1
|
Anusha S, Negi PS. Tenebrio molitor (Mealworm) protein as a sustainable dietary strategy to improve health span in D-galactose-induced aged mice. Int J Biol Macromol 2024; 281:136610. [PMID: 39419135 DOI: 10.1016/j.ijbiomac.2024.136610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Aging is an irreversible and continuous biological process involving intricate and interconnected mechanisms. The present work is focused on unravelling the anti-aging mechanisms of mealworm protein and protein-enriched fruit bar and vegetable soup in D-galactose-induced aged mice. Mealworm protein and enriched products significantly enhanced body weight, organ indices, and gut health. Behavioral assessments reflected enhanced neuroprotective effects. Mealworm protein and its enriched products demonstrated protective effects through anti-inflammatory activity with the highest reduction of TNFα (17.1 %), IL-6 (55.5 %), and IL-1β (75.1 %) levels and upregulated the anti-inflammatory marker (IL-4). Gene expression studies confirmed the induction of anti-aging effects by promoting metabolism, reducing cellular senescence, and enhancing anti-oxidant enzyme activity. The treatments extended telomere lengths by 3-4 times, further affirming the potential anti-aging efficacy of mealworm protein and its enriched products. Mealworm protein demonstrated positive effects on weight gain, anti-inflammatory responses, and telomere length; while fruit and vegetable products enhanced antioxidant activity, and positively influenced gut health. Further, a synergistic effect was observed by combining them, which resulted in improved overall anti-aging effect. The present work provides valuable insights into the multifaceted anti-aging mechanisms associated with mealworm protein and enriched products, highlighting their potential as functional foods with significant health-promoting effects.
Collapse
Affiliation(s)
- Siddaraju Anusha
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Switala J, Donald L, Ivancich A. A remarkable peroxidase-like behavior of the catalase KatA from the pathogenic bacteria Helicobacter pylori: The oxidation reaction with formate as substrate and the stabilization of an [Fe(IV) = O Trp •] intermediate assessed by multifrequency EPR spectroscopy. J Inorg Biochem 2024; 257:112594. [PMID: 38749080 DOI: 10.1016/j.jinorgbio.2024.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.
Collapse
Affiliation(s)
- Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anabella Ivancich
- Bioénergétique et Ingénierie des Protéines, UMR 7281 and IMM FR3479, CNRS, Aix-Marseille Univ., 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
3
|
Park J, Son H. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms. THE PLANT PATHOLOGY JOURNAL 2024; 40:235-250. [PMID: 38835295 PMCID: PMC11162859 DOI: 10.5423/ppj.rw.01.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/06/2024]
Abstract
During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
5
|
Yuzugullu Karakus Y, Goc G, Zengin Karatas M, Balci Unver S, Yorke BA, Pearson AR. Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase. Acta Crystallogr D Struct Biol 2024; 80:101-112. [PMID: 38265876 PMCID: PMC10836395 DOI: 10.1107/s2059798323011063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Å longer and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.
Collapse
Affiliation(s)
| | - Gunce Goc
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Melis Zengin Karatas
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Sinem Balci Unver
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Briony A. Yorke
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, HARBOR, Universitat Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Huang W, Wang C, Chen Q, Chen F, Hu H, Li J, He Q, Yu X. Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein. J Food Sci 2024; 89:259-275. [PMID: 37983838 DOI: 10.1111/1750-3841.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.
