1
|
The Rosetta Stone Hypothesis-Based Interaction of the Tumor Suppressor Proteins Nit1 and Fhit. Cells 2023; 12:cells12030353. [PMID: 36766695 PMCID: PMC9913352 DOI: 10.3390/cells12030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
In previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of β-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in D. melanogaster and C. elegans these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function. Here, we tested this hypothesis and provide the first biochemical evidence for a direct association between Nit1 and Fhit. In addition, size exclusion chromatography of purified recombinant human Nit1 showed a tetrameric structure as also previously observed for the NitFhit Rosetta Stone fusion protein Nft-1 in C. elegans. Finally, in line with the Rosetta Stone hypothesis we identified Hsp60 and Ubc9 as other common interaction partners of Nit1 and Fhit. The interaction of Nit1 and Fhit may affect their enzymatic activities as well as interaction with other binding partners.
Collapse
|
2
|
Herzog D, Jansen J, Mißun M, Diederichs K, Stengel F, Marx A. Chemical Proteomics of the Tumor Suppressor Fhit Covalently Bound to the Cofactor Ap 3A Elucidates Its Inhibitory Action on Translation. J Am Chem Soc 2022; 144:8613-8623. [PMID: 35522782 PMCID: PMC9121386 DOI: 10.1021/jacs.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.
Collapse
|
3
|
Zheng HC, Liu LL. FHIT down-regulation was inversely linked to aggressive behaviors and adverse prognosis of gastric cancer: a meta- and bioinformatics analysis. Oncotarget 2017; 8:108261-108273. [PMID: 29296239 PMCID: PMC5746141 DOI: 10.18632/oncotarget.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
FHIT (fragile histine triad) acts as diadenosine P1, P3-bis (5'-adenosyl)-triphosphate adenylohydrolase involved in purine metabolism, and induces apoptosis as a tumor suppressor. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. The down-regulated FHIT expression was found in gastric cancer, compared with normal mucosa and dysplasia (p < 0.05). FHIT expression was negatively with depth of invasion, lymph node metastasis, distant metastasis, TNM staging and dedifferentiation of gastric cancer (p < 0.05). A positive association between FHIT expression and favorable overall survival was found in patients with gastric cancer (p < 0.05). According to Kaplan-Meier plotter, we found that a higher FHIT expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p < 0.05). These findings indicated that FHIT expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Li Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|
4
|
Zaki SM, Abdel-Azeez HA, El Nagar MR, Metwally KAA, S Ahmed MMS. Analysis of FHIT gene methylation in egyptian breast cancer women: association with clinicopathological features. Asian Pac J Cancer Prev 2015; 16:1235-9. [PMID: 25735361 DOI: 10.7314/apjcp.2015.16.3.1235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) gene is a tumor suppressor gene which involved in breast cancer pathogenesis. Epigenetics alterations in FHIT contributes to tumorigenesis of breast cancer. OBJECTIVE Our objective was to study FHIT promoter region hypermethylation in Egyptian breast cancer patients and its association with clinicopathological features. MATERIALS AND METHODS Methylation-specific polymerase chain reaction was performed to study the hypermethylation of FHIT promoter region in 20 benign breast tissues and 30 breast cancer tissues. RESULTS The frequency of hypermethylation of FHIT promoter region was significantly increased in breast cancer patients compared to bengin breast disease patients. The Odd ?s ratio (95%CI) of development of breast cancer in individuals with FHIT promoter hypermethylation (MM) was 11.0 (1.22-250.8). There were also significant associations between FHIT promoter hypermethylation and estrogen, progesterone receptors negativity, tumor stage and nodal involvment in breast cancer pateints. CONCLUSIONS Our results support an association between FHIT promotor hypermethylation and development of breast cancer in Egyptian breast cancer patients. FHIT promoter hypermethylation is associated with some poor prognostic features of breast cancer.
