1
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Nasybullina EI, Pugachenko IS, Kosmachevskaya OV, Topunov AF. The Influence of Nitroxyl on Escherichia coli Cells Grown under Carbonyl Stress Conditions. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Para-Substituted O-Benzyl Sulfohydroxamic Acid Derivatives as Redox-Triggered Nitroxyl (HNO) Sources. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165305. [PMID: 36014540 PMCID: PMC9414458 DOI: 10.3390/molecules27165305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Nitroxyl shows a unique biological profile compared to the gasotransmitters nitric oxide and hydrogen sulfide. Nitroxyl reacts with thiols as an electrophile, and this redox chemistry mediates much of its biological chemistry. This reactivity necessitates the use of donors to study nitroxyl’s chemistry and biology. The preparation and evaluation of a small library of new redox-triggered nitroxyl sources is described. The condensation of sulfonyl chlorides and properly substituted O-benzyl hydroxylamines produced O-benzyl-substituted sulfohydroxamic acid derivatives with a 27–79% yield and with good purity. These compounds were designed to produce nitroxyl through a 1, 6 elimination upon oxidation or reduction via a Piloty’s acid derivative. Gas chromatographic headspace analysis of nitrous oxide, the dimerization and dehydration product of nitroxyl, provides evidence for nitroxyl formation. The reduction of derivatives containing nitro and azide groups generated nitrous oxide with a 25–92% yield, providing evidence of nitroxyl formation. The oxidation of a boronate-containing derivative produced nitrous oxide with a 23% yield. These results support the proposed mechanism of nitroxyl formation upon reduction/oxidation via a 1, 6 elimination and Piloty’s acid. These compounds hold promise as tools for understanding nitroxyl’s role in redox biology.
Collapse
|
4
|
Fan J, Zhang Y, Wu P, Zhang X, Bai Y. Enhancing cofactor regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. Bioorg Chem 2021; 118:105477. [PMID: 34814084 DOI: 10.1016/j.bioorg.2021.105477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Cyanobacteria Synechocystis sp. PCC 6803 was exploited as green cell factory for light-powered asymmetric synthesis of aromatic chiral alcohols. The effect of temperature, light, substrate and cell concentration on substrate conversions were investigated. Under the optimal condition, a series of chiral alcohols were synthesized with conversions up to 95% and enantiomer excess (ee) > 99%. We found that the addition of Na2S2O3 and Angeli's Salt increased the NADPH content by 20% and 25%, respectively. As a result, the time to reach 95% substrate conversion was shortened by 12 h, which demonstrated that the NADPH regeneration and hence the reaction rates can be regulated in cyanobacteria. This blue-green algae based biocatalysis showed its potential for chiral compounds production in future.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yinghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
6
|
Rice AM, Long Y, King SB. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021; 11:267. [PMID: 33673069 PMCID: PMC7918234 DOI: 10.3390/biom11020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, the associated toxicity and lack of clear mechanisms of action have limited their therapeutic development. Nitroaromatic antibiotics require reductive bioactivation for activity and this reductive metabolism can convert the nitro group to nitric oxide (NO) or a related reactive nitrogen species (RNS). As nitric oxide plays important roles in the defensive immune response to bacterial infection through both signaling and redox-mediated pathways, defining controlled NO generation pathways from these antibiotics would allow the design of new therapeutics. This review focuses on the release of nitrogen oxide species from various nitroaromatic antibiotics to portend the increased ability for these compounds to positively impact infectious disease treatment.
Collapse
Affiliation(s)
| | | | - S. Bruce King
- Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; (A.M.R.); (Y.L.)
| |
Collapse
|
7
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
8
|
Carvalho EM, Ridnour LA, Júnior FSG, Cabral PHB, do Nascimento NRF, Wink DA, Franco DW, de Medeiros MJC, de Lima Pontes D, Longhinotti E, de Freitas Paulo T, Bernardes-Génisson V, Chauvin R, Sousa EHS, Lopes LGDF. A divergent mode of activation of a nitrosyl iron complex with unusual antiangiogenic activity. J Inorg Biochem 2020; 210:111133. [PMID: 32619898 DOI: 10.1016/j.jinorgbio.2020.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) and nitroxyl (HNO) have gained broad attention due to their roles in several physiological and pathophysiological processes. Remarkably, these sibling species can exhibit opposing effects including the promotion of angiogenic activity by NO compared to HNO, which blocks neovascularization. While many NO donors have been developed over the years, interest in HNO has led to the recent emergence of new donors. However, in both cases there is an expressive lack of iron-based compounds. Herein, we explored the novel chemical reactivity and stability of the trans-[Fe(cyclam)(NO)Cl]Cl2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex. Interestingly, the half-life (t1/2) for NO release was 1.8 min upon light irradiation, vs 5.4 h upon thermal activation at 37 °C. Importantly, spectroscopic evidence supported the generation of HNO rather than NO induced by glutathione. Moreover, we observed significant inhibition of NO donor- or hypoxia-induced HIF-1α (hypoxia-inducible factor 1α) accumulation in breast cancer cells, as well as reduced vascular tube formation by endothelial cells pretreated with the trans-[Fe(cyclam)(NO)Cl]Cl2 complex. Together, these studies provide the first example of an iron-nitrosyl complex with anti-angiogenic activity as well as the potential dual activity of this compound as a NO/HNO releasing agent, which warrants further pharmacological investigation.
