1
|
Moksnes MR, Hansen AF, Wolford BN, Thomas LF, Rasheed H, Simić A, Bhatta L, Brantsæter AL, Surakka I, Zhou W, Magnus P, Njølstad PR, Andreassen OA, Syversen T, Zheng J, Fritsche LG, Evans DM, Warrington NM, Nøst TH, Åsvold BO, Flaten TP, Willer CJ, Hveem K, Brumpton BM. A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Commun Biol 2024; 7:432. [PMID: 38594418 PMCID: PMC11004147 DOI: 10.1038/s42003-024-06101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.
Collapse
Affiliation(s)
- Marta R Moksnes
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ailin F Hansen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Brooke N Wolford
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Anica Simić
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tore Syversen
- Department of Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David M Evans
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Nicole M Warrington
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Therese H Nøst
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Peder Flaten
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
2
|
Nucera F, Mumby S, Paudel KR, Dharwal V, DI Stefano A, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med 2022; 113:370-404. [PMID: 35142479 DOI: 10.23736/s0026-4806.22.07972-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inhalation of cigarette smoke is a prominent cause of chronic obstructive pulmonary disease (COPD) and provides an important source of exogenous oxidants. In addition, several inflammatory and structural cells are a source of endogenous oxidants in the lower airways of COPD patients, even in former smokers. This suggests that oxidants play a key role in the pathogenesis of COPD. This oxidative stress is counterbalanced by the protective effects of the various endogenous antioxidant defenses of the lower airways. A large amount of data from animal models and patients with COPD have shown that both the stable phase of the disease, and during exacerbations, have increased oxidative stress in the lower airways compared with age-matched smokers with normal lung function. Thus, counteracting the increased oxidative stress may produce clinical benefits in COPD patients. Smoking cessation is currently the most effective treatment of COPD patients and reduces oxidative stress in the lower airways. In addition, many drugs used to treat COPD have some antioxidant effects, however, it is still unclear if their clinical efficacy is related to pharmacological modulation of the oxidant/antioxidant balance. Several new antioxidant compounds are in development for the treatment of COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy -
| | - Sharon Mumby
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Novara, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ian M Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
3
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 2019; 675:108076. [PMID: 31415727 DOI: 10.1016/j.abb.2019.108076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
The cellular microenvironment plays a critical role in cancer initiation and progression. Exposure to oxidative stress, specifically hydrogen peroxide (H2O2), has been linked to aberrant cellular signaling through which the development of cancer may be promoted. Three members of the NADPH oxidase family (NOX4, DUOX1 and DUOX2) explicitly generate this non-radical oxidant in a wide range of tissues, often in support of the inflammatory response. This review summarizes the contributions of each H2O2-producing NOX to the invasive behaviors of tumors and/or the epithelial-mesenchymal transition (EMT) in cancer that plays an essential role in metastasis. Tissue localization in tumorigenesis is also highlighted, with patient-derived TCGA microarray data profiled across 31 cancer cohorts to provide a comprehensive guide to the relevance of NOX4/DUOX1/DUOX2 in cancer studies.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Abstract
The dual oxidase (DUOX) enzymes (DUOX1 and DUOX2) are unique hydrogen peroxide (H2O2)-producing members of the NADPH oxidase (NOX) family, structurally distinguished from their related NOX isoforms by the presence of an additional N-terminal extracellular domain. This region has significant sequence and predicted structural homology to mammalian peroxidases, including myeloperoxidase (MPO) and lactoperoxidase (LPO), therefore justifying the nomenclature of the peroxidase homology domain (PHD). Obtaining detailed structural information and defining a function for this appended region are both critical for elucidation of the uncharacterized mechanism of H2O2 production by DUOX proteins. Purification strategies focused on isolated sections of each DUOX enzyme are a logical means to further characterization, particularly as isolation of the complete membrane-bound enzyme in significant quantities remains unachievable. In this chapter, a reproducible method for production of the homology domain applicable to both human DUOX isoforms is described. The approach utilizes a baculovirus expression vector in insect cell culture to produce secreted recombinant PHD; an appended C-terminal His6 affinity tag was found to be crucial for structural stability. Finally, initial characterization of the activity of the purified PHDs is also described.