Collapse
Affiliation(s)
- Wangxiang Huang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chen Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Feng Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Haohan Hu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jianfei Li
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Yang B, Shi J. Ferrihydrite Nanoparticles Alleviate Rheumatoid Arthritis by Nanocatalytic Antioxidation and Oxygenation. NANO LETTERS 2023; 23:8355-8362. [PMID: 37656434 DOI: 10.1021/acs.nanolett.3c02743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Oxidative stress and hypoxia are two key biochemical factors in the development of rheumatoid arthritis (RA). As both reactive oxygen species (ROS) and oxygen gas (O2) are oxygen-related chemicals, we suggest that a redox reaction converting ROS into O2 can mitigate oxidative stress and hypoxia concurrently, synergistically modulating the inflammatory microenvironment. In this work, ferrihydrite, a typical iron oxyhydroxide, is prepared in nanodimensions in which tetrahedrally coordinated Fe can form a composite catalytic center by coupling with an adjacent hydroxyl group, cooperatively facilitating H2O2 decomposition and O2 generation, presenting a high catalase-like activity. In the RA region, the nanomaterial catalyzes the conversion of excess H2O2 into O2, achieving both antioxidation and oxygenation favoring the alleviation of inflammation. Both cellular and in vivo experiments demonstrate the desirable efficacy of ferrihydrite nanoparticles for RA treatment. This work provides a methodology for the catalytic therapy of inflammatory diseases featuring both oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Bowen Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Kurhaluk N, Tkachenko H, Tomin V. Invitro impact of a combination of red and infrared LEDs, infrared laser and magnetic field on biomarkers of oxidative stress and hemolysis of erythrocytes sampled from healthy individuals and diabetes patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112685. [PMID: 36921401 DOI: 10.1016/j.jphotobiol.2023.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
AIMS Low-intensity infrared laser irradiation with output emissions of the laser and LED for in vitro irradiation of plasma and erythrocyte samples collected from healthy individuals and diabetes mellitus (DM) patients was used in the current study. METHODS The generated emission was in the range 0.85-0.89 nm with pulse duration near 130 ns and repetition rates of pulses 50, 150, 600, and 1500 Hz, average power 0, 50, or 100 mW, in the range of 1-9 min for different 30 variants of irradiation. The levels of 2-thiobarbituric-acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), acid-induced resistance of erythrocytes, and activities of the main antioxidant enzymes were assessed in erythrocyte and plasma samples after irradiation. RESULTS The low-intensity infrared laser irradiation and low-intensity light emitted by a red LED decreased the lipid peroxidation levels in the erythrocytes of both healthy individuals and DM patients. A statistically significant decrease in TBARS and OMP levels and an increase in the TAC level were observed at the irradiation energy of 34.39 and 68.79 J/cm2 for samples collected from both healthy individuals and DM patients. The effects of the irradiation were accompanied by a statistically significant decrease in catalase activity of both healthy individuals and DM patients. CONCLUSIONS In many variants of the laser irradiation and low-intensity light emitted by a red LED used in our study, a decrease in the percent of hemolyzed erythrocytes was observed, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before the beginning of treatment, especially in DM patients.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
9
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
10
|
Czégény G, Rácz A. Phenolic peroxidases: Dull generalists or purposeful specialists in stress responses? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153884. [PMID: 36543063 DOI: 10.1016/j.jplph.2022.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study focuses on class III peroxidases (POD) (EC 1.11.1.7) as regulators of cellular H2O2 levels in leaves under oxidative stress. The effective regulation of reactive oxygen species (ROS) concentrations in plant tissues is crucial for plant survival, and has been extensively reviewed. However, the majority of studies regard POD as a generalist without substrate specificity. This is partly due to the fact that laboratory protocols assessing POD levels use substrates, which are not contained in plants. Here, we show that both base- and stress-inducible POD activity depends on the choice of substrate. Moreover, the application of diverse substrates, particularly those contained in plants, unmasks POD isoenzymes that are distinguished by substrate preferences. This functional heterogeneity of POD responses is worth studying, especially in parallel with stress-induced changes in the phenolic profiles.
Collapse
Affiliation(s)
- Gyula Czégény
- Department of Plant Biology, Faculty of Sciences, University of Pécs, H-7633, Ifjúság útja 6, Pécs, Hungary
| | - Arnold Rácz
- Department of Plant Biology, Faculty of Sciences, University of Pécs, H-7633, Ifjúság útja 6, Pécs, Hungary.