Collapse
Affiliation(s)
- Edinilton Muniz Carvalho
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil; CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Lisa A Ridnour
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD 21702, United States
| | - Florêncio Sousa Gouveia Júnior
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Pedro Henrique Bezerra Cabral
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará-UECE, Paranjana Av, 1700, Fortaleza, Ceará 60740-00, Brazil
| | | | - David A Wink
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD 21702, United States
| | - Douglas W Franco
- Instituto de Química de São Carlos, Universidade de São Paulo-USP, P.O. Box 780, São Carlos, SP CEP 13566-590, Brazil
| | - Mayara Jane Campos de Medeiros
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal CEP 59078-970, Brazil
| | - Daniel de Lima Pontes
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal CEP 59078-970, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Vania Bernardes-Génisson
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Remi Chauvin
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Eduardo Henrique Silva Sousa
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil.
| | - Luiz Gonzaga de França Lopes
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil.
| |
Collapse
|
9
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
10
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Bianco CL, Moore CD, Fukuto JM, Toscano JP. Selenols are resistant to irreversible modification by HNO. Free Radic Biol Med 2016; 99:71-78. [PMID: 27424037 DOI: 10.1016/j.freeradbiomed.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
Abstract
The discovery of nitric oxide (NO) as an endogenously generated signaling species in mammalian cells has spawned a vast interest in the study of the chemical biology of nitrogen oxides. Of these, nitroxyl (azanone, HNO) has gained much attention for its potential role as a therapeutic for cardiovascular disease. Known targets of HNO include hemes/heme proteins and thiols/thiol-containing proteins. Recently, due to their roles in redox signaling and cellular defense, selenols and selenoproteins have also been speculated to be additional potential targets of HNO. Indeed, as determined in the current work, selenols are targeted by HNO. Such reactions appear to result only in formation of diselenide products, which can be easily reverted back to the free selenol. This characteristic is distinct from the reaction of HNO with thiols/thiolproteins. These findings suggest that, unlike thiolproteins, selenoproteins are resistant to irreversible oxidative modification, support that Nature may have chosen to use selenium instead of sulfur in certain biological systems for its enhanced resistance to electrophilic and oxidative modification.
Collapse
Affiliation(s)
- Christopher L Bianco
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Cathy D Moore
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, 1801 E. Cotati Ave., Rohnert Park, CA 94928, USA
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Bianco CL, Toscano JP, Bartberger MD, Fukuto JM. The chemical biology of HNO signaling. Arch Biochem Biophys 2016; 617:129-136. [PMID: 27555493 DOI: 10.1016/j.abb.2016.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
Nitroxyl (HNO) is a simple molecule with significant potential as a pharmacological agent. For example, its use in the possible treatment of heart failure has received recent attention due to its unique therapeutic properties. Recent progress has been made on the elucidation of the mechanisms associated with its biological signaling. Importantly, the biochemical mechanisms described for HNO bioactivity are consistent with its unique and novel chemical properties/reactivity. To date, much of the biology of HNO can be associated with interactions and modification of important regulatory thiol proteins. Herein will be provided a description of HNO chemistry and how this chemistry translates to some of its reported biological effects.
Collapse
Affiliation(s)
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael D Bartberger
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| |
Collapse
|
13
|
Silva Sousa EH, Ridnour LA, Gouveia FS, Silva da Silva CD, Wink DA, de França Lopes LG, Sadler PJ. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy. ACS Chem Biol 2016; 11:2057-65. [PMID: 27191177 PMCID: PMC4949585 DOI: 10.1021/acschembio.6b00222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Metallonitrosyl
complexes are promising as nitric oxide (NO) donors
for the treatment of cardiovascular, endothelial, and pathogenic diseases,
as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications
including treatment of acute heart failure and alcoholism. Here, we
show that HNO is a product of the reaction of the RuII complex
[Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
as trapping agents. Characteristic absorption spectroscopic profiles
for HNO reactions with met-myoglobin were obtained, as well as EPR
evidence from carboxy-PTIO experiments. Importantly, the product HNO
counteracted NO-induced as well as hypoxia-induced stabilization of
the tumor-suppressor HIF-1α in cancer cells. The functional
disruption of neovascularization by HNO produced by this metallonitrosyl
complex was demonstrated in an in vitro angiogenesis
model. This behavior is consistent with HNO biochemistry and contrasts
with NO-mediated stabilization of HIF-1α. Together, these results
demonstrate for the first time thiol-dependent production of HNO by
a ruthenium complex and subsequent destabilization of HIF-1α.