Collapse
|
6
|
Liu Y, Kaval KG, van Hoof A, Garsin DA. Heme peroxidase HPX-2 protects Caenorhabditis elegans from pathogens. PLoS Genet 2019; 15:e1007944. [PMID: 30695063 PMCID: PMC6368334 DOI: 10.1371/journal.pgen.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023] Open
Abstract
Heme-containing peroxidases are important components of innate immunity. Many of them functionally associate with NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes by using the hydrogen peroxide they generate in downstream reactions. Caenorhabditis elegans encodes for several heme peroxidases, and in a previous study we identified the ShkT-containing peroxidase, SKPO-1, as necessary for pathogen resistance. Here, we demonstrated that another peroxidase, HPX-2 (Heme-PeroXidase 2), is required for resistance against some, but not all pathogens. Tissue specific RNA interference (RNAi) revealed that HPX-2 functionally localizes to the hypodermis of the worm. In congruence with this observation, hpx-2 mutant animals possessed a weaker cuticle structure, indicated by higher permeability to a DNA dye, but exhibited no obvious morphological defects. In addition, fluorescent labeling of HPX-2 revealed its expression in the pharynx, an organ in which BLI-3 is also present. Interestingly, loss of HPX-2 increased intestinal colonization of E. faecalis, suggesting its role in the pharynx may limit intestinal colonization. Moreover, disruption of a catalytic residue in the peroxidase domain of HPX-2 resulted in decreased survival on E. faecalis, indicating its peroxidase activity is required for pathogen resistance. Finally, RNA-seq analysis of an hpx-2 mutant revealed changes in genes encoding for cuticle structural components under the non-pathogenic conditions. Under pathogenic conditions, genes involved in infection response were differentially regulated to a greater degree, likely due to increased microbial burden. In conclusion, the characterization of the heme-peroxidase, HPX-2, revealed that it contributes to C. elegans pathogen resistance through a role in generating cuticle material in the hypodermis and pharynx. Reactive oxygen species (ROS) production by the host tissues is one of the first lines of defense when microbial infection occurs. ROS has been shown to be involved in multiple protective pathways in innate immunity. However, given the complexity of mammalian systems, the exact manner in which ROS are used for host defense remains incompletely understood. In this study, we use Caenorhabditis elegans as a simplified model system to decipher the protective functions of ROS in innate immunity. We describe a peroxidase, HPX-2, that protects C. elegans from multiple infectious microbes by strengthening barrier tissue. This finding brings insight into the mechanisms by which peroxidases utilizes ROS to contribute to innate immunity. With infectious diseases being one of the most important causes of morbidity and mortality around the world, understanding ROS production and its function in pathogen resistance will provide us with important information in developing new therapies against pathogens.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX, United States of America
| | - Karan Gautam Kaval
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, United States of America
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX, United States of America
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX, United States of America
- The UT Center for Antimicrobial Resistance and Microbial Genomics, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
HOCl and the control of oncogenesis. J Inorg Biochem 2018; 179:10-23. [DOI: 10.1016/j.jinorgbio.2017.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/02/2023]
|
9
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
10
|
Belforte FS, Citterio CE, Testa G, Olcese MC, Sobrero G, Miras MB, Targovnik HM, Rivolta CM. Compound heterozygous DUOX2 gene mutations (c.2335-1G>C/c.3264_3267delCAGC) associated with congenital hypothyroidism. Characterization of complex cryptic splice sites by minigene analysis. Mol Cell Endocrinol 2016; 419:172-84. [PMID: 26506010 DOI: 10.1016/j.mce.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Iodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.2335-1G>C (paternal mutation, intron 17) and c.3264_3267delCAGC (maternal mutation, exon 24) was identified in the DUOX2 gene. Ex-vivo splicing assays and subsequent RT-PCR and sequencing analyses were performed on mRNA isolated from the HeLa cells transfected with wild-type and mutant pSPL3 expression vectors. The wild-type and c.2335-1G>C mutant alleles result in the complete inclusion or exclusion of exon 18, or in the activation of an exonic cryptic 5' ss with the consequent deletion of 169 bp at the end of this exon. However, we observed only a band of the expected size in normal thyroid tissue by RT-PCR. Additionally, the c.2335-1G>C mutation activates an unusual cryptic donor splice site in intron 17, located at position -14 of the authentic intron 17/exon 18 junction site, with an insertion of the last 14 nucleotides of the intron 17 in mutant transcripts with complete and partial inclusion of exon 18. The theoretical consequences of splice site mutation, predicted with the bioinformatics NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses confirm that c.2335-1G>C mutant allele would result in the abolition of the authentic splice acceptor site. The results suggest the coexistence in our patient of four putative truncated proteins of 786, 805, 806 and 1105 amino acids, with conservation of peroxidase-like domain and loss of gp91(phox)/NOX2-like domain. In conclusion a novel heterozygous compound was identified being responsible of IOD. Cryptic splicing sites have been characterized in DUOX2 gene for the first time. The use of molecular biology techniques is a valuable tool for understanding the molecular pathophysiology of this type of thyroid defects.