Collapse
Affiliation(s)
- Seham Mahrous Zaki
- Clinical Pathology, Faculty of Medicine, Zagazig University Hospitals, Zagazig, Egypt E-mail :
| | | | | | | | | |
Collapse
|
5
|
Bianchi F, Sasso M, Turdo F, Beretta GL, Casalini P, Ghirelli C, Sfondrini L, Ménard S, Tagliabue E, Campiglio M. Fhit Nuclear Import Following EGF Stimulation Sustains Proliferation of Breast Cancer Cells. J Cell Physiol 2015; 230:2661-70. [PMID: 25711523 DOI: 10.1002/jcp.24968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/18/2015] [Indexed: 11/06/2022]
Abstract
The tumor-suppressor protein fragile histidine triad (Fhit) exerts its functions in the cytoplasm, although some reports suggest that it may also act in the nucleus. We previously showed that cytosolic Fhit protein levels in cancer cell lines stimulated to proliferate were reduced by proteasomal degradation. Here, we demonstrate that Fhit is physiologically present in the nucleus of breast cancer cell lines and tissues at a low level and that proliferative stimulation increases nuclear levels. Breast cancer cells expressing the FhitY114F mutant, which do not undergo proteasomal degradation, contained mutated Fhit in the nucleus, while cells treated with a proteasome inhibitor accumulated nuclear Fhit during proliferation. Thus, Fhit nuclear shuttling and proteasome degradation phenomena occur independently. When Fhit was coupled to a nuclear localization sequence, the proliferation rate of the transfected cells increased together with levels of proliferation pathway mediators cyclin D1, phospho-MAPK, and phospho-STAT3. Fhit nuclear translocation upon mitogenic stimulation may represent a new regulatory mechanism that allows rapid restoration of Fhit cytoplasmic levels and promotes the proliferation cascade activated by mitogenic stimulation.
Collapse
Affiliation(s)
- Francesca Bianchi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Marianna Sasso
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Sylvie Ménard
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Campiglio
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Krakowiak A, Pęcherzewska R, Kaczmarek R, Tomaszewska A, Nawrot B, Stec WJ. Evaluation of influence of Ap4A analogues on Fhit-positive HEK293T cells; cytotoxicity and ability to induce apoptosis. Bioorg Med Chem 2011; 19:5053-60. [PMID: 21757356 DOI: 10.1016/j.bmc.2011.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 01/06/2023]
Abstract
Fragile histidine triad (Fhit) protein encoded by tumour suppressor FHIT gene is a proapoptotic protein with diadenosine polyphosphate (Ap(n)A, n=2-6) hydrolase activity. It has been hypothesised that formation of Fhit-substrate complex results in an apoptosis initiation signal while subsequent hydrolysis of Ap(n)A terminates this action. A series of Ap(n)A analogues have been identified in vitro as strong Fhit ligands [Varnum, J. M.; Baraniak, J.; Kaczmarek, R.; Stec, W. J.; Brenner, C. BMC Chem. Biol.2001, 1, 3]. We assumed that in Fhit-positive cells these compounds might preferentially bind to Fhit and inhibit its hydrolytic activity what would prolong the lifetime of apoptosis initiation signalling complex. Therefore, several Fhit inhibitors were tested for their cytotoxicity and ability to induce apoptosis in Fhit-positive HEK293T cells. These experiments have shown that Ap(4)A analogue, containing a glycerol residue instead of the central pyrophosphate and two terminal phosphorothioates [A(PS)-CH(2)CH(OH)CH(2)-(PS)A (1)], is the most cytotoxic among test compounds (IC(50)=17.5±4.2 μM) and triggers caspase-dependent cell apoptosis. The Fhit-negative HEK293T cells (in which Fhit was silenced by RNAi) were not sensitive to compound 1. These results indicate that the Ap(4)A analogue 1 induces Fhit-dependent apoptosis and therefore, it can be considered as a drug candidate for anticancer therapy in Fhit-positive cancer cells and in Fhit-negative cancer cells, in which re-expression of Fhit was accomplished by gene therapy.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Martin J, St-Pierre MV, Dufour JF. Hit proteins, mitochondria and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:626-32. [PMID: 21316334 DOI: 10.1016/j.bbabio.2011.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.
