1
|
Zhou K, Zhang Y, Xu M, Zhou Y, Sun A, Zhou H, Han Y, Zhao D, Yu S. A GH1 β-glucosidase from the Fervidobacterium pennivorans DSM9078 showed extraordinary thermostability and distinctive ability in the efficient transformation of ginsenosides. Bioorg Chem 2024; 154:108049. [PMID: 39667076 DOI: 10.1016/j.bioorg.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
A novel GH1 β-glucosidase Fpglu1 from Fervidobacterium pennivorans DSM9078 was successfully cloned and expressed in Escherichia coli. This hyperthermophilic enzyme possesses unique features that make it valuable in biochemistry and pharmacology. It exhibited optimal activity at temperatures exceeding 100 °C, a trait rarely observed in other enzymes, and demonstrated extraordinary thermostability. It displayed multifunctional activity, with the highest activity observed for p-nitrophenyl-β-d-glucopyranoside (pNPGlu) at 92.47 U/mg. Furthermore, the distinctive capacity of Fpglu1 to transform ginsenosides (Rb1, Rb2, and Rc) into Compound-K (C-K) sets it apart from the other enzymes. It effectively cleaved the external β-(1-6) glycosidic linkage at the C-20 position of ginsenosides Rb1, Rb2, and Rc, followed by hydrolysis ofthe internal glycosidic bond connected to the C-3 position. The kcat/Km value of Fpglu1 for Rb1 was 453 ± 1.27 mM-1/s, significantly higher than those of Fpglu1 for other ginsenosides. The crystal structure of Fpglu1, determined at 1.85 Å resolution, provided a deeper understanding of its catalysis and substrate specificity. The evaluation of the binding conformation, hydrogen bond, and key amino acids of β-glucosidase Fpglu1 with different ginsenosides (Rb1, Rb2, and Rc) further elucidated the structural basis of its substrate-binding preference. In summary, Fpglu1, which had excellent thermostability and unique ginsenoside-transforming ability, was a highly promising catalyst for the industrial production of ginsenoside C-K. Additionally, structural studies have laid a theoretical foundation for further improving the catalytic properties of the enzyme through directed evolution in the future.
Collapse
Affiliation(s)
- Kailu Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yangyang Zhang
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Minghao Xu
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yikai Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ao Sun
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Hao Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ye Han
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Daqing Zhao
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Shanshan Yu
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
2
|
Banerjee B, Kamale CK, Suryawanshi AB, Dasgupta S, Noronha S, Bhaumik P. Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis. FEBS Lett 2024. [PMID: 39448541 DOI: 10.1002/1873-3468.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.
Collapse
Affiliation(s)
- Barnava Banerjee
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Chinmay K Kamale
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Subrata Dasgupta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Santosh Noronha
- Department of Chemical Engineering, IIT Bombay, Mumbai, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
3
|
Lu XY, Lai MY, Qin P, Zheng YC, Liao JY, Zhang ZJ, Xu JH, Yu HL. Facilitating secretory expression of apple seed β-glucosidase in Komagataella phaffii for the efficient preparation of salidroside. Biotechnol J 2024; 19:e2400347. [PMID: 39167556 DOI: 10.1002/biot.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Plant-derived β-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed β-glucosidase (ASG II) in Komagataella phaffii and enhanced its production from 289 to 4322 U L-1 through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG IIV80A achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L-1 and 41.4 kU L-1, respectively. The preparative biosynthesis of salidroside by ASG IIV80A exhibited a high space-time yield of 33.1 g L-1 d-1, which is so far the highest level by plant-derived β-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived β-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.
Collapse
Affiliation(s)
- Xin-Yi Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ming-Yuan Lai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Peng Qin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jia-Yi Liao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Haluz P, Kis P, Cvečko M, Mastihubová M, Mastihuba V. Acuminosylation of Tyrosol by a Commercial Diglycosidase. Int J Mol Sci 2023; 24:ijms24065943. [PMID: 36983015 PMCID: PMC10059904 DOI: 10.3390/ijms24065943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was not chemoselective, providing a mixture of Osmanthuside H and its counterpart regioisomer 4-(2-hydroxyethyl)phenyl β-acuminoside in 58% yield. Aromase H2 is therefore the first commercial β-acuminosidase which is also able to glycosylate phenolic acceptors.
