that results in undesirable products (multimers) consisting of tandem nucleotide repeats. Multimerization occurs only for short ssDNA or primer dimers, and the efficiency of multimerization depends significantly on the reaction conditions, but slightly depends on the sequence of DNA templates. In this study we report the prevention of DNA multimerization using a new type of modified oligonucleotide primers with internucleosidic phosphates containing 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups). Primers with one, two or three PG groups located at the 3'- or 5'-ends or in the middle of the primers were designed. It turned out, such bulky groups interfere with the moving of Bst exo- polymerase along DNA chains. However, one modified phosphate does not notably affect the efficiency of polymerization, and the elongation is completely inhibited only when three contiguous modifications occur. Multimerization of the linear ssDNA templates is blocked by three modifications in the middle of both primers whereas specific amplification of the circular ssDNA by rolling circle amplification is not inhibited. Thus, incorporation of three PG groups is sufficient to prevent multimerization and allows to create improved primers for reliable isothermal amplification with Bst exo- DNA polymerase.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Lavrentiev Avenue 8, Novosibirsk, Russia.
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State University, 630090, Lavrentiev Avenue 8, Novosibirsk, Russia.
| |
Collapse
|