Collapse
Affiliation(s)
- Juliette Martin
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | |
Collapse
|
8
|
Saldivar JC, Shibata H, Huebner K. Pathology and biology associated with the fragile FHIT gene and gene product. J Cell Biochem 2010; 109:858-65. [PMID: 20082323 DOI: 10.1002/jcb.22481] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
More than 12 years and >800 scientific publications after the discovery of the first gene at a chromosome fragile site, the FHIT gene at FRA3B, there are still questions to pursue concerning the selective advantage conferred to cells by loss of expression of FHIT, the most frequent target of allele deletion in precancerous lesions and cancers. These questions are considered in light of recent investigations of genetic and epigenetic alterations to the locus and in a retrospective consideration of biological roles of the Fhit protein discovered through functional studies.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Integrated Biomedical Science Graduate Program, Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
9
|
Hassan MI, Naiyer A, Ahmad F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol 2009; 136:333-50. [PMID: 20033706 DOI: 10.1007/s00432-009-0751-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/09/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND The human fragile histidine triad (FHIT) gene is a putative tumor suppressor gene, which is located at chromosome region 3p14.2. It was suggested that the loss of heterozygosity (LOH), homozygous deletions, and abnormal expression of the FHIT gene were involved in several types of human malignancies. MATERIALS AND METHODS To determine the role of FHIT in various cancers, we have performed structural and functional analysis of FHIT in detail. RESULTS AND DISCUSSION The protein FHIT catalyzes the Mg(2+) dependent hydrolysis of P1-5 cent-O-adenosine-P3-5 cent-O-adenosine triphosphate, Ap3A, to AMP, and ADP. The reaction is thought to follow a two-step mechanism. Histidine triad proteins, named for a motif related to the sequence H-cent-H-cent-H-cent-cent- (cent, a hydrophobic amino acid), belong to superfamily of nucleotide hydrolases and transferases. This enzyme acts on the R-phosphate of ribonucleotides, and contain a approximately 30-kDa domain that is typically a homodimer of approximately 15 kDa polypeptides with catalytic site. CONCLUSION Here we have gathered information is known about biological activities of FHIT, the structural and biochemical bases for their functions. Our approach may provide a comparative framework for further investigation of FHIT.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | | |
Collapse
|
10
|
Enlightened protein: Fhit tumor suppressor protein structure and function and its role in the toxicity of protoporphyrin IX-mediated photodynamic reaction. Toxicol Appl Pharmacol 2009; 241:246-52. [PMID: 19716840 DOI: 10.1016/j.taap.2009.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/12/2022]
Abstract
The Fhit tumor suppressor protein possesses Ap(3)A (diadenosine triphosphate - ApppA) hydrolytic activity in vitro and its gene is found inactive in many pre-malignant states due to gene inactivation. For several years Fhit has been a widely investigated protein as its cellular function still remains largely unsolved. Fhit was shown to act as a molecular 'switch' of cell death via cascade operating on the influence of ATR-Chk1 pathway but also through the mitochondrial apoptotic pathway. Notably, Fhit was reported by our group to enhance the overall eradication effect of porphyrin-mediated photodynamic treatment (PDT). In this review the up-to-date findings on Fhit protein as a tumor suppressor and its role in PDT are presented.
