1
|
Pollak J, Mayonu M, Jiang L, Wang B. The development of machine learning approaches in two-dimensional NMR data interpretation for metabolomics applications. Anal Biochem 2024; 695:115654. [PMID: 39187053 DOI: 10.1016/j.ab.2024.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Metabolomics has been widely applied in human diseases and environmental science to study the systematic changes of metabolites over diverse types of stimuli. NMR-based metabolomics has been widely used, but the peak overlap problems in the one-dimensional (1D) NMR spectrum could limit the accuracy of quantitative analysis for metabolomics applications. Two-dimensional (2D) NMR has been applied to solve the 1D NMR overlap problem, but the data processing is still challenging. In this study, we built an automatic approach to process the 2D NMR data for quantitative applications using machine learning approaches. Partial least square discriminant analysis (PLS-DA), artificial neural network classification (ANN-DA), gradient boosted trees classification (XGBoost-DA), and artificial deep learning neural network classification (ANNDL-DA) were applied in combination with an automatic peak selection approach. Standard mixtures, sea anemone extracts, and mouse fecal samples were tested to demonstrate the approach. Our results showed that ANN-DA and ANNDL-DA have high accuracy in selecting 2D NMR peaks (around 90 %), which have a high potential application in 2D NMR-based metabolomics quantitively study, while PLS-DA and XGBoost-DA showed limitations in either data variation or overfitting. Our study built an automatic approach to applying 2D NMR data to routine quantitative analysis in metabolomics.
Collapse
Affiliation(s)
- Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901-6975, USA
| | - Moses Mayonu
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901-6975, USA
| | - Lin Jiang
- Natural Sciences Division, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA; Department of Chemistry and Biochemistry, Stetson University, 421 N. Woodland Blvd., DeLand, Florida, 32723, USA
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901-6975, USA.
| |
Collapse
|
2
|
Munley JA, Park G, Kelly LS, Kannan KB, Mankowski RT, Casadesus G, Chakrabarty P, Wallet SM, Maile R, Bible LE, Wang B, Moldawer LL, Mohr AM, Nagpal R, Efron PA. Persistence and Sexual Dimorphism of Gut Dysbiosis and Pathobiome after Sepsis and Trauma. Ann Surg 2024; 280:491-503. [PMID: 38864230 PMCID: PMC11392637 DOI: 10.1097/sla.0000000000006385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI). SUMMARY Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied. METHODS A prospective observational cohort study was performed with healthy subjects, severe trauma patients, and patients with sepsis residing in an intensive care unit for 2 to 3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14 to 21 days after intensive care unit admission. RESULTS Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex--specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females. CONCLUSIONS Dysbiosis induced by trauma and sepsis persists up to 14 to 21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and posttrauma chronic critical illness. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, U.S.A
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Robert T. Mankowski
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama, Birmingham, Alabama, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Robert Maile
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
3
|
Park G, Kadyan S, Hochuli N, Pollak J, Wang B, Salazar G, Chakrabarty P, Efron P, Sheffler J, Nagpal R. A modified Mediterranean-style diet enhances brain function via specific gut-microbiome-brain mechanisms. Gut Microbes 2024; 16:2323752. [PMID: 38444392 PMCID: PMC10936641 DOI: 10.1080/19490976.2024.2323752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder with rapidly mounting prevalence worldwide, yet no proven AD cure has been discovered. Using a multi-omics approach in a transgenic AD mouse model, the current study demonstrated the efficacy of a modified Mediterranean-ketogenic diet (MkD) on AD-related neurocognitive pathophysiology and underlying mechanisms related to the gut-microbiome-brain axis. The findings revealed that MkD induces profound shifts in the gut microbiome community and microbial metabolites. Most notably, MkD promoted growth of the Lactobacillus population, resulting in increased bacteria-derived lactate production. We discovered elevated levels of microbiome- and diet-derived metabolites in the serum as well, signaling their influence on the brain. Importantly, these changes in serum metabolites upregulated specific receptors that have neuroprotective effects and induced alternations in neuroinflammatory-associated pathway profiles in hippocampus. Additionally, these metabolites displayed strong favorable co-regulation relationship with gut-brain integrity and inflammatory markers, as well as neurobehavioral outcomes. The findings underscore the ameliorative effects of MkD on AD-related neurological function and the underlying gut-brain communication via modulation of the gut microbiome-metabolome arrays.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Diseases, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Philip Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julia Sheffler
- Center for Translational Behavioral Science, Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Wang B, Jadhav V, Odelade A, Chang E, Chang A, Harrison SH, Maldonado-Devincci AM, Graves JL, Han J. High fat diet reveals sex-specific fecal and liver metabolic alterations in C57BL/6J obese mice. Metabolomics 2023; 19:97. [PMID: 37999907 PMCID: PMC11651078 DOI: 10.1007/s11306-023-02059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is a major health concern that poses significant risks for many other diseases, including diabetes, cardiovascular disease, and cancer. Prevalence of these diseases varies by biological sex. This study utilizes a mouse (C57BL/6J) model of obesity to analyze liver and fecal metabolic profiles at various time points of dietary exposure: 5, 9, and 12 months in control or high fat diet (HFD)-exposed mice. Our study discovered that the female HFD group has a more discernable perturbation and set of significant changes in metabolic profiles than the male HFD group. In the female mice, HFD fecal metabolites including pyruvate, aspartate, and glutamate were lower than control diet-exposed mice after both 9th and 12th month exposure time points, while lactate and alanine were significantly downregulated only at the 12th month. Perturbations of liver metabolic profiles were observed in both male and female HFD groups, compared to controls at the 12th month. Overall, the female HFD group showed higher lactate and glutathione levels compared to controls, while the male HFD group showed higher levels of glutamine and taurine compared to controls. These metabolite-based findings in both fecal and liver samples for a diet-induced effect of obesity may help guide future pioneering discoveries relating to the analysis and prevention of obesity in people, especially for females.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Vidya Jadhav