| |
Collapse
|
11
|
Vargas-Maya NI, Olmedo-Monfil V, Ramírez-Prado JH, Reyes-Cortés R, Padilla-Vaca F, Franco B. Catalases in the pathogenesis of Sporothrix schenckii research. PeerJ 2022; 10:e14478. [PMID: 36523453 PMCID: PMC9745942 DOI: 10.7717/peerj.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic fungal infection success depends on the ability to escape the immune response. Most strategies for fungal infection control are focused on the inhibition of virulence factors and increasing the effectiveness of antifungal drugs. Nevertheless, little attention has been focused on their physiological resistance to the host immune system. Hints may be found in pathogenic fungi that also inhabit the soil. In nature, the saprophyte lifestyle of fungi is also associated with predators that can induce oxidative stress upon cell damage. The natural sources of nutrients for fungi are linked to cellulose degradation, which in turn generates reactive oxygen species (ROS). Overall, the antioxidant arsenal needed to thrive both in free-living and pathogenic lifestyles in fungi is fundamental for success. In this review, we present recent findings regarding catalases and oxidative stress in fungi and how these can be in close relationship with pathogenesis. Additionally, special focus is placed on catalases of Sporothrix schenckii as a pathogenic model with a dual lifestyle. It is assumed that catalase expression is activated upon exposure to H2O2, but there are reports where this is not always the case. Additionally, it may be relevant to consider the role of catalases in S. schenckii survival in the saprophytic lifestyle and why their study can assess their involvement in the survival and therefore, in the virulence phenotype of different species of Sporothrix and when each of the three catalases are required. Also, studying antioxidant mechanisms in other isolates of pathogenic and free-living fungi may be linked to the virulence phenotype and be potential therapeutic and diagnostic targets. Thus, the rationale for this review to place focus on fungal catalases and their role in pathogenesis in addition to counteracting the effect of immune system reactive oxygen species. Fungi that thrive in soil and have mammal hosts could shed light on the importance of these enzymes in the two types of lifestyles. We look forward to encouraging more research in a myriad of areas on catalase biology with a focus on basic and applied objectives and placing these enzymes as virulence determinants.
Collapse
Affiliation(s)
| | | | | | - Ruth Reyes-Cortés
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
12
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
13
|
Bohn A, Sénéchal‐David K, Rebilly J, Herrero C, Leibl W, Anxolabéhère‐Mallart E, Banse F. Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex. Chemistry 2022; 28:e202201600. [PMID: 35735122 PMCID: PMC9804275 DOI: 10.1002/chem.202201600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/05/2023]
Abstract
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEACNRS91198Gif-sur-YvetteFrance
| | | | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
14
|
Vukić MD, Vuković NL, Mladenović M, Tomašević N, Matić S, Stanić S, Sapienza F, Ragno R, Božović M, Kačániová M. Chemical Composition of Various Nepeta cataria Plant Organs' Methanol Extracts Associated with In Vivo Hepatoprotective and Antigenotoxic Features as well as Molecular Modeling Investigations. PLANTS (BASEL, SWITZERLAND) 2022; 11:2114. [PMID: 36015417 PMCID: PMC9415533 DOI: 10.3390/plants11162114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
This report summarizes the chemical composition analysis of Nepeta cataria L. flower, leaf, and stem methanol extracts (FME, LME, SME, respectively) as well as their hepatoprotective and antigenotoxic features in vivo and in silico. Herein, Wistar rat liver intoxication with CCl4 resulted in the generation of trichloromethyl and trichloromethylperoxy radicals, causing lipid peroxidation within the hepatocyte membranes (viz. hepatotoxicity), as well as the subsequent formation of aberrant rDNA adducts and consequent double-strand break (namely genotoxicity). Examined FME, LME, and SME administered orally to Wistar rats before the injection of CCl4 exerted the most notable pharmacological properties in the concentrations of 200, 100, and 50 mg/kg of body weight, respectively. Thus, the extracts' hepatoprotective features were determined by monitoring the catalytic activities of enzymes and the concentrations of reactive oxidative species, modulating the liver redox status. Furthermore, the necrosis of hepatocytes was assessed by means of catalytic activities of liver toxicity markers. The extracts' antigenotoxic features were quantified using the comet assay. Distinct pharmacological property features may be attributed to quercitrin (8406.31 μg/g), chlorogenic acid (1647.32 μg/g), and quinic acid (536.11 μg/g), found within the FME, rosmarinic acid (1056.14 μg/g), and chlorogenic acid (648.52 μg/g), occurring within the LME, and chlorogenic acid (1408.43 μg/g), the most abundant in SME. Hence, the plant's secondary metabolites were individually administered similar to extracts, upon which their pharmacology in vivo was elucidated in silico by means of the structure-based studies within rat catalase, as a redox marker, and rat topoisomerase IIα, an enzyme catalyzing the rat DNA double-strand break. Conclusively, the examined N. cataria extracts in specified concentrations could be used in clinical therapy for the prevention of toxin-induced liver diseases.