Collapse
|
11
|
Ferens B, Kawiak A, Banecki B, Bielawski KP, Zawacka-Pankau J. Aberration of the enzymatic activity of Fhit tumor suppressor protein enhances cancer cell death upon photodynamic therapy similarly to that driven by wild-type Fhit. Cancer Lett 2009; 280:101-9. [DOI: 10.1016/j.canlet.2009.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/29/2022]
|
12
|
Gray SE, Kay E, Leader M, Mabruk M. Analysis ofFHITallelic imbalance/loss of heterozygosity and FHIT expression in cutaneous squamous cell carcinomas. J Cutan Pathol 2008; 35:816-25. [DOI: 10.1111/j.1600-0560.2007.00913.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Fisher DI, McLennan AG. Correlation of intracellular diadenosine triphosphate (Ap3A) with apoptosis in Fhit-positive HEK293 cells. Cancer Lett 2007; 259:186-91. [PMID: 18006149 DOI: 10.1016/j.canlet.2007.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
Abstract
The pro-apoptotic Fhit tumor suppressor protein binds and hydrolyses diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) in vitro. We have measured the level of both these nucleotides in Fhit-positive HEK293 cells exposed to various apoptosis inducers. Cold shock, anti-Fas, cadmium ions and etoposide all increased the basal level of Ap4A of 0.500pmol/10(6)cells by about 50%. However, the corresponding increases in Ap3A from a basal 0.079pmol/10(6)cells correlated closely with the degree of apoptosis produced, up to a maximum of 0.510pmol/10(6)cells with etoposide. These results support the view that Ap3A is the in vivo Fhit ligand and that an inhibition of Fhit activity is a key element in Fhit-mediated apoptosis.
Collapse
Affiliation(s)
- David I Fisher
- Cell Regulation and Signalling Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
14
|
Zawacka-Pankau J, Kowalska A, Issaeva N, Burcza A, Kwiek P, Bednarz N, Pramanik A, Banecki B, Podhajska AJ. Tumor suppressor Fhit protein interacts with protoporphyrin IX in vitro and enhances the response of HeLa cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 86:35-42. [PMID: 16990010 DOI: 10.1016/j.jphotobiol.2006.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/10/2006] [Accepted: 08/12/2006] [Indexed: 11/20/2022]
Abstract
Fhit, the product of tumor suppressor fragile histidine triad (FHIT) gene, exhibits antitumor activity of still largely unknown cellular background. However, it is believed that Fhit-Ap(3)A or Fhit-AMP complex might act as a second class messenger in cellular signal transduction pathway involved in cell proliferation and apoptosis. We demonstrate here for the first time that the photosensitizer, protoporphyrin IX (which is a natural precursor of heme) binds to Fhit protein and its mutants in the active site in vitro. Furthermore, PpIX inhibits the enzymatic activity of Fhit. Simultaneously, PpIX shows lower binding capacity to mutant Fhit-H96N of highly reduced hydrolase activity. In cell-based assay PpIX induced HeLa cell death in Fhit and Fhit-H96N-dependent manner which was measured by means of MTT assay. Moreover, HeLa cells stably expressing Fhit or mutant Fhit-H96N were more susceptible to protoporphyrin IX-mediated photodynamic therapy (2J/cm(2)) than parental cells.
Collapse
Affiliation(s)
- Joanna Zawacka-Pankau
- Department of Biotechnology, Division of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Terry G, Ho L, Londesborough P, Duggan C, Hanby A, Cuzick J. The expression of FHIT, PCNA and EGFR in benign and malignant breast lesions. Br J Cancer 2006; 96:110-7. [PMID: 17164758 PMCID: PMC2360209 DOI: 10.1038/sj.bjc.6603512] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immunohistochemical staining for FHIT and PCNA proteins was carried out in 451 breast lesions showing nonproliferative benign breast disease (BBD) (n=263), proliferative BBD without atypia (n=128), proliferative BBD with atypia (n=11), carcinoma in situ (n=15) or invasive carcinoma (n=34) and for EGFR protein in a subset of 71 of these cases. FHIT underexpression was not detected in nonproliferative lesions, but occurred in 2% of proliferative BBD without atypia, 10% proliferative BBD with atypia, 27% of carcinoma in situ and 41% of invasive carcinoma, which suggests that it could be useful in assessing those carcinoma in situ lesions (ductal, DCIS and lobular, LCIS) that are more likely to progress to malignancy. Preliminary microarray comparisons on DCIS and invasive carcinoma samples dissected from formalin-fixed paraffin sections showed a consistent downregulation of two previously identified FHIT-related genes, caspase 1 and BRCA1 in lesions underexpressing FHIT.