This work suggests that the complex warrants further investigation
as a promising antiangiogenesis agent for the treatment of cancer.
Collapse
Affiliation(s)
- Eduardo Henrique Silva Sousa
- Laboratory
of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Mister Hull Avenue, Building 935, Fortaleza, Brazil 60455-760
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lisa A. Ridnour
- National Cancer Institute, Cancer and Inflammation
Program, Frederick, Maryland 21702, United States
| | - Florêncio S. Gouveia
- Laboratory
of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Mister Hull Avenue, Building 935, Fortaleza, Brazil 60455-760
| | - Carlos Daniel Silva da Silva
- Laboratory
of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Mister Hull Avenue, Building 935, Fortaleza, Brazil 60455-760
- Department
of Chemistry, Federal Institute of Bahia, Salvador, 40301-150, Brazil
| | - David A. Wink
- National Cancer Institute, Cancer and Inflammation
Program, Frederick, Maryland 21702, United States
| | - Luiz Gonzaga de França Lopes
- Laboratory
of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Mister Hull Avenue, Building 935, Fortaleza, Brazil 60455-760
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Luo W, Deng XX, Gong ZW, Yang ZH. Promotion of the microalgal photo-biocatalytic asymmetric reduction of prochiral ketone by NADPH metabolic regulation. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.1974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Luo
- College of Chemical Engineering and Technology; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Xin-Xing Deng
- College of Chemical Engineering and Technology; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Zhi-Wei Gong
- College of Chemical Engineering and Technology; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Zhong-Hua Yang
- College of Chemical Engineering and Technology; Wuhan University of Science and Technology; Wuhan 430081 China
| |
Collapse
|
15
|
Miao Z, King SB. Comparison of Reductive Ligation-Based Detection Strategies for Nitroxyl (HNO) and S-Nitrosothiols. ChemistryOpen 2016; 5:110-4. [PMID: 27308231 PMCID: PMC4906479 DOI: 10.1002/open.201500200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
Phosphine-based detection strategies for both nitroxyl (HNO) and S-nitrosothiols (RSNO) were investigated and compared. Phosphorus NMR studies show that azaylides derived from HNO or organic RSNO efficiently participate in subsequent reductive ligation required for fluorescence generation in properly substituted substrates. S-Azaylides derived from biological RSNO containing free amine and carboxylic acid groups primarily yield phosphine oxides suggesting these groups facilitate nonligation pathways such as hydrolysis. The fluorescence response of a phosphine-based fluorophore toward the same RSNO confirms these differences and indicates that these probes selectively react with HNO. Flow cytometry experiments in HeLa cells reinforce the reactivity difference and offer a potential fast screening approach for endogenous HNO sources.
Collapse
Affiliation(s)
- Zhengrui Miao
- Department of Chemistry Wake Forest University Winston-Salem NC 27109 USA
| | - S Bruce King
- Department of Chemistry Wake Forest University Winston-Salem NC 27109 USA
| |
Collapse
|
16
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
|
18
|
Nitroxyl (HNO): A Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4867124. [PMID: 26770654 PMCID: PMC4685437 DOI: 10.1155/2016/4867124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 01/18/2023]
Abstract
Nitroxyl (HNO), the one-electron reduced form of nitric oxide (NO), shows a distinct chemical and biological profile from that of NO. HNO is currently being viewed as a vasodilator and positive inotropic agent that can be used as a potential treatment for heart failure. The ability of HNO to react with thiols and thiol containing proteins is largely used to explain the possible biological actions of HNO. Herein, we summarize different aspects related to HNO including HNO donors, chemistry, biology, and methods used for its detection.
Collapse
|
19
|
Basudhar D, Cheng RC, Bharadwaj G, Ridnour LA, Wink DA, Miranda KM. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer. Free Radic Biol Med 2015; 83:101-14. [PMID: 25659932 PMCID: PMC4441830 DOI: 10.1016/j.freeradbiomed.2015.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022]
Abstract
Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer.
