1
|
He L, Zhang M, Li J, Duan Q, Zhang D, Pan X. Aquaculture oxidant (ClO 2) or antibiotic disinfection induces unique bimodal aggregation and boosts exDNA sedimentation: A disinfection-driven great spatial shift of antibiotic resistance risk. WATER RESEARCH 2025; 270:122820. [PMID: 39612813 DOI: 10.1016/j.watres.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
ClO2 has been ever-increasingly used as an alternative disinfectant to alleviate antibiotic resistance risk in aquaculture. However, the feasibility of ClO2 disinfection in reducing antibiotic resistance has not been clarified yet. We comparatively explored the aggregation mechanisms and their effect on extracellular DNA (exDNA) partition and settlement in disinfected aquaculture waters and natural waters. In contrast to the unimodal aggregation in natural non-aquaculture waters, a unique bimodal size distribution pattern of micron-sized aggregates was found in aquaculture waters regardless of the disinfectants (macro-aggregates - 200-700 μm in diameter and micro-aggregates - 2-200 μm in diameter). The bimodal aggregates had 2-4 orders of magnitude higher content of Ferron cations and enriched hundred-fold exDNA in aquaculture waters than in natural waters. ExDNA was adsorbed on the surface of aggregates and conglutinated mainly by carbohydrates and coagulative cations. Macro-aggregates had lower fractal dimension but greater sedimentation velocities compared with micro-aggregates. Polylithionite was the key ballast mineral facilitating fast sedimentation of aggregates in aquaculture waters. Loading more antibiotic resistance genes and mobile gene elements, the aquaculture aggregates sank more rapidly from water to sediments than the natural-water aggregates. It indicates that disinfection with ClO2 or antibiotics facilitated the spatial transfer of antibiotic resistance risk with high horizontal transfer potential from water column to sediment through forming bimodal aggregates. These findings imply that the adoption of antibiotic alternatives such as the oxidant of ClO2 is far from sufficient to alleviate antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Lizhi He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingdong Duan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Dianty R, Hirano J, Anzai I, Kanai Y, Hayashi T, Morimoto M, Kataoka-Nakamura C, Kobayashi S, Uemura K, Ono C, Watanabe T, Kobayashi T, Murakami K, Kikuchi K, Hotta K, Yoshikawa T, Taguwa S, Matsuura Y. Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation. Front Microbiol 2023; 14:1284274. [PMID: 37928667 PMCID: PMC10625411 DOI: 10.3389/fmicb.2023.1284274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
Collapse
Affiliation(s)
- Rahmi Dianty
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Itsuki Anzai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masae Morimoto
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Kataoka-Nakamura
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tokiko Watanabe
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kikuchi
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | | | | | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
4
|
Wan K, Zheng S, Ye C, Hu D, Zhang Y, Dao H, Chen S, Yu X. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. WATER RESEARCH 2022; 209:117902. [PMID: 34910990 DOI: 10.1016/j.watres.2021.117902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haosha Dao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shaohua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Yoon Y, He H, Dodd MC, Lee Y. Degradation and deactivation of plasmid-encoded antibiotic resistance genes during exposure to ozone and chlorine. WATER RESEARCH 2021; 202:117408. [PMID: 34325102 DOI: 10.1016/j.watres.2021.117408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation and deactivation kinetics of an antibiotic resistance gene (ARG) by ozone (O3) and free available chlorine (FAC) were investigated in phosphate-buffered solutions at pH 7 for O3 (in the presence of tert‑butanol), and pH 6.8 or 8.1 for FAC. We used a plasmid (pUC19)-encoded ampicillin resistance gene (ampR) in both extracellular (e-) and intracellular (i-) forms. The second-order rate constant (kO3) for degradation of 2686 base pair (bp) long e-pUC19 toward O3, which was determined by quantitative polymerase chain reaction assay, was calculated to be ~2 × 105 M-1s-1. The deactivation rate constants of e-pUC19 by O3 measured with various recipient E. coli strains were within a factor of 2 compared with the degradation rate constant for e-pUC19. The degradation/deactivation kinetics of i-pUC19 were similar to those of e-pUC19, indicating only a minor influence of cellular components on O3 reactivity toward i-pUC19. For FAC, the degradation and deactivation rates of e-pUC19 were decreased in the presence of tert‑butanol, implying involvement of direct FAC as well as some radical (e.g., •OH) reactions. The degradation rates of e-ampR segments by direct FAC reaction could be explained by a previously-reported two-step sequential reaction model, in which the rate constants increased linearly with e-ampR segment length. The deactivation rate constants of e-pUC19 during exposure to FAC were variable by a factor of up to 4.3 for the different recipient strains, revealing the role of DNA repair in the observed deactivation efficiencies. The degradation/deactivation of e-pUC19 were significantly faster at pH 6.8 than at pH 8.1 owing to pH-dependent FAC speciation variation, whereas i-pUC19 kinetics exhibited much smaller dependence on pH, demonstrating intracellular plasmid DNA reactions with FAC occurred at cytoplasmic pH (~7.5). Our results are useful for predicting and/or measuring the degradation/deactivation efficiency of plasmid-encoded ARGs by water treatment with ozonation and chlorination.
Collapse
Affiliation(s)
- Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huan He
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
Wang S, Yang S, Quispe E, Yang H, Sanfiorenzo C, Rogers SW, Wang K, Yang Y, Hoffmann MR. Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO 2 Nanotube Arrays. ACS ES&T ENGINEERING 2021; 1:612-622. [PMID: 39605952 PMCID: PMC11601983 DOI: 10.1021/acsestengg.1c00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO2 nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV254 irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl- are larger than those of UV254 irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded.
Collapse
Affiliation(s)
- Siwen Wang
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hannah Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles Sanfiorenzo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shane W Rogers
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Kaihang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Michael R Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Pei M, Zhang B, He Y, Su J, Gin K, Lev O, Shen G, Hu S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2019; 131:105026. [PMID: 31351383 DOI: 10.1016/j.envint.2019.105026] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 05/27/2023]
Abstract
Antibiotic resistance genes (ARGs) have been considered as emerging contaminants of concern nowadays. There are no special technologies designed to directly remove ARGs in wastewater treatment plants (WWTPs). In order to reduce the risk of ARGs, it is vital to understand the efficiency of advanced treatment technologies in removing antibiotic resistance genes in WWTPs. This review highlights the application and efficiency of tertiary treatment technologies on the elimination of ARGs, s, based on an understanding of their occurrence and fate in WWTPs. These technologies include chemical-based processes such as chlorination, ozonation, ultraviolet, and advanced oxidation technology, as well as physical separation processes, biological processes such as constructed wetland and membrane bioreactor, and soil aquifer treatment. The merits, limitations and ameliorative measures of these processes are discussed, with the view to optimizing future treatment strategies and identifying new research directions.