Collapse
Affiliation(s)
- G Terry
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - L Ho
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
- E-mail:
| | - P Londesborough
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - C Duggan
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - A Hanby
- St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - J Cuzick
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| |
Collapse
|
16
|
Tomoiu A, Gravel A, Tanguay RM, Flamand L. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. J Virol 2006; 80:10218-28. [PMID: 17005699 PMCID: PMC1617313 DOI: 10.1128/jvi.00375-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 is a potent transactivator of cellular and viral promoters. To better understand the biology of IE2, we generated a LexA-IE2 fusion protein and screened, using the yeast two-hybrid system, a Jurkat T-cell cDNA library for proteins that could interact with IE2. The most frequently isolated IE2-interacting protein was the human ubiquitin-conjugating enzyme 9 (Ubc9), a protein involved in the small ubiquitin-like modifier (SUMO) conjugation pathway. Using deletion mutants of IE2, we mapped the IE2-Ubc9-interacting region to residues 989 to 1037 of IE2. The interaction was found to be of functional significance to IE2, as Ubc9 overexpression significantly repressed promoter activation by IE2. The C93S Ubc9 mutant exhibited a similar effect on IE2, indicating that the E2 SUMO-conjugating function of Ubc9 is not required for its repressive action on IE2. No consensus sumoylation sites or evidence of IE2 conjugation to SUMO could be demonstrated under in vivo or in vitro conditions. Moreover, expression levels and nuclear localization of IE2 were not altered by Ubc9 overexpression, suggesting that Ubc9's repressive function likely occurs at the transcriptional complex level. Overall, our results indicate that Ubc9 influences IE2's function and provide new information on the complex interactions that occur between herpesviruses and the sumoylation pathway.
Collapse
Affiliation(s)
- Andru Tomoiu
- Centre de Recherche du CHUL, 2705 Laurier Blvd., Room T1-49, Québec, QC, Canada
| | | | | | | |
Collapse
|
17
|
Campiglio M, Bianchi F, Andriani F, Sozzi G, Tagliabue E, Ménard S, Roz L. Diadenosines as FHIT-ness instructors. J Cell Physiol 2006; 208:274-81. [PMID: 16547961 DOI: 10.1002/jcp.20633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FHIT is a tumor suppressor gene that is frequently inactivated in human cancer. Although the Fhit protein is known to hydrolyze diadenosine triphosphate (Ap(3)A), this hydrolase activity is not required for Fhit-mediated oncosuppression. Indeed, the molecular mechanisms and the regulatory elements of Fhit oncosuppression are largely unknown. Here, we review physiological and pathological aspects of Fhit in the context of the Ap(n)A family of signaling molecules, as well as the involvement of Fhit in apoptosis and the cell cycle in cancer models. We also discuss recent findings of novel Fhit interactions that may lead to new hypotheses about biochemical mechanisms underlying the oncosuppressor activity of this gene.