Collapse
Affiliation(s)
- Peter Haluz
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Peter Kis
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Matej Cvečko
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
5
|
Xing M, Guan C, Guan M. Comparative Cytological and Transcriptome Analyses of Anther Development in Nsa Cytoplasmic Male Sterile (1258A) and Maintainer Lines in Brassica napus Produced by Distant Hybridization. Int J Mol Sci 2022; 23:ijms23042004. [PMID: 35216116 PMCID: PMC8879398 DOI: 10.3390/ijms23042004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
1258A is a new line of B.napus with Nsa cytoplasmic male sterility (CMS) with potential applications in hybrid rapeseed breeding. Sterile cytoplasm was obtained from XinJiang Sinapis arvensis through distant hybridization and then backcrossed with 1258B for many generations. However, the characteristics and molecular mechanisms underlying pollen abortion in this sterile line are poorly understood. In this study, a cytological analysis revealed normal microsporogenesis and uninucleate pollen grain formation. Pollen abortion was due to non-programmed cell death in the tapetum and the inability of microspores to develop into mature pollen grains. Sucrose, soluble sugar, and adenosine triphosphate (ATP) contents during microspore development were lower than those of the maintainer line, along with an insufficient energy supply, reduced antioxidant enzyme activity, and substantial malondialdehyde (MDA) accumulation in the anthers. Transcriptome analysis revealed that genes involved in secondary metabolite biosynthesis, glutathione metabolism, phenylpropane biosynthesis, cyanoamino acid metabolism, starch and sucrose metabolism, and glycerolipid metabolism may contribute to pollen abortion. The down regulation of nine cytochrome P450 monooxygenases genes were closely associated with pollen abortion. These results suggest that pollen abortion in 1258A CMS stems from abnormalities in the chorioallantoic membranes, energy deficiencies, and dysfunctional antioxidant systems in the anthers. Our results provide insight into the molecular mechanism underlying pollen abortion in Nsa CMS and provide a theoretical basis for better heterosis utilization in B.napus.
Collapse
Affiliation(s)
- Man Xing
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China; (M.X.); (C.G.)
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Chunyun Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China; (M.X.); (C.G.)
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Mei Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China; (M.X.); (C.G.)
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
- Correspondence:
| |
Collapse
|
6
|
Chen A, Wang D, Ji R, Li J, Gu S, Tang R, Ji C. Structural and Catalytic Characterization of TsBGL, a β-Glucosidase From Thermofilum sp. ex4484_79. Front Microbiol 2021; 12:723678. [PMID: 34659150 PMCID: PMC8517440 DOI: 10.3389/fmicb.2021.723678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.
Collapse
Affiliation(s)
- Anke Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rong Tang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Abstract
Apiose is a branched pentose naturally occurring either as a component of the plant cell wall polysaccharides or as a sugar moiety present in numerous plant secondary metabolites such as flavonoid and phenylethanoid glycosides, substrates in plant defense systems or as glycosylated aroma precursors. The enzymes catalyzing hydrolysis of such apiosylated substances (mainly glycosidases specific towards apiose or acuminose) have promising applications not only in hydrolysis (flavor development), but potentially also in the synthesis of apiosides and apioglucosides with pharmaceutical relevance. This review summarizes the actual knowledge of glycosidases recognizing apiose and their potential application in biocatalysis.