Collapse
Affiliation(s)
- Mengke Pei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Ovadia Lev
- The Casali Center and the Institute of Chemistry and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
8
|
Nybo T, Davies MJ, Rogowska-Wrzesinska A. Analysis of protein chlorination by mass spectrometry. Redox Biol 2019; 26:101236. [PMID: 31181457 PMCID: PMC6557747 DOI: 10.1016/j.redox.2019.101236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Chlorination of tyrosine is a commonly known effect/consequence of myeloperoxidase activity at sites of inflammation, and detection of 3-chlorotyrosine has been used as biomarker for inflammatory diseases. However, few studies have addressed site specific chlorination in proteins, and no methods for large scale chloroproteomics studies have yet been published. In this study, we present an optimized mass spectrometry based protocol to identify and quantify chlorinated peptides from single proteins modified by HOCl (100 and 500 μM, within estimated pathophysiological levels), at a high level of sensitivity and accuracy. Particular emphasis was placed on 1) sensitive and precise detection of modification sites, 2) the avoidance of loss or artefactual creation of modifications, 3) accurate quantification of peptide abundance and reduction of missing values problem, 4) monitoring the dynamics of modification in samples exposed to different oxidant concentrations and 5) development of guidelines for verification of chlorination sites assignment. A combination of an optimised sample preparation protocol, and improved data analysis approaches have allowed identification of 33 and 15 chlorination sites in laminin and fibronectin, respectively, reported in previous manuscripts [1,2]. The method was subsequently tested on murine basement membrane extract, which contains high levels of laminin in a complex mixture. Here, 10 of the major chlorination sites in laminin were recapitulated, highlighting the utility of the method in detecting damage in complex samples. An optimized mass spectrometry method is presented to detect protein chlorination. Reduction and alkylation leads to loss of chlorinated residues. Identification of modification sites in fibronectin and laminin induced by HOCl. Quantification of relative site occupancy (RSO) of chlorinated residues. Largest chloroproteomics dataset to date.
Collapse
Affiliation(s)
- Tina Nybo
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark; Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
9
|
DNA-based surrogate indicator for sanitation verification and predict inactivation of Escherichia coli O157:H7 using vibrational spectroscopy (FTIR). Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Peters MCFM, Keuten MGA, Knezev A, van Loosdrecht MCM, Vrouwenvelder JS, Rietveld LC, de Kreuk MK. Characterization of the bacterial community in shower water before and after chlorination. JOURNAL OF WATER AND HEALTH 2018; 16:233-243. [PMID: 29676759 DOI: 10.2166/wh.2017.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L-1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24-21%), Xanthomonadaceae (23-24%), Moraxellaceae (12-11%) and Pseudomonadaceae (10-22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L-1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21-17%) and Moraxellaceae (48-57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.
Collapse
Affiliation(s)
- Marjolein C F M Peters
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands E-mail:
| | - Maarten G A Keuten
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands E-mail: ; Hellebrekers Technieken, Marconiweg 28, 8071 RA Nunspeet, The Netherlands
| | - Aleksandra Knezev
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
| | - Mark C M van Loosdrecht
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands and Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Luuk C Rietveld
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands E-mail:
| | - Merle K de Kreuk
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands E-mail:
| |
Collapse
|
11
|
Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. WATER 2018. [DOI: 10.3390/w10030244] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Wong JPS, Carslaw N, Zhao R, Zhou S, Abbatt JPD. Observations and impacts of bleach washing on indoor chlorine chemistry. INDOOR AIR 2017. [PMID: 28646605 DOI: 10.1111/ina.12402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ambient levels of chlorinated gases and aerosol components were measured by online chemical ionization and aerosol mass spectrometers after an indoor floor were repeatedly washed with a commercial bleach solution. Gaseous chlorine (Cl2 , 10's of ppbv) and hypochlorous acid (HOCl, 100's of ppbv) arise after floor washing, along with nitryl chloride (ClNO2 ), dichlorine monoxide (Cl2 O), and chloramines (NHCl2 , NCl3 ). Much higher mixing ratios would prevail in a room with lower and more commonly encountered air exchange rates than that observed in the study (12.7 h-1 ). Coincident with the formation of gas-phase species, particulate chlorine levels also rise. Cl2 , ClNO2 , NHCl2 , and NCl3 exist in the headspace of the bleach solution, whereas HOCl was only observed after floor washing. HOCl decays away 1.4 times faster than the air exchange rate, indicative of uptake onto room surfaces, and consistent with the well-known chlorinating ability of HOCl. Photochemical box modeling captures the temporal profiles of Cl2 and HOCl very well and indicates that the OH, Cl, and ClO gas-phase radical concentrations in the indoor environment could be greatly enhanced (>106 and 105 cm-3 for OH and Cl, respectively) in such washing conditions, dependent on the amount of indoor illumination.