Collapse
Affiliation(s)
- Milena D. Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nenad L. Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35601 Rzeszow, Poland
| |
Collapse
|
15
|
Mshenskaya N, Sinitsyna Y, Kalyasova E, Valeria K, Zhirova A, Karpeeva I, Ilin N. Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas. PLANTS 2022; 11:plants11151955. [PMID: 35956432 PMCID: PMC9370302 DOI: 10.3390/plants11151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose of the study is to characterize the possible role of the plant cell redox metabolism regulating system in the Schumann Resonances EMF perception. Activity of catalase and superoxide dismutase, their isoenzyme structure, content of malondialdehyde, composition of polar lipids in leaf extracts of wheat and pea plants treated with short-time (30 min) and long-time (18 days) ELF EMF with a frequency of 7.8 Hz, 14.3 Hz, 20.8 Hz have been investigated. Short-time exposure ELF EMF caused more pronounced bio effects than long-time exposure. Wheat catalase turned out to be the most sensitive parameter to magnetic fields. It is assumed that the change in the activity of wheat catalase after a short-term ELF EMF may be associated with the ability of this enzyme to perceive the action of a weak EMF through calcium calmodulin and/or cryptochromic signaling systems.
Collapse
Affiliation(s)
- Natalia Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
- Correspondence:
| | - Yulia Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Ekaterina Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Koshcheeva Valeria
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Anastasia Zhirova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Irina Karpeeva
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
| |
Collapse
|
16
|
Role of C-terminal domain in a manganese-catalase from Geobacillus thermopakistaniensis. J Biosci Bioeng 2022; 134:203-212. [PMID: 35811183 DOI: 10.1016/j.jbiosc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
Abstract
Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. We have characterized two manganese-catalases from Geobacillus thermopakistaniensis, CatGt and Cat-IIGt, which exhibited significant variation in their sequence, structure and properties. There was only 23% sequence identity between the two. The striking structural difference was the presence of an extended C-terminal domain in CatGt. Molecular modelling and docking studies revealed that deletion of the C-terminal domain removes non-specific binding, which results in increased substrate affinity. To verify experimentally, a C-terminal truncated version of CatGt, named as CatGt-ΔC, was produced in Escherichia coli and effects of deletion were analyzed. There was no significant difference in optimal pH, optimal temperature and substrate specificity of CatGt and CatGt-ΔC. However, Km value was reduced from 259 to 157 mM and CatGt-ΔC exhibited ∼1.5-fold higher catalytic efficiency as compared to CatGt. Furthermore, removal of the C-terminal domain converted the tetrameric nature to monomeric, and reduced the thermostability of the truncated protein. These results demonstrate that C-terminal domain of CatGt might have little role in maintaining enzyme function but provides additional structural stability to the protein, which is a desired property for industrial applications.