Collapse
Affiliation(s)
- Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert C Cheng
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gaurav Bharadwaj
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Wink
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
20
|
New acyloxy nitroso compounds with improved water solubility and nitroxyl (HNO) release kinetics and inhibitors of platelet aggregation. Bioorg Med Chem 2015; 23:6069-77. [PMID: 26228501 DOI: 10.1016/j.bmc.2015.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
New acyloxy nitroso compounds, 4-nitrosotetrahydro-2H-pyran-4-yl 2,2,2-trichloroacetate and 4-nitrosotetrahydro-2H-pyran-4-yl 2,2-dichloropropanoate were prepared. These compounds release HNO under neutral conditions with half-lives between 50 and 120min, identifying these HNO donors as kinetically intermediate to the much slower acetate derivative and the faster trifluoroacetic acid derivative. These compounds or HNO-derived from these compounds react with thiols, including glutathione, thiol-containing enzymes and heme-containing proteins in a similar fashion to other acyloxy nitroso compounds. HNO released from these acyloxy nitroso compounds inhibits activated platelet aggregation. These acyloxy nitroso compounds augment the range of release for this group of HNO donors and should be valuable tools in the further study of HNO biology.
Collapse
|
21
|
Bharadwaj G, Benini PGZ, Basudhar D, Ramos-Colon CN, Johnson GM, Larriva MM, Keefer LK, Andrei D, Miranda KM. Analysis of the HNO and NO donating properties of alicyclic amine diazeniumdiolates. Nitric Oxide 2014; 42:70-8. [PMID: 25192820 DOI: 10.1016/j.niox.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 11/17/2022]
Abstract
Nitroxyl (HNO) donors have been shown to elicit a variety of pharmacological responses, ranging from tumoricidal effects to treatment of heart failure. Isopropylamine-based diazeniumdiolates have been shown to produce HNO on decomposition under physiological conditions. Herein, we report the synthesis and HNO release profiles of primary alicyclic amine-based diazeniumdiolates. These compounds extend the range of known diazeniumdiolate-based HNO donors. Acetoxymethyl ester-protected diazeniumdiolates were also synthesized to improve purification and cellular uptake. The acetoxymethyl derivative of cyclopentylamine diazeniumdiolate not only showed higher cytotoxicity toward cancer cells as compared to the parent anion but was also effective in combination with tamoxifen for targeting estrogen receptor α-negative breast cancer cells.
Collapse
Affiliation(s)
- Gaurav Bharadwaj
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Patricia G Z Benini
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Cyf N Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Marti M Larriva
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Larry K Keefer
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Daniela Andrei
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Gizem Keceli
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P. Toscano
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Basudhar D, Bharadwaj G, Cheng RY, Jain S, Shi S, Heinecke JL, Holland RJ, Ridnour LA, Caceres VM, Spadari-Bratfisch RC, Paolocci N, Velázquez-Martínez CA, Wink DA, Miranda KM. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J Med Chem 2013; 56:7804-20. [PMID: 24102516 DOI: 10.1021/jm400196q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural modifications of nonsteroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but they may increase the risk of myocardial infarction with chronic use. The fact that nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction, and enhances contractility led us to synthesize a diazeniumdiolate-based HNO-releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward nonsmall cell lung carcinoma cells (A549), but they were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening on murine ventricular myocytes compared to control. Together, these anti-inflammatory, antineoplasic, and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer, or heart failure.
Collapse
Affiliation(s)
- Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Keceli G, Moore CD, Labonte JW, Toscano JP. NMR detection and study of hydrolysis of HNO-derived sulfinamides. Biochemistry 2013; 52:7387-96. [PMID: 24073927 DOI: 10.1021/bi401110f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxyl (HNO), a potential heart failure therapeutic, is known to post-translationally modify cysteine residues. Among reactive nitrogen oxide species, the modification of cysteine residues to sulfinamides [RS(O)NH2] is unique to HNO. We have applied (15)N-edited (1)H NMR techniques to detect the HNO-induced thiol to sulfinamide modification in several small organic molecules, peptides, and the cysteine protease, papain. Relevant reactions of sulfinamides involve reduction to free thiols in the presence of excess thiol and hydrolysis to form sulfinic acids [RS(O)OH]. We have investigated sulfinamide hydrolysis at physiological pH and temperature. Studies with papain and a related model peptide containing the active site thiol suggest that sulfinamide hydrolysis can be enhanced in a protein environment. These findings are also supported by modeling studies. In addition, analysis of peptide sulfinamides at various pH values suggests that hydrolysis becomes more facile under acidic conditions.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
25
|
Mitroka S, Shoman ME, DuMond JF, Bellavia L, Aly OM, Abdel-Aziz M, Kim-Shapiro DB, King SB. Direct and nitroxyl (HNO)-mediated reactions of acyloxy nitroso compounds with the thiol-containing proteins glyceraldehyde 3-phosphate dehydrogenase and alkyl hydroperoxide reductase subunit C. J Med Chem 2013; 56:6583-92. [PMID: 23895568 DOI: 10.1021/jm400057r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitroxyl (HNO) reacts with thiols, and this reactivity requires the use of donors with 1-nitrosocyclohexyl acetate, pivalate, and trifluoroacetate, forming a new group. These acyloxy nitroso compounds inhibit glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by forming a reduction reversible active site disulfide and a reduction irreversible sulfinic acid or sulfinamide modification at Cys244. Addition of these acyloxy nitroso compounds to AhpC C165S yields a sulfinic acid and sulfinamide modification. A potential mechanism for these transformations includes nucleophilic addition of the protein thiol to a nitroso compound to yield an N-hydroxysulfenamide, which reacts with thiol to give disulfide or rearranges to sulfinamides. Known HNO donors produce the unsubstituted protein sulfinamide as the major product, while the acetate and pivalate give substituted sulfinamides that hydrolyze to sulfinic acids. These results suggest that nitroso compounds form a general class of thiol-modifying compounds, allowing their further exploration.