Collapse
Affiliation(s)
- J P S Wong
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - N Carslaw
- Environment Department, University of York, York, UK
| | - R Zhao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - S Zhou
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - J P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhuang Y, Ren H, Geng J, Zhang Y, Zhang Y, Ding L, Xu K. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7037-44. [PMID: 25483976 DOI: 10.1007/s11356-014-3919-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/25/2014] [Indexed: 05/12/2023]
Abstract
This study investigated the inactivation of two antibiotic resistance genes (ARGs)-sul1 and tetG, and the integrase gene of class 1 integrons-intI1 by chlorination, ultraviolet (UV), and ozonation disinfection. Inactivation of sul1, tetG, and intI1 underwent increased doses of three disinfectors, and chlorine disinfection achieved more inactivation of ARGs and intI1 genes (chlorine dose of 160 mg/L with contact time of 120 min for 2.98-3.24 log reductions of ARGs) than UV irradiation (UV dose of 12,477 mJ/cm(2) for 2.48-2.74 log reductions of ARGs) and ozonation disinfection (ozonation dose of 177.6 mg/L for 1.68-2.55 log reductions of ARGs). The 16S rDNA was more efficiently removed than ARGs by ozone disinfection. The relative abundance of selected genes (normalized to 16S rDNA) increased during ozonation and with low doses of UV and chlorine disinfection. Inactivation of sul1 and tetG showed strong positive correlations with the inactivation of intI1 genes (for sul1, R (2) = 0.929 with p < 0.01; for tetG, R (2) = 0.885 with p < 0.01). Compared to other technologies (ultraviolet disinfection, ozonation disinfection, Fenton oxidation, and coagulation), chlorination is an alternative method to remove ARGs from wastewater effluents. At a chlorine dose of 40 mg/L with 60 min contact time, the selected genes inactivation efficiency could reach 1.65-2.28 log, and the cost was estimated at 0.041 yuan/m(3).
Collapse
Affiliation(s)
- Yao Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Zhuang Y, Geng J, Ren H, Zhang Y, Ding L, Xu K. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:125-132. [PMID: 25616228 DOI: 10.1016/j.scitotenv.2015.01.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p=0.007-0.014, n=6),as well as contact time (p=0.0001, n=10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30-1.49 logs) could be achieved at FC dosage of 30 mg L(-1). The transformation kinetic data for ARGs removal (log C0/C) followed the second-order reaction kinetic model with FC dosage (R(2)=0.6829-0.9999) and contact time (R(2)=0.7353-8634), respectively. Higher ammonia nitrogen (NH3-N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl2:NH3-N ratio was over 7.6:1, a significant reduction of ARGs (1.20-1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36-0.40 at a fluence of 249.5 mJ cm(-2), which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China
| | - Yao Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China.
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Yang L, Bai Y, Li N, Hu C, Peng J, Cheng G, Zhang G, Shi R. Vascular VPO1 expression is related to the endothelial dysfunction in spontaneously hypertensive rats. Biochem Biophys Res Commun 2013; 439:511-6. [PMID: 24021280 DOI: 10.1016/j.bbrc.2013.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 01/28/2023]
Abstract
Reactive oxygen species (ROS) contributes to endothelial dysfunction that is involved in the pathogeneses of hypertension. Vascular peroxidase 1 (VPO1) can utilize ROS to catalyze peroxidative reactions, possibly enhancing endothelial dysfunction. This study is to identify VPO1's involvement in endothelial dysfunction and hypertension. Sixty-four spontaneously hypertensive rats (SHRs) and 64 age-matched, bodyweight controlled normotensive Wistar-Kyoto rats (WKYs) were randomly grouped and studied at the age of 5, 8, 13 and 20 weeks (16 animals, each). Blood pressure and vasodilator responses to acetylcholine in aortic rings were observed. The expressions of VPO1 and endothelial NO synthase (eNOS) in aortas were assessed by quantitative reverse transcription-PCR and western blotting analysis. Plasma concentrations of hydrogen peroxide (H2O2) and NO, NOX activity, hypochlorous acid (HOCl) production, and 3-nitrotyrosine content in aortic homogenates were also determined in this study. Along with the development of hypertension in SHR rats, VPO1 expression was up-regulated together with a significant increase in NOX activity, HOCl production, 3-nitrotyrosine content, and plasma H2O2 level compared with WKYs at 8, 13 and 20 weeks of age. In contrast, blood NO levels were decreased and aortic relaxation to acetylcholine was deteriorated in SHRs. The over-expression of VPO1 during the development of hypertension, accompanied by the endothelial dysfunction, the decreased NO levels, the elevated NOX and ROS activities, indicates a clear connection between VPO1 gene and hypertension. VPO1 may pathogenetically contribute to hypertension via signal pathways involving NOX-H2O2-VPO1-HOCl or JNK/p38 MAPK although further studies are needed to determine the precise mechanisms.