Collapse
Affiliation(s)
- Fiorella S Belforte
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Cintia E Citterio
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Graciela Testa
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - María Cecilia Olcese
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - Héctor M Targovnik
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Carina M Rivolta
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
11
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
13
|
Ueyama T, Sakuma M, Ninoyu Y, Hamada T, Dupuy C, Geiszt M, Leto TL, Saito N. The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. J Biol Chem 2015; 290:6495-506. [PMID: 25586178 DOI: 10.1074/jbc.m114.592717] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NADPH oxidase (Nox) family proteins produce superoxide (O2 (⨪)) directly by transferring an electron to molecular oxygen. Dual oxidases (Duoxes) also produce an O2 (⨪) intermediate, although the final species secreted by mature Duoxes is H2O2, suggesting that intramolecular O2 (⨪) dismutation or other mechanisms contribute to H2O2 release. We explored the structural determinants affecting reactive oxygen species formation by Duox enzymes. Duox2 showed O2 (⨪) leakage when mismatched with Duox activator 1 (DuoxA1). Duox2 released O2 (⨪) even in correctly matched combinations, including Duox2 + DuoxA2 and Duox2 + N-terminally tagged DuoxA2 regardless of the type or number of tags. Conversely, Duox1 did not release O2 (⨪) in any combination. Chimeric Duox2 possessing the A-loop of Duox1 showed no O2 (⨪) leakage; chimeric Duox1 possessing the A-loop of Duox2 released O2 (⨪). Moreover, Duox2 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA2 showed enhanced O2 (⨪) release, and Duox1 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA1 acquired O2 (⨪) leakage. Although we identified Duox1 A-loop residues (His(1071), His(1072), and Gly(1074)) important for reducing O2 (⨪) release, mutations of these residues to those of Duox2 failed to convert Duox1 to an O2 (⨪)-releasing enzyme. Using immunoprecipitation and endoglycosidase H sensitivity assays, we found that the A-loop of Duoxes binds to DuoxA N termini, creating more stable, mature Duox-DuoxA complexes. In conclusion, the A-loops of both Duoxes support H2O2 production through interaction with corresponding activators, but complex formation between the Duox1 A-loop and DuoxA1 results in tighter control of H2O2 release by the enzyme complex.
Collapse
Affiliation(s)
- Takehiko Ueyama
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| | - Megumi Sakuma
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yuzuru Ninoyu
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takeshi Hamada
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Corinne Dupuy
- CNRS UMR8200 Laboratoire Stabilité Génétique et Oncogenèse, Université Paris-Sud, Institut Gustave Roussy, Villejuif 94805, France
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1444 Budapest, Hungary, "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, H-1444 Budapest, Hungary, and
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Host Defenses, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Naoaki Saito
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| |
Collapse
|
14
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
16
|
The SKPO-1 peroxidase functions in the hypodermis to protect Caenorhabditis elegans from bacterial infection. Genetics 2014; 197:515-26. [PMID: 24621828 DOI: 10.1534/genetics.113.160606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In recent years, the synergistic relationship between NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes and peroxidases has received increased attention. Peroxidases utilize NOX/DUOX-generated H2O2 for a myriad of functions including, but not limited to, thyroid hormone biosynthesis, cross-linking extracellular matrices (ECM), and immune defense. We postulated that one or more peroxidases produced by Caenorhabditis elegans would act in host defense, possibly in conjunction with BLI-3, the only NOX/DUOX enzyme encoded by the genome that is expressed. Animals exposed to RNA interference (RNAi) of the putative peroxidase genes were screened for susceptibility to the human pathogen Enterococcus faecalis. One of three genes identified, skpo-1 (ShkT-containing peroxidase), was studied in depth. Animals mutant for this gene were significantly more susceptible to E. faecalis, but not Pseudomonas aeruginosa. A slight decrease in longevity was also observed. The skpo-1 mutant animals had a dumpy phenotype of incomplete penetrance; half the animals displayed a dumpy phenotype ranging from slight to severe, and half were morphologically wild type. The SKPO-1 protein contains the critical catalytic residues necessary for peroxidase activity, and in a whole animal assay, more H2O2 was detected from the mutant compared to the wild type, consistent with the loss of an H2O2 sink. By using tissue-specific skpo-1 RNAi and immunohistochemical localization with an anti-SKPO-1 antibody, it was determined that the peroxidase is functionally and physically present in the hypodermis. In conclusion, these results characterize a peroxidase that functions protectively in the hypodermis during exposure to E. faecalis.