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Anuoluwapo Odelade
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Evelyn Chang
- Program in Liberal Medical Education, Division of Biology and Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Alex Chang
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14852, USA
| | - Scott H Harrison
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Antoinette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, 27411, USA
| | - Joseph L Graves
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Jian Han
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA.
| |
Collapse
|
5
|
Kadyan S, Park G, Wang B, Singh P, Arjmandi B, Nagpal R. Resistant starches from dietary pulses modulate the gut metabolome in association with microbiome in a humanized murine model of ageing. Sci Rep 2023; 13:10566. [PMID: 37386089 PMCID: PMC10310774 DOI: 10.1038/s41598-023-37036-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health by fostering a healthier gut microbiome and microbial metabolites. However, such effects and mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential abundance linking phenotypic differences in specific metabolites among different RS groups. LEN and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial metabolism and their beneficial physiologic responses in an aged host.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
Kadyan S, Park G, Wang B, Nagpal R. Dietary fiber modulates gut microbiome and metabolome in a host sex-specific manner in a murine model of aging. Front Mol Biosci 2023; 10:1182643. [PMID: 37457834 PMCID: PMC10345844 DOI: 10.3389/fmolb.2023.1182643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Emerging evidence reveals the fundamental role of the gut microbiome in human health. Among various factors regulating our gut microbiome, diet is one of the most indispensable and prominent one. Inulin is one of the most widely-studied dietary fiber for its beneficial prebiotic effects by positively modulating the gut microbiome and microbial metabolites. Recent research underscores sexual dimorphism and sex-specific disparities in microbiome and also diet-microbiome interactions. However, whether and how the prebiotic effects of dietary fiber differ among sexes remain underexplored. To this end, we herein examine sex-specific differences in the prebiotic effects of inulin on gut microbiome and metabolome in a humanized murine model of aging i.e., aged mice carrying human fecal microbiota. The findings demonstrate that inulin exerts prebiotic effects, but in a sex-dependent manner. Overall, inulin increases the proportion of Bacteroides, Blautia, and glycine, while decreasing Eggerthella, Lactococcus, Streptococcus, trimethylamine, 3-hydroxyisobutyrate, leucine and methionine in both sexes. However, we note sex-specific effects of inulin including suppression of f_Enteroccaceae:_, Odoribacter, bile acids, malonate, thymine, valine, acetoin, and ethanol while promotion of Dubosiella, pyruvate, and glycine in males. Whereas, suppression of Faecalibaculum, Lachnoclostridium, Schaedlerella, phenylalanine and enhancement of Parasutterella, Phocaeicola, f_Lachnospiraceae;_, Barnesiella, Butyricimonas, glycine, propionate, acetate and glutamate are observed in females. Altogether, the study reveals that prebiotic mechanisms of dietary fiber vary in a sex-dependent manner, underscoring the importance of including both sexes in preclinical/clinical studies to comprehend the mechanisms and functional aspects of dietary interventions for effective extrapolation and translation in precision nutrition milieus.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Chai X, Liu C, Fan X, Huang T, Zhang X, Jiang B, Liu M. Combination of peak-picking and binning for NMR-based untargeted metabonomics study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107429. [PMID: 37099854 DOI: 10.1016/j.jmr.2023.107429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/29/2023]
Abstract
In NMR-based untargeted metabolomic studies, 1H NMR spectra are usually divided into equal bins/buckets to diminish the effects of peak shift caused by sample status or instrument instability, and to reduce the number of variables used as input for the multivariate statistical analysis. It was noticed that the peaks near bin boundaries may cause significant changes in integral values of adjacent bins, and the weaker peak may be obscured if it is allocated in the same bin with intense peaks. Several efforts have been taken to improve the performance of binning. Here we propose an alternative method, named P-Bin, based on the combination of the classic peak-picking and binning procedures. The location of each peak defined by peak-picking is used as the center of the individual bin. P-Bin is expected to keep all spectral information associated with the peaks and significantly reduce the data size as the spectral regions without peaks are not considered. In addition, both peak-picking and binning are routine procedures, making P-Bin easy to be implemented. To verify the performance, two sets of experimental data from human plasma and Ganoderma lucidum (G. lucidum) extracts were processed using the conventional binning method and the proposed method, before the principal component analysis (PCA) and the orthogonal projection to latent structures discriminant analysis (OPLS-DA). The results indicate that the proposed method has improved both the clustering performance of PCA score plots and the interpretability of OPLS-DA loading plots, and P-Bin could be an improved version of data preparation for metabonomic study.