Collapse
|
8
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
9
|
Yan W, Yang J, Tang H, Xue L, Chen K, Wang L, Zhao M, Tang M, Peng A, Long C, Chen X, Ye H, Chen L. Flavonoids from the stems of Millettia pachyloba Drake mediate cytotoxic activity through apoptosis and autophagy in cancer cells. J Adv Res 2019; 20:117-127. [PMID: 31338224 PMCID: PMC6626068 DOI: 10.1016/j.jare.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, systematic separation and subsequent pharmacological activity studies were carried out to identify cytotoxic natural products from the dried stems of Millettia pachyloba Drake. Five previously undescribed isoflavones, pachyvones A-E; one previously undescribed xanthone, pachythone A; and twenty-two known compounds were obtained. The structures of these compounds were assigned on the basis of 1D/2D NMR data and high-resolution electrospray ionization mass spectroscopy analysis. Preliminary activity screening with HeLa and MCF-7 cells showed that ten compounds (3-5, 9, 12, 17-19, 24, and 25) had potential cytotoxicity. Further in-depth activity studies with five cancer cell lines (HeLa, HepG2, MCF-7, Hct116, and MDA-MB-231) and one normal cell line (HUVEC) revealed that these ten compounds showed specific cytotoxicity in cancer cells, with IC50 values ranging from 5 to 40 μM, while they had no effect on normal cell lines. To investigate whether the cytotoxicity of these ten compounds was associated with autophagy, their autophagic effects were evaluated in GFP-LC3-HeLa cells. The results demonstrated that compound 9 (durmillone) significantly induced autophagy in a concentration-dependent manner and had the best activity as an autophagy inducer among all of the compounds. Therefore, compound 9 was selected for further study. The PI/Annexin V double staining assay and Western blotting results revealed that compound 9 also induced obvious apoptosis in HeLa and MCF-7 cells, which suggests that it mediates cytotoxic activity through activation of both apoptosis and autophagy. Taken together, this study identified ten natural cytotoxic products from the dried stems of Millettia pachyloba Drake, of which compound 9 induced apoptosis and autophagy and could be an anticancer drug candidate.
Collapse
Affiliation(s)
- Wei Yan
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jianhong Yang
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Huan Tang
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Linlin Xue
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kai Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Lun Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Min Zhao
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Minghai Tang
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Aihua Peng
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Chaofeng Long
- Guangdong Zhongsheng Pharmaceutical Co Ltd., Dongguan 440100, People’s Republic of China
| | - Xiaoxin Chen
- Guangdong Zhongsheng Pharmaceutical Co Ltd., Dongguan 440100, People’s Republic of China
| | - Haoyu Ye
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Lijuan Chen
- Lab of Natural Product Drugs and Cancer Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
10
|
Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei. Appl Biochem Biotechnol 2018; 186:877-894. [PMID: 29779183 DOI: 10.1007/s12010-018-2781-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.
Collapse
|
11
|
Ketudat Cairns JR, Mahong B, Baiya S, Jeon JS. β-Glucosidases: Multitasking, moonlighting or simply misunderstood? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:246-59. [PMID: 26706075 DOI: 10.1016/j.plantsci.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 05/23/2023]
Abstract
β-Glucosidases have a wide range of functions in plants, including roles in recycling of cell-wall oligosaccharides, defense, phytohormone signaling, secondary metabolism, and scent release, among others. It is not always clear which one is responsible for a specific function, as plants contain a large set of β-glucosidases. However, progress has been made in recent years in elucidating these functions. To help understand what is known and what remains ambiguous, we review the general approaches to investigating plant β-glucosidase functions. We consider information that has been gained regarding glycoside hydrolase family 1 enzyme functions utilizing these approaches in the past decade. In several cases, one enzyme has been assigned different biological functions by different research groups. We suggest that, at least in some cases, the ambiguity of an enzyme's function may come from having multiple functions that may help coordinate the response to injury or other stresses.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- School of Biochemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Bancha Mahong
- Graduate School of Biotechnology, Kyung-Hee University, Yongin 17104, South Korea
| | - Supaporn Baiya
- School of Biochemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung-Hee University, Yongin 17104, South Korea
| |
Collapse
|
12
|
Hsu CC, Wu TM, Hsu YT, Wu CW, Hong CY, Su NW. A novel soybean (Glycine max) gene encoding a family 3 β-glucosidase has high isoflavone 7-O-glucoside-hydrolyzing activity in transgenic rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:921-8. [PMID: 25569564 DOI: 10.1021/jf504778x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A previous study demonstrated that purified Glycine max β-glucosidase (GmBGL) could hydrolyze glucosyl isoflavone to the aglyconic form. This study reports the cloning and functional characterization of a soybean cDNA encoding the β-glucosidase. GmBGL was isolated by use of a purified soybean N-terminal amino acid sequence and conserved sequences of β-glucosidase genes from other plants. Sequence analysis of GmBGL revealed an open reading frame of 1884 bp encoding a polypeptide of 627 amino acids with a calculated molecular mass of 69 kDa. Phylogenetic analysis classified the GmBGL into the glycosyl hydrolase 3 family. In soybean, the GmBGL transcript was predominantly accumulated in roots and leaves. To examine the enzymatic activity and substrate specificity, GmBGL was ectopically expressed in transgenic rice. Purified GmBGL protein from transgenic rice could catalyze the hydrolysis of genistin and daidzin to produce genistein and daidzein, respectively, which confirmed GmBGL as a functional β-glucosidase with isoflavone glucoside-hydrolyzing activity. This paper reveals that GmBGL is a key enzyme in transforming glucosyl isoflavones to aglycones in soybean, which may help in genetic manipulation of aglycone-rich soybean seeds.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Saino H, Shimizu T, Hiratake J, Nakatsu T, Kato H, Sakata K, Mizutani M. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J Biol Chem 2014; 289:16826-34. [PMID: 24753293 DOI: 10.1074/jbc.m114.553271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Primeverosidase (PD) is a disaccharide-specific β-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes β-primeveroside (6-O-β-d-xylopyranosyl-β-d-glucopyranoside) at the β-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-β-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite -2 specific for 6-O-β-d-xylopyranosyl, subsite -1 well conserved among β-glucosidases and specific for β-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-β-d-xylopyranosyl in subsite -2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific β-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-β-d-xylopyranosyl together. PD recognizes the β-primeverosides in subsites -1 and -2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of β-primeveroside.