Collapse
Affiliation(s)
- Susan Mitroka
- Department of Chemistry and ‡Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Goodrich LE, Lehnert N. The trans effect of nitroxyl (HNO) in ferrous heme systems: Implications for soluble guanylate cyclase activation by HNO. J Inorg Biochem 2013; 118:179-86. [DOI: 10.1016/j.jinorgbio.2012.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/19/2012] [Accepted: 07/31/2012] [Indexed: 10/27/2022]
|
27
|
Louters LL, Scripture JP, Kuipers DP, Gunnink SM, Kuiper BD, Alabi OD. Hydroxylamine acutely activates glucose uptake in L929 fibroblast cells. Biochimie 2012. [PMID: 23201556 DOI: 10.1016/j.biochi.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself.
Collapse
Affiliation(s)
- Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | | | |
Collapse
|
29
|
Granchi C, Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012; 7:1318-50. [PMID: 22684868 PMCID: PMC3516916 DOI: 10.1002/cmdc.201200176] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Indexed: 12/12/2022]
Abstract
Can we consider cancer to be a "metabolic disease"? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have increased needs for both energy and biosynthetic intermediates to support their growth and invasiveness. However, their high proliferation rate often generates regions that are insufficiently oxygenated. Therefore, their carbohydrate metabolism must rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the Warburg effect, constitutes a fundamental adaptation of tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that antiglycolytic agents may cause serious side effects toward normal cells. The key to selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anticancer drugs with minimal toxicity. There is growing evidence to support many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant antiglycolytic agents that have been investigated thus far for the treatment of cancer.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| | - Filippo Minutolo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| |
Collapse
|
30
|
Abstract
Sulfinamide [RS(O)NH(2)] formation is known to occur upon exposure of cysteine residues to nitroxyl (HNO), which has received recent attention as a potential heart failure therapeutic. Because this modification can alter protein structure and function, we have examined the reactivity of sulfinamides in several systems, including a small organic molecule, peptides, and a protein. Although it has generally been assumed that this thiol to sulfinamide modification is irreversible, we show that sulfinamides can be reduced back to the free thiol in the presence of excess thiol at physiological pH and temperature. We have examined this sulfinamide reduction both in peptides, where a cyclic intermediate analogous to that proposed for asparagine deamidation reactions potentially can contribute, and in a small organic molecule, where the mechanism is restricted to a direct thiolysis. These studies suggest that the contribution from the cyclic intermediate becomes more important in environments with lower dielectric constants. In addition, although sulfinic acid [RS(O)OH] formation is observed upon prolonged incubations in water, reduction of sulfinamides is found to dominate in the presence of thiols. Finally, studies with the cysteine protease, papain, suggest that the reduction of sulfinamide to the free thiol is viable in a protein environment.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
31
|
The effect of nitro substitution on the photochemistry of benzyl benozhydroxamate: Photoinduced release of benzohydroxamic acid. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Salie MJ, Oram DS, Kuipers DP, Scripture JP, Chenge J, MacDonald GJ, Louters LL. Nitroxyl (HNO) acutely activates the glucose uptake activity of GLUT1. Biochimie 2011; 94:864-9. [PMID: 22182490 DOI: 10.1016/j.biochi.2011.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Nitroxyl (HNO) is a molecule of significant interest due to its unique pharmacological properties, particularly within the cardiovascular system. A large portion of HNO biological effects can be attributed to its reactivity with protein thiols, where it can generate disulfide bonds. Evidence from studies in erythrocytes suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond. However, there are no reports that document the effects of HNO on glucose uptake. Therefore, we examined the acute effects of Angeli's salt (AS), a HNO donor, on glucose uptake activity of GLUT1 in L929 fibroblast cells. We report that AS stimulates glucose uptake with a maximum effective concentration of 5.0 mM. An initial 7.2-fold increase occurs within 2 min, which decreases and plateaus to a 4.0-fold activation after 10 min. About 60% of the 4.0-fold activation recovers within 10 min, and 40% remains after an hour. The activation is blocked by the pretreatment of cells with thiol-reactive compounds, iodoacetamide (0.75 mM), cinnamaldehyde (2.0 mM), and phenylarsine oxide (10 μM). The effects of AS are not additive to the stimulatory effects of other acute activators of glucose uptake in L929 cells, such as azide (5 mM), berberine (50 μM), or glucose deprivation. These data suggest that GLUT1 is acutely activated in L929 cells by the formation of a disulfide bond, likely within GLUT1 itself.