Collapse
|
17
|
Padovani D, Galardon E. Molecular Basis for the Interaction of Catalase with d-Penicillamine: Rationalization of Some of Its Deleterious Effects. Chem Res Toxicol 2022; 35:412-421. [PMID: 35191669 DOI: 10.1021/acs.chemrestox.1c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
d-Penicillamine (d-Pen) is a sulfur compound used in the management of rheumatoid arthritis, Wilson's disease (WD), and alcohol dependence. Many side effects are associated with its use, particularly after long-term treatment. However, the molecular basis for such side effects is poorly understood. Based on the well-known oxidase activity of hemoproteins and the participation of catalase in cellular H2O2 redox signaling, we posit that d-Pen could inactivate catalase, thus disturbing H2O2 levels. Herein, we report on the molecular basis that could partly explain the side effects associated with this drug compound, and we demonstrate that it induces the formation of compound II, a temporarily inactive state of the enzyme, through two distinct mechanisms. Initially, d-Pen reacts with native catalase and/or iron metal ions, used to mimic non-heme iron overload observed in long-term treated WD patients, to generate thiyl radicals. These radicals partake in a futile redox cycle, thus producing superoxide radical anions O2•- and hydrogen peroxide H2O2. Then, either H2O2 unexpectedly reacts with reduced CAT-Fe(II) to produce compound II or both aforementioned reactive oxygen species intervene in compound II generation through compound I formation and then reduction. These findings support the evidence that d-Pen could perturb H2O2 redox homeostasis through transient but recurring catalase inactivation, which may in part rationalize some deleterious effects observed with this therapeutic agent, as discussed.
Collapse
Affiliation(s)
- Dominique Padovani
- UMR 8601, LCBPT, CNRS-Université de Paris, 45 rue des Sts Pères, 75006 Paris, France
| | - Erwan Galardon
- UMR 8601, LCBPT, CNRS-Université de Paris, 45 rue des Sts Pères, 75006 Paris, France
| |
Collapse
|
18
|
Yang B, Yao H, Yang J, Chen C, Guo Y, Fu H, Shi J. In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. J Am Chem Soc 2022; 144:314-330. [PMID: 34881869 DOI: 10.1021/jacs.1c09993] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the coordination geometry of the active metal sites of natural enzymes is an efficient strategy in designing therapeutic chemicals with enzymelike in vivo reaction thermodynamics and kinetics. In this study, this chemical concept has been applied for the in situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatment by using rheumatoid arthritis, a common and hardly curable immune-mediated diseases, as an example. Briefly, a composite nanomedicine has been first constructed by loading cationic porphyrin ligands into a manganese-engineered mesoporous silica nanocarrier, which can respond to a mildly acidic environment to concurrently release manganous ions and porphyrin ligands, enabling their subsequent coordination and synthesis of manganese porphyrin with a coordination environment of an active Mn site similar to those of the metal sites in natural superoxide dismutase (SOD) and catalase. Due to the strong metal-ligand exchange coupling enabled by the N-ethylpyridinium-2-yl groups tetrasubstituted in the meso positions of N4-macroheterocycles, such a manganese porphyrin presents the SOD-like activity of disproportionating superoxide anions via outer-sphere proton-coupled one-electron transfer (diaquamanganese(III)/monoaquamanganese(II) cycling), as well as the catalase-like activity of disproportionating hydrogen peroxide via inner-sphere proton-coupled two-electron transfer (diaquamanganese(III)/dioxomanganese(V) cycling). Cellular experiments demonstrated the high antioxidative efficacy of the composite nanomedicine in M1 macrophages by promoting their polarization shift to the anti-inflammatory M2 phenotype. Equally importantly, the silicon-containing oligomers released from the manganese silicate nanocarrier can act as heterogeneous nucleation centers of hydroxyapatite for facilitating biomineralization by bone mesenchymal stem cells. Finally, an in vivo adjuvant-induced arthritis animal model further reveals the high efficacy of the nanomedicine in treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jiacai Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
19
|
Natalello A, Khelil-Arfa H, Luciano G, Zoon M, Menci R, Scerra M, Blanchard A, Mangano F, Biondi L, Priolo A. Effect of different levels of organic zinc supplementation on pork quality. Meat Sci 2022; 186:108731. [PMID: 35033832 DOI: 10.1016/j.meatsci.2021.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/09/2023]
Abstract
This study investigated the effect of two supplementation levels of zinc glycinate (ZnGly) on performance, carcass characteristics, and meat quality of growing-finishing pigs. Thirty pigs (bodyweight: 61 ± 4.0 kg) were assigned to three treatments and fed ad libitum for 56 days a diet supplemented with 0 (control), 45 (Zn45), or 100 mg/kg (Zn100) of ZnGly. The highest ZnGly supplementation lowered the average daily gain (P = 0.031); while, cold carcass weight did not differ between treatments. Both ZnGly levels reduced carcass chill loss (P < 0.001). Micromineral content, color stability, and fatty acid profile of meat were not altered by ZnGly. Superoxide dismutase activity was lowered by Zn45 compared to control (P = 0.007); while, catalase activity was enhanced by Zn100 (P = 0.003). Although ZnGly supplementation did not influence lipid oxidation in raw meat and in meat homogenates incubated with pro-oxidant catalysts, Zn45 limited lipid oxidation in cooked meat (P = 0.037). Our results demonstrated that supplementing pigs with 45 mg/kg of ZnGly could improve the oxidative stability of pork subjected to strong pro-oxidant conditions, but this effect needs to be further elucidated.