Collapse
Affiliation(s)
- Lizhen Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Measuring chlorine bleach in biology and medicine. Biochim Biophys Acta Gen Subj 2013; 1840:781-93. [PMID: 23872351 DOI: 10.1016/j.bbagen.2013.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1295] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.
Collapse
Affiliation(s)
- James K Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
19
|
Dodd MC. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. ACTA ACUST UNITED AC 2012; 14:1754-71. [DOI: 10.1039/c2em00006g] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Kwolek-Mirek M, Bartosz G, Spickett CM. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite. Yeast 2011; 28:595-609. [DOI: 10.1002/yea.1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 05/23/2011] [Indexed: 11/07/2022] Open
|
21
|
Elano RR, Kitagawa T, Bari ML, Kawasaki S, Kawamoto S, Inatsu Y. Comparison of the effectiveness of acidified sodium chlorite and sodium hypochlorite in reducing Escherichia coli. Foodborne Pathog Dis 2010; 7:1481-9. [PMID: 20704504 DOI: 10.1089/fpd.2010.0595] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study was designed to compare the effectiveness of acidified sodium chlorite (ASC) and sodium hypochlorite (NaClO) in reducing several Escherichia coli strains isolated from different retail meat and fresh produce. Forty nonpathogenic E. coli strains were isolated and used in this study. A type strain of E. coli (JCM 1649) and four O157:H7 serotypes of E. coli (CR-3, MN-28, MY-29, and DT-66) were used as reference. In vitro assay results revealed that the viable cell counts of each isolated E. coli strain and control strains exhibited a reduction of ∼ 4.3 ± 0.9 log and 7.8 ± 1.7 log CFU/mL after a 3-minute exposure to 100 mg/L NaClO and 20 mg/L ASC (pH 4.6), respectively, at 25°C, when compared with the viable bacterial counts obtained from phosphate-buffered saline. The one exception was the flocs-forming strain, which showed a reduction of only 1.0 log CFU/mL with both disinfectants. However, reductions of only 1.7 ± 0.3 log and 1.9 ± 0.4 log CFU/g were observed in lettuce after 5 minutes of washing with NaClO and ASC, respectively. On the other hand, reductions of 1.6 ± 0.2 log and 1.6 ± 0.4 log CFU/g were observed in spinach after 5 minutes of washing with NaClO and ASC, respectively. No reduction in the population was observed after washing the inoculated, fresh-cut vegetables with distilled water only. No significant difference in the reduction of E. coli was observed among all the tested strains with both sanitizers in the in vivo assay. These data suggest that the tested sanitizers exhibit a similar reduction of the surface-attached E. coli on leafy vegetables irrespective of the strain source.
Collapse
Affiliation(s)
- Rachel Ramos Elano
- Division of Microbiology, Food Development Center, Taguig City, Philippines
| | | | | | | | | | | |
Collapse
|