Collapse
Affiliation(s)
- Hiromichi Saino
- From the College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa 252-5258,
| | - Tetsuya Shimizu
- the Faculty of Science, Okayama University, Okayama-shi, Okayama 700-8530
| | - Jun Hiratake
- the Institute for Chemical Research, Kyoto University, Uji-shi, Kyoto 611-0011
| | - Toru Nakatsu
- the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, and
| | - Hiroaki Kato
- the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, and
| | - Kanzo Sakata
- the Institute for Chemical Research, Kyoto University, Uji-shi, Kyoto 611-0011
| | - Masaharu Mizutani
- the Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
14
|
R. Ketudat Cairns J, Pengthaisong S, Luang S, Sansenya S, Tankrathok A, Svasti J. Protein-carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Negi D, Kumar A, Sharma R, Shukla N, Negi N, Tamta M, Bansal Y, Prasert PG, Cairns JK. Structure Confirmation of Rare Conjugate Glycosides from Glycosmis arborea (Roxb.) with the Action of β-Glucosidases. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjphyto.2011.32.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Kongsaeree PT, Ratananikom K, Choengpanya K, Tongtubtim N, Sujiwattanarat P, Porncharoennop C, Onpium A, Svasti J. Substrate specificity in hydrolysis and transglucosylation by family 1 β-glucosidases from cassava and Thai rosewood. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010; 67:3389-405. [PMID: 20490603 PMCID: PMC11115901 DOI: 10.1007/s00018-010-0399-2] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)(8)-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)(6) barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.
| | | |
Collapse
|
18
|
Seshadri S, Akiyama T, Opassiri R, Kuaprasert B, Cairns JK. Structural and enzymatic characterization of Os3BGlu6, a rice beta-glucosidase hydrolyzing hydrophobic glycosides and (1->3)- and (1->2)-linked disaccharides. PLANT PHYSIOLOGY 2009; 151:47-58. [PMID: 19587102 PMCID: PMC2735989 DOI: 10.1104/pp.109.139436] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/02/2009] [Indexed: 05/18/2023]
Abstract
Glycoside hydrolase family 1 (GH1) beta-glucosidases play roles in many processes in plants, such as chemical defense, alkaloid metabolism, hydrolysis of cell wall-derived oligosaccharides, phytohormone regulation, and lignification. However, the functions of most of the 34 GH1 gene products in rice (Oryza sativa) are unknown. Os3BGlu6, a rice beta-glucosidase representing a previously uncharacterized phylogenetic cluster of GH1, was produced in recombinant Escherichia coli. Os3BGlu6 hydrolyzed p-nitrophenyl (pNP)-beta-d-fucoside (k(cat)/K(m) = 67 mm(-1) s(-1)), pNP-beta-d-glucoside (k(cat)/K(m) = 6.2 mm(-1) s(-1)), and pNP-beta-d-galactoside (k(cat)/K(m) = 1.6 mm(-1)s(-1)) efficiently but had little activity toward other pNP glycosides. It also had high activity toward n-octyl-beta-d-glucoside and beta-(1-->3)- and beta-(1-->2)-linked disaccharides and was able to hydrolyze apigenin beta-glucoside and several other natural glycosides. Crystal structures of Os3BGlu6 and its complexes with a covalent intermediate, 2-deoxy-2-fluoroglucoside, and a nonhydrolyzable substrate analog, n-octyl-beta-d-thioglucopyranoside, were solved at 1.83, 1.81, and 1.80 A resolution, respectively. The position of the covalently trapped 2-F-glucosyl residue in the enzyme was similar to that in a 2-F-glucosyl intermediate complex of Os3BGlu7 (rice BGlu1). The side chain of methionine-251 in the mouth of the active site appeared to block the binding of extended beta-(1-->4)-linked oligosaccharides and interact with the hydrophobic aglycone of n-octyl-beta-d-thioglucopyranoside. This correlates with the preference of Os3BGlu6 for short oligosaccharides and hydrophobic glycosides.