Collapse
Affiliation(s)
- Matthew J Salie
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Etheridge N, Mayfield RD, Harris RA, Dodd PR. Identifying changes in the synaptic proteome of cirrhotic alcoholic superior frontal gyrus. Curr Neuropharmacol 2011; 9:122-8. [PMID: 21886576 PMCID: PMC3137166 DOI: 10.2174/157015911795017164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 01/25/2023] Open
Abstract
Hepatic complications are a common side-effect of alcoholism. Without the detoxification capabilities of the liver, alcohol misuse induces changes in gene and protein expression throughout the body. A global proteomics approach was used to identify these protein changes in the brain. We utilised human autopsy tissue from the superior frontal gyrus (SFG) of six cirrhotic alcoholics, six alcoholics without comorbid disease, and six non-alcoholic non-cirrhotic controls. Synaptic proteins were isolated and used in two-dimensional differential in-gel electrophoresis coupled with mass spectrometry. Many expression differences were confined to one or other alcoholic sub-group. Cirrhotic alcoholics showed 99 differences in protein expression levels from controls, of which half also differed from non-comorbid alcoholics. This may reflect differences in disease severity between the sub-groups of alcoholics, or differences in patterns of harmful drinking. Alternatively, the protein profiles may result from differences between cirrhotic and non-comorbid alcoholics in subjects’ responses to alcohol misuse. Ten proteins were identified in at least two spots on the 2D gel; they were involved in basal energy metabolism, synaptic vesicle recycling, and chaperoning. These post-translationally modified isoforms were differentially regulated in cirrhotic alcoholics, indicating a level of epigenetic control not previously observed in this disorder.
Collapse
Affiliation(s)
- N Etheridge
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | | | | | | |
Collapse
|
34
|
Wynne BM, Labazi H, Tostes RC, Webb RC. Aorta from angiotensin II hypertensive mice exhibit preserved nitroxyl anion mediated relaxation responses. Pharmacol Res 2011; 65:41-7. [PMID: 21767645 DOI: 10.1016/j.phrs.2011.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/23/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
Hypertension is a disorder affecting millions worldwide, and is a leading cause of death and debilitation in the United States. It is widely accepted that during hypertension and other cardiovascular diseases the vasculature exhibits endothelial dysfunction; a deficit in the relaxatory ability of the vessel, attributed to a lack of nitric oxide (NO) bioavailability. Recently, the one electron redox variant of NO, nitroxyl anion (NO(-)) has emerged as an endothelium-derived relaxing factor (EDRF) and a candidate for endothelium-derived hyperpolarizing factor (EDRF). NO(-) is thought to exist protonated (HNO) in vivo, which would make this species more resistant to scavenging. However, no studies have investigated the role of this redox species during hypertension, and whether the vasculature loses the ability to relax to HNO. Thus, we hypothesize that aorta from angiotensin II (AngII)-hypertensive mice will exhibit a preserved relaxation response to Angeli's Salt, an HNO donor. Male C57Bl6 mice, aged 12-14 weeks were implanted with mini-osmotic pumps containing AngII (90ng/min, 14 days plus high salt chow) or sham surgery. Aorta were excised, cleaned and used to perform functional studies in a myograph. We found that aorta from AngII-hypertensive mice exhibited a significant endothelial dysfunction as demonstrated by a decrease in acetylcholine (ACh)-mediated relaxation. However, vessels from hypertensive mice exhibited a preserved response to Angeli's Salt (AS), the HNO donor. To confirm that relaxation responses to HNO were maintained, concentration response curves (CRCs) to ACh were performed in the presence of scavengers to both NO and HNO (carboxy-PTIO and L-cys, resp.). We found that ACh-mediated relaxation responses were significantly decreased in aorta from sham and almost completely abolished in aorta from AngII-treated mice. Vessels incubated with l-cys exhibited a modest decrease in ACh-mediated relaxations responses. These data demonstrate that aorta from AngII-treated hypertensive mice exhibit a preserved relaxation response to AS, an HNO donor, regardless of a significant endothelial dysfunction.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, United States.
| | | | | | | |
Collapse
|
35
|
Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 2011; 14:1687-98. [PMID: 21235349 PMCID: PMC3066693 DOI: 10.1089/ars.2010.3859] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nitric oxide (NO(•)) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO(•) as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its "thiophylic" nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure.