Collapse
Affiliation(s)
- Xin Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Fan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|
8
|
Wang B, Habermehl C, Jiang L. Metabolomic analysis of honey bee ( Apis mellifera L.) response to glyphosate exposure. Mol Omics 2022; 18:635-642. [PMID: 35583168 DOI: 10.1039/d2mo00046f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Glyphosate is among the world's most commonly used herbicides in agriculture and weed control. The use of this agrochemical has unintended consequences on non-target organisms, such as honey bees (Apis mellifera L.), the Earth's most prominent insect pollinator. However, detailed understanding of the biological effects in bees in response to sub-lethal glyphosate exposure is still limited. In this study, 1H NMR-based metabolomics was performed to investigate whether oral exposure to an environmentally realistic concentration (7.12 mg L-1) of glyphosate affects the regulation of honey bee metabolites in 2, 5, and 10 days. On Day 2 of glyphosate exposure, the honey bees showed significant downregulation of several essential amino acids, including leucine, lysine, valine, and isoleucine. This phenomenon indicates that glyphosate causes an obvious metabolic perturbation when the honey bees are subjected to the initial caging process. The mid-term (Day 5) results showed negligible metabolite-level perturbation, which indicated the low glyphosate impact on active honeybees. However, the long-term (Day 10) data showed evident separation between the control and experimental groups in the principal component analysis (PCA). This separation is the result of the combinatorial changes of essential amino acids such as threonine, histidine, and methionine, while the non-essential amino acids glutamine and proline as well as the carbohydrate sucrose were all downregulated. In summary, our study demonstrates that although no significant behavioral differences were observed in honey bees under sub-lethal doses of glyphosate, metabolomic level perturbation can be observed under short-term exposure when met with other environmental stressors or long-term exposure.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC, USA
| | - Calypso Habermehl
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
| |
Collapse
|
9
|
Jiang L, Sullivan H, Wang B. Principal Component Analysis (PCA) Loading and Statistical Tests for Nuclear Magnetic Resonance (NMR) Metabolomics Involving Multiple Study Groups. ANAL LETT 2022. [DOI: 10.1080/00032719.2021.2019758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Hunter Sullivan
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC, USA
| |
Collapse
|
10
|
Jiang L, Sullivan H, Seligman C, Gilchrist S, Wang B. An NMR-based metabolomics study on sea anemones Exaiptasia diaphana ( Rapp, 1829) with atrazine exposure. Mol Omics 2021; 17:1012-1020. [PMID: 34633404 DOI: 10.1039/d1mo00223f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sea anemones have been recommended as critical bioindicators for marine environmental stressors; however, the understanding of the biological effects in response to sublethal pollutant exposure is still limited. In this study, NMR-based metabolomics was performed to investigate the effects of atrazine on Exaiptasia diaphana with concentrations ranging from 3 to 90 ppb. As a result, the metabolic profiling of E. diaphana was significantly affected after 70 ppb treatment while a partial perturbation was observed as early as 3 ppb treatment. Glutamate was significantly changed at low atrazine concentrations with increased upregulation in concentrated atrazine experiments which is a potential biomarker for E. diaphana exposed to atrazine stressors. The TCA intermediates succinate and malate as well as the TCA cycle-related metabolites such as alanine, glycine, and taurine downregulated after atrazine treatment which also indicated the lower energy supply of E. diaphana. In summary, our study demonstrated that significant metabolic level perturbation could be detected at low atrazine concentrations before a physical change could be observed, and glutamate or the nitrogen metabolism may be the initial target for sea anemones by atrazine. The study may provide pioneering results for using E. diaphana to predict the impacts of exposure to atrazine toxin in marine systems.
Collapse
Affiliation(s)
- Lin Jiang
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, USA.
| | - Hunter Sullivan
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, USA.
| | - Cole Seligman
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, USA.
| | - Sandra Gilchrist
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, USA.
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC, USA.
| |
Collapse
|