Collapse
Affiliation(s)
- Supriya Seshadri
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | |
Collapse
|
19
|
Overexpression of β-glucosidase from Thermotoga maritima for the production of highly purified aglycone isoflavones from soy flour. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0121-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Morant AV, Bjarnholt N, Kragh ME, Kjaergaard CH, Jørgensen K, Paquette SM, Piotrowski M, Imberty A, Olsen CE, Møller BL, Bak S. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. PLANT PHYSIOLOGY 2008; 147:1072-91. [PMID: 18467457 PMCID: PMC2442532 DOI: 10.1104/pp.107.109512] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 05/06/2008] [Indexed: 05/18/2023]
Abstract
Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases was isolated from L. japonicus leaves and identified by protein sequencing as LjBGD2 and LjBGD4. The isolated hydroxynitrile glucoside-cleaving beta-glucosidases preferentially hydrolyzed rhodiocyanoside A and lotaustralin, whereas linamarin was only slowly hydrolyzed, in agreement with measurements of their rate of degradation upon tissue disruption in L. japonicus leaves. Comparative homology modeling predicted that LjBGD2 and LjBGD4 had nearly identical overall topologies and substrate-binding pockets. Heterologous expression of LjBGD2 and LjBGD4 in Arabidopsis (Arabidopsis thaliana) enabled analysis of their individual substrate specificity profiles and confirmed that both LjBGD2 and LjBGD4 preferentially hydrolyze the hydroxynitrile glucosides present in L. japonicus. Phylogenetic analyses revealed a third L. japonicus putative hydroxynitrile glucoside-cleaving beta-glucosidase, LjBGD7. Reverse transcription-polymerase chain reaction analysis showed that LjBGD2 and LjBGD4 are expressed in aerial parts of young L. japonicus plants, while LjBGD7 is expressed exclusively in roots. The differential expression pattern of LjBGD2, LjBGD4, and LjBGD7 corresponds to the previously observed expression profile for CYP79D3 and CYP79D4, encoding the two cytochromes P450 that catalyze the first committed step in the biosyntheis of hydroxynitrile glucosides in L. japonicus, with CYP79D3 expression in aerial tissues and CYP79D4 expression in roots.
Collapse
Affiliation(s)
- Anne Vinther Morant
- Plant Biochemistry Laboratory, Department of Plant Biology, Center for Molecular Plant Physiology and VKR Research Centre "Pro-Active Plants" , University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. beta-Glucosidases as detonators of plant chemical defense. PHYTOCHEMISTRY 2008; 69:1795-813. [PMID: 18472115 DOI: 10.1016/j.phytochem.2008.03.006] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 05/03/2023]
Abstract
Some plant secondary metabolites are classified as phytoanticipins. When plant tissue in which they are present is disrupted, the phytoanticipins are bio-activated by the action of beta-glucosidases. These binary systems--two sets of components that when separated are relatively inert--provide plants with an immediate chemical defense against protruding herbivores and pathogens. This review provides an update on our knowledge of the beta-glucosidases involved in activation of the four major classes of phytoanticipins: cyanogenic glucosides, benzoxazinoid glucosides, avenacosides and glucosinolates. New aspects of the role of specific proteins that either control oligomerization of the beta-glucosidases or modulate their product specificity are discussed in an evolutionary perspective.
Collapse
Affiliation(s)
- Anne Vinther Morant
- Plant Biochemistry Laboratory, Department of Plant Biology and The VKR Research Centre Proactive Plants, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|