Collapse
Affiliation(s)
- Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, Cheng R, Glynn SA, Paolocci N, Fukuto JM, Miranda KM, Wink DA. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid Redox Signal 2011; 14:1659-74. [PMID: 21235346 PMCID: PMC3070000 DOI: 10.1089/ars.2010.3841] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of nitric oxide in mammalian physiology has been known for nearly 30 years. Similar attention for other nitrogen oxides such as nitroxyl (HNO) has been more recent. While there has been speculation as to the biosynthesis of HNO, its pharmacological benefits have been demonstrated in several pathophysiological settings such as cardiovascular disorders, cancer, and alcoholism. The chemical biology of HNO has been identified as related to, but unique from, that of its redox congener nitric oxide. A summary of these findings as well as a discussion of possible endogenous sources of HNO is presented in this review.
Collapse
Affiliation(s)
- Wilmarie Flores-Santana
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sherman MP, Grither WR, McCulla RD. Computational Investigation of the Reaction Mechanisms of Nitroxyl and Thiols. J Org Chem 2010; 75:4014-24. [DOI: 10.1021/jo100172t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew P. Sherman
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, Missouri 63103
| | - Whitney R. Grither
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, Missouri 63103
| | - Ryan D. McCulla
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, Missouri 63103
| |
Collapse
|
38
|
Novel ruthenium complexes as potential drugs for Chagas's disease: enzyme inhibition and in vitro/in vivo trypanocidal activity. Br J Pharmacol 2010; 160:260-9. [PMID: 20105182 DOI: 10.1111/j.1476-5381.2009.00524.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n), has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. EXPERIMENTAL APPROACH NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD(+) to NADH. KEY RESULTS The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 microM). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol.kg(-1), yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. CONCLUSIONS AND IMPLICATIONS The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas's disease.
Collapse
|
39
|
Reisz JA, Bechtold E, King SB. Oxidative heme protein-mediated nitroxyl (HNO) generation. Dalton Trans 2010; 39:5203-12. [DOI: 10.1039/c000980f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Fukuto JM, Bianco CL, Chavez TA. Nitroxyl (HNO) signaling. Free Radic Biol Med 2009; 47:1318-24. [PMID: 19539748 DOI: 10.1016/j.freeradbiomed.2009.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO) has become a nitrogen oxide of significant interest due to its reported biological activity. The actions of HNO in the cardiovascular system appear to make it a good candidate for therapeutic applications for cardiovascular disorders and other potentially important effects have been noted as well. Although the chemistry associated with this activity has not been firmly established, the propensity for HNO to react with thiols and metals are likely mechanisms. Herein, are described the biological activity of HNO and some of the chemistry of HNO that may be responsible for its biological effects.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| | | | | |
Collapse
|
41
|
Zeller A, Wenzl MV, Beretta M, Stessel H, Russwurm M, Koesling D, Schmidt K, Mayer B. Mechanisms underlying activation of soluble guanylate cyclase by the nitroxyl donor Angeli's salt. Mol Pharmacol 2009; 76:1115-22. [PMID: 19720727 DOI: 10.1124/mol.109.059915] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitroxyl (HNO) may be formed endogenously by uncoupled nitric-oxide (NO) synthases, enzymatic reduction of NO or as product of vascular nitroglycerin bioactivation. The established HNO donor Angeli's salt (trioxodinitrate, AS) causes cGMP-dependent vasodilation through activation of soluble guanylate cyclase (sGC). We investigated the mechanisms underlying this effect using purified sGC and cultured endothelial cells. AS (up to 0.1 mM) had no significant effect on sGC activity in the absence of superoxide dismutase (SOD) or dithiothreitol (DTT). In the presence of SOD, AS caused biphasic sGC activation (apparent EC(50) approximately 10 nM, maximum at 1 microM) that was accompanied by the formation of NO. DTT (2 mM) inhibited the effects of <10 microM AS but led to sGC activation and NO release at 0.1 mM AS even without SOD. AS had no effect on ferric sGC, excluding activation of the oxidized enzyme by HNO. The NO scavenger carboxy-PTIO inhibited endothelial cGMP accumulation induced by AS in the presence but not in the absence of SOD (EC(50) approximately 50 nM and approximately 16 microM, respectively). Carboxy-PTIO (0.1 mM) inhibited the effect of <or=10 microM AS in the presence of SOD but caused NO release from 0.1 mM AS in the absence of SOD. These data indicate that AS activates sGC exclusively via NO, formed either via SOD-catalyzed oxidation of HNO or through a minor AS decomposition pathway that is unmasked in the presence of HNO scavenging thiols.