Collapse
Affiliation(s)
- Manuela Campiglio
- Department of Experimental Oncology, Molecular Biology Unit, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ubiquitin-conjugating enzyme (Ubc9) was originally thought to be a conjugating enzyme for ubiquitylation, but was later shown to be responsible for the most recently identified type of post-translational modification, (i.e., SUMO [small ubiquitin-related modifier]) conjugation or sumoylation. Like ubiquitylation, sumoylation modulates protein function through post-translational covalent attachment to lysine residues within targeted proteins. However, although ubiquitylation can lead to protein degradation through the 26S proteasome, sumoylation does not cause protein degradation; instead, it has been implicated in other cellular processes, such as regulating the activity of transcription factors, mediating nuclear translocation of proteins or the formation of subnuclear structures. Interestingly, some proteins can be modified at the same lysine residue by both SUMO and ubiquitin, but with distinct functional consequences. Given that many proteins involved in cell-cycle regulation, proliferation, apoptosis and DNA repair are targets for sumoylation, alterations of sumoylation could ultimately have an impact on cell growth, cancer development and drug responsiveness. As Ubc9 is the sole E2-conjugating enzyme required for sumoylation, and, in particular, Ubc9 is upregulated in an increasing number of human malignancies, such as ovarian carcinoma, melanoma and lung adenocarcinoma, it is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yin-Yuan Mo
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, PO Box 19626, Springfield, IL 62794, USA.
| | | |
Collapse
|
19
|
Nakagawa Y, Akao Y. Fhit protein inhibits cell growth by attenuating the signaling mediated by nuclear factor-kappaB in colon cancer cell lines. Exp Cell Res 2006; 312:2433-42. [PMID: 16733051 DOI: 10.1016/j.yexcr.2006.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/04/2006] [Accepted: 04/17/2006] [Indexed: 11/27/2022]
Abstract
Fragile histidine triad (FHIT) gene is involved in the deletions at the 3p14.2 region in various cancers. We investigated the role of Fhit protein in cell growth by examining the signaling pathway affected by Fhit. We used 3 human colon cancer cell lines, SW480, DLD-1 and COLO201, in the study. SW480 cells, in which the expression of Fhit is completely absent, were transfected with pIRES1neo vector (SW/IRES cells), wild-type FHIT vector (SW/FHIT cells) or mt-FHIT (codon 96, His changed to Asn) vector (SW/mt-FHIT cells). The growth of SW/FHIT or SW/mt-FHIT cells was suppressed in comparison with that of parent or SW/IRES cells. Especially, the growth of SW/FHIT cells was considerably suppressed. On the other hand, the silencing of FHIT by an siRNA for it in SW/FHIT or DLD-1 cells harboring Fhit demonstrated that the growth of FHIT siRNA-treated cells was significantly enhanced in comparison with that of the vector control or nonspecific siRNA control. Thus, we found that Fhit negatively contributed to cell growth in the colon cancer cell lines. Moreover, SW/FHIT cells exhibited a higher sensitivity to oxidative stress evoked by inhibitors of mitochondrial electron transport or proteasomes compared with any of the control transfectants. The base line amount of phospho-IkappaB-alpha (p-IkappaB-alpha) was reduced in SW/FHIT cells compared with that in the other transfectants. On the contrary, the FHIT siRNA-treated SW/FHIT and DLD-1 cells exhibited an elevated p-IkappaB-alpha level in an RNAi experiment on FHIT. Perturbation of nuclear factor (NF)-kappaB signaling was strongly suggested by the fact that the wild-type Fhit expressants of SW480 cells tended to be sensitive to sulfasarazine or parthenolide, which are inhibitors of NF-kappaB. The time course of the level of IkappaB kinase (IKK) complex (IKKalpha/beta, phospho-IKKalpha/beta and IKKgamma) after the treatment with TNF-alpha was similar between the transfectants. Although p-IkappaB-alpha and phospho-NF-kappaB p65 (p-NF-kappaB) in SW/FHIT cells responded to TNF-alpha as those in other transfectants, the increase in the levels of p-IkappaB-alpha and p-NF-kappaB after a 5-min treatment was less in SW/FHIT cells than in the other transfectants. These results altogether suggest that Fhit functions as an anti-oncoprotein by inhibiting the phosphorylation of IkappaB-alpha and thereby blocking NF-kappaB signaling.
Collapse
Affiliation(s)
- Yoshihito Nakagawa
- Department of Medical Oncology, Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu 504-0838, Japan.
| | | |
Collapse
|