Collapse
|
17
|
Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC. Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 2013; 34:209-38. [PMID: 23349248 PMCID: PMC3610675 DOI: 10.1210/er.2012-1015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/07/2012] [Indexed: 01/06/2023]
Abstract
In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending. Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell and tissue activity, which may ultimately culminate in multinodular goiters.
Collapse
Affiliation(s)
- Ides M Colin
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain (UCL), UCL-5251, 52 Avenue E. Mounier, B-1200, Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
18
|
Paletta-Silva R, Rocco-Machado N, Meyer-Fernandes JR. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int J Mol Sci 2013; 14:3683-704. [PMID: 23434665 PMCID: PMC3588065 DOI: 10.3390/ijms14023683] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/15/2022] Open
Abstract
The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP-) to oxygen to make O(2)•-. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice.
Collapse
Affiliation(s)
- Rafael Paletta-Silva
- Clinical Research Coordination, Nacional Institute of Cancer (INCA), André Cavalcanti Street, 37, Rio de Janeiro, RJ 20231-050, Brazil
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
19
|
Meitzler JL, Hinde S, Bánfi B, Nauseef WM, Ortiz de Montellano PR. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 2013; 288:7147-57. [PMID: 23362256 DOI: 10.1074/jbc.m112.414797] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular disulfide bond formation is promoted in oxidizing extracellular and endoplasmic reticulum compartments and often contributes to protein stability and function. DUOX1 and DUOX2 are distinguished from other members of the NOX protein family by the presence of a unique extracellular N-terminal region. These peroxidase-like domains lack the conserved cysteines that confer structural stability to mammalian peroxidases. Sequence-based structure predictions suggest that the thiol groups present are solvent-exposed on a single protein surface and are too distant to support intramolecular disulfide bond formation. To investigate the role of these thiol residues, we introduced four individual cysteine to glycine mutations in the peroxidase-like domains of both human DUOXs and purified the recombinant proteins. The mutations caused little change in the stabilities of the monomeric proteins, supporting the hypothesis that the thiol residues are solvent-exposed and not involved in disulfide bonds that are critical for structural integrity. However, the ability of the isolated hDUOX1 peroxidase-like domain to dimerize was altered, suggesting a role for these cysteines in protein-protein interactions that could facilitate homodimerization of the peroxidase-like domain or, in the full-length protein, heterodimeric interactions with a maturation protein. When full-length hDUOX1 was expressed in HEK293 cells, the mutations resulted in decreased H2O2 production that correlated with a decreased amount of the enzyme localized to the membrane surface rather than with a loss of activity or with a failure to synthesize the mutant proteins. These results support a role for the cysteine residues in intermolecular disulfide bond formation with the DUOX maturation factor DUOXA1.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Hoste C, Dumont JE, Miot F, De Deken X. The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res 2012; 318:2353-64. [PMID: 22814254 DOI: 10.1016/j.yexcr.2012.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 01/15/2023]
Abstract
A deliberate generation of ROS is now recognized to be achieved by specific NADPH oxidases (NOX). Dual oxidases (DUOXs) are Ca(2+)-activated NOXs and operate as H(2)O(2)-generators in various tissues. A tight regulation is however required to avoid ROS overproduction that can rapidly be harmful to biological systems. DUOX activator (DUOXA) proteins act as organizing elements for surface expression and activity of the DUOX enzymes. To study DUOX activation by the maturation factors, chimeric DUOXA proteins were generated by replacing particular domains between DUOXA1 and DUOXA2. Their impact on DUOX function and membrane expression were explored in a reconstituted heterologous cell system composed of COS-7 cells. We have shown that the COOH-terminal end of DUOXA1 is responsible for DUOX1-dependent H(2)O(2) generation. The NH(2)-terminal tail of DUOXA2 is critical to specify the type of ROS released by DUOX2, hydrogen peroxide or superoxide. Native DUOXA2 would constrain DUOX2 to produce H(2)O(2). However, alterations of the DUOXA2 NH(2)-terminal domain modify DUOX2 activity triggering superoxide leaking. Our results demonstrate that specific domains of the DUOX maturation factors promote the activation of DUOXs as well as the type of ROS generated by the oxidases.
Collapse
Affiliation(s)
- Candice Hoste
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|