Collapse
Affiliation(s)
- Andreas Zeller
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Flores-Santana W, Switzer C, Ridnour LA, Basudhar D, Mancardi D, Donzelli S, Thomas DD, Miranda KM, Fukuto JM, Wink DA. Comparing the chemical biology of NO and HNO. Arch Pharm Res 2009; 32:1139-53. [PMID: 19727606 DOI: 10.1007/s12272-009-1805-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/24/2009] [Accepted: 06/25/2009] [Indexed: 11/28/2022]
Abstract
For the past couple of decades nitric oxide (NO) and nitroxyl (HNO) have been extensively studied due to the important role they play in many physiological and/or pharmacological processes. Many researchers have reported important signaling pathways as well as mechanisms of action of these species, showing direct and indirect effects depending on the environment. Both NO and HNO can react with, among others, metals, proteins, thiols and heme proteins via unique and distinct chemistry leading to improvement of some clinical conditions. Understanding the basic chemistry of NO and HNO and distinguishing their mechanisms of action as well as methods of detection are crucial for understanding the current and potential clinical applications. In this review, we summarize some of the most important findings regarding NO and HNO chemistry, revealing some of the possible mechanisms of their beneficial actions.
Collapse
Affiliation(s)
- Wilmarie Flores-Santana
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Switzer CH, Flores-Santana W, Mancardi D, Donzelli S, Basudhar D, Ridnour LA, Miranda KM, Fukuto JM, Paolocci N, Wink DA. The emergence of nitroxyl (HNO) as a pharmacological agent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:835-40. [PMID: 19426703 DOI: 10.1016/j.bbabio.2009.04.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/15/2022]
Abstract
Once a virtually unknown nitrogen oxide, nitroxyl (HNO) has emerged as a potential pharmacological agent. Recent advances in the understanding of the chemistry of HNO has led to the an understanding of HNO biochemistry which is vastly different from the known chemistry and biochemistry of nitric oxide (NO), the one-electron oxidation product of HNO. The cardiovascular roles of NO have been extensively studied, as NO is a key modulator of vascular tone and is involved in a number of vascular related pathologies. HNO displays unique cardiovascular properties and has been shown to have positive lusitropic and ionotropic effects in failing hearts without a chronotropic effect. Additionally, HNO causes a release of CGRP and modulates calcium channels such as ryanodine receptors. HNO has shown beneficial effects in ischemia reperfusion injury, as HNO treatment before ischemia-reperfusion reduces infarct size. In addition to the cardiovascular effects observed, HNO has shown initial promise in the realm of cancer therapy. HNO has been demonstrated to inhibit GAPDH, a key glycolytic enzyme. Due to the Warburg effect, inhibiting glycolysis is an attractive target for inhibiting tumor proliferation. Indeed, HNO has recently been shown to inhibit tumor proliferation in mouse xenografts. Additionally, HNO inhibits tumor angiogenesis and induces cancer cell apoptosis. The effects seen with HNO donors are quite different from NO donors and in some cases are opposite. The chemical nature of HNO explains how HNO and NO, although closely chemically related, act so differently in biochemical systems. This also gives insight into the potential molecular motifs that may be reactive towards HNO and opens up a novel field of pharmacological development.
Collapse
Affiliation(s)
- Christopher H Switzer
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room B3-B35, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seo J, Jeong J, Kim YM, Hwang N, Paek E, Lee KJ. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 2008; 7:587-602. [PMID: 18183946 DOI: 10.1021/pr700657y] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) play key roles in the regulation of biological functions of proteins. Although some progress has been made in identifying several PTMs using existing approaches involving a combination of affinity-based enrichment and mass spectrometric analysis, comprehensive identification of PTMs remains a challenging problem in proteomics because of the dynamic complexities of PTMs in vivo and their low abundance. We describe here a strategy for rapid, efficient, and comprehensive identification of PTMs occurring in biological processes in vivo. It involves a selectively excluded mass screening analysis (SEMSA) of unmodified peptides during liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-q-TOF MS/MS) through replicated runs of a purified protein on two-dimensional gel. A precursor ion list of unmodified peptides with high mass intensities was obtained during the initial run followed by exclusion of these unmodified peptides in subsequent runs. The exclusion list can grow as long as replicate runs are iteratively performed. This enables the identifications of modified peptides with precursor ions of low intensities by MS/MS sequencing. Application of this approach in combination with the PTM search algorithm MODi to GAPDH protein in vivo modified by oxidative stress provides information on multiple protein modifications (19 types of modification on 42 sites) with >92% peptide coverage and the additional potential for finding novel modifications, such as transformation of Cys to Ser. On the basis of the information of precursor ion m/z, quantitative analysis of PTM was performed for identifying molecular changes in heterogeneous protein populations. Our results show that PTMs in mammalian systems in vivo are more complicated and heterogeneous than previously reported. We believe that this strategy has significant potential because it permits systematic characterization of multiple PTMs in functional proteomics.
Collapse
Affiliation(s)
- Jawon Seo
- Center for Cell Signaling and Drug Discovery Research, College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | |
Collapse
|