Collapse
Affiliation(s)
- Antonio Natalello
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy
| | | | - Giuseppe Luciano
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy.
| | - Mieke Zoon
- Pancosma ADM, A One Business Center, 1180 Rolle, Switzerland
| | - Ruggero Menci
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy
| | - Manuel Scerra
- University of Reggio Calabria, Dipartimento di Agraria, Produzioni Animali, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | | | - Fabrizio Mangano
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy
| | - Luisa Biondi
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy
| | - Alessandro Priolo
- University of Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Via Valdisavoia 5, 95123 Catania, Italy
| |
Collapse
|
20
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
21
|
Looking into a highly thermostable and efficient recombinant manganese-catalase from Geobacillusthermopakistaniensis. J Biosci Bioeng 2021; 133:25-32. [PMID: 34642121 DOI: 10.1016/j.jbiosc.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/17/2023]
Abstract
Catalases, heme or non-heme, are catalysts that decompose hydrogen peroxide. Among them, non-heme or manganese-catalases have been studied from limited organisms. We report here heterologous production of a manganese-catalase, Cat-IIGt, previously annotated as a hypothetical protein, from a thermophilic bacterium Geobacillus thermopakistaniensis. Recombinant Cat-IIGt, produced as inactive inclusion bodies in Escherichia coli, was solubilized and refolded into a soluble and highly active form. Sequence homology, absorption spectra, resistance to sodium azide inhibition and activation by Mn2+ indicated that it was a manganese-catalase. Metal analysis revealed the presence of ∼2 Mn2+ and ∼2 Ca2+ per subunit of Cat-IIGt. Recombinant Cat-IIGt exhibited highest activity at pH 10.0 and 70°C. The enzyme was highly active with a specific activity of 40,529 μmol min-1 mg-1. The apparent Km and kcat values were 75 mM and 1.5 × 104 s-1 subunit-1, respectively. Recombinant Cat-IIGt was highly thermostable with a half-life of 30 min at 100°C. The structural attributes of Cat-IIGt, including the metal and substrate binding residues, were predicted by homology modeling and molecular docking studies. High activity and thermostability and alkaline nature make Cat-IIGt a potential candidate for textile and paper processing industries.
Collapse
|
22
|
Zilli SC, Grehs BWN, Carissimi E, Pizzolato TM, da Silva WL, Silvestri S. Toxicity of acrylamide after degradation by conjugated (UV/H 2O 2) photolysis in microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38085-38093. [PMID: 33725300 DOI: 10.1007/s11356-021-13355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide (AA) is routinely used in laboratories and industries, and its disposal is always a problem; consequently, offering an alternative for their treatment contributes to conducting research in a responsible way. Therefore, in this work, acrylamide solutions were degraded by ultraviolet radiation and hydrogen peroxide (H2O2), and their toxicity was evaluated using a Desmodesmus quadricauda microalgae growth assay. The AA solutions were exposed to different dosages of H2O2 and different exposure times to UV radiation. The degradation was evaluated by liquid chromatography, which allowed the identification of the acrylamide peak and subsequent by-product peaks. A 100% degradation of the 1.5 mg L-1 AA solution with UV/H2O2 (0.034 g L-1) was achieved in just 10 min. The by-products formed did not inhibit the growth of D. quadricauda microalgae. The number of D. quadricauda individuals that grew in acrylamide solutions exposed to 20 and 30 min of UV radiation, with 0.034 g L-1 of H2O2, was very similar to the number of individuals that grew in the control solution. Thus, the treatment proposed in this work using H2O2 combined with ultraviolet radiation degraded acrylamide into by-products with reduced toxicity.
Collapse
Affiliation(s)
- Suzan Costa Zilli
- Technology Center, Federal University of Santa Maria, Roraima Ave. 1000-7, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Bárbara Werle Nunes Grehs
- Technology Center, Federal University of Santa Maria, Roraima Ave. 1000-7, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Elvis Carissimi
- Technology Center, Federal University of Santa Maria, Roraima Ave. 1000-7, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Tânia Mara Pizzolato
- Chemistry Institute, Federal University of Rio Grande do Sul, Bento Gonçalves Ave. 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - William Leonardo da Silva
- Nanoscience Graduate Program, Franciscan University, Silva Jardim St. 1323, Santa Maria, Rio Grande do Sul, 97010-491, Brazil
| | - Siara Silvestri
- Technology Center, Federal University of Santa Maria, Roraima Ave. 1000-7, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
23
|
Agashe P, Kuzminov A. Catalase inhibition by nitric oxide potentiates hydrogen peroxide to trigger catastrophic chromosome fragmentation in Escherichia coli. Genetics 2021; 218:6214516. [PMID: 34027548 DOI: 10.1093/genetics/iyab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this "NO paradox," we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the "NO paradox." We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.
Collapse
Affiliation(s)
- Pooja Agashe
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Yuan F, Yin S, Xu Y, Xiang L, Wang H, Li Z, Fan K, Pan G. The Richness and Diversity of Catalases in Bacteria. Front Microbiol 2021; 12:645477. [PMID: 33815333 PMCID: PMC8017148 DOI: 10.3389/fmicb.2021.645477] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Catalases play a key role in the defense against oxidative stress in bacteria by catalyzing the decomposition of H2O2. In addition, catalases are also involved in multiple cellular processes, such as cell development and differentiation, as well as metabolite production. However, little is known about the abundance, diversity, and distribution of catalases in bacteria. In this study, we systematically surveyed and classified the homologs of three catalase families from 2,634 bacterial genomes. It was found that both of the typical catalase and Mn-catalase families could be divided into distinct groups, while the catalase-peroxidase homologs formed a tight family. The typical catalases are rich in all the analyzed bacterial phyla except Chlorobi, in which the catalase-peroxidases are dominant. Catalase-peroxidases are rich in many phyla, but lacking in Deinococcus-Thermus, Spirochetes, and Firmicutes. Mn-catalases are found mainly in Firmicutes and Deinococcus-Thermus, but are rare in many other phyla. Given the fact that catalases were reported to be involved in secondary metabolite biosynthesis in several Streptomyces strains, the distribution of catalases in the genus Streptomyces was given more attention herein. On average, there are 2.99 typical catalases and 0.99 catalase-peroxidases in each Streptomyces genome, while no Mn-catalases were identified. To understand detailed properties of catalases in Streptomyces, we characterized all the five typical catalases from S. rimosus ATCC 10970, the oxytetracycline-producing strain. The five catalases showed typical catalase activity, but possessed different catalytic properties. Our findings contribute to the more detailed classification of catalases and facilitate further studies about their physiological roles in secondary metabolite biosynthesis and other cellular processes, which might facilitate the yield improvement of valuable secondary metabolites in engineered bacteria.
Collapse
Affiliation(s)
- Fang Yuan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yang Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Shaeer A, Aslam M, Rashid N. Structural and functional analyses of a novel manganese-catalase from Bacillus subtilis R5. Int J Biol Macromol 2021; 180:222-233. [PMID: 33737179 DOI: 10.1016/j.ijbiomac.2021.03.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022]
Abstract
Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. Limited reports are available on characterization of manganese-catalases. We describe here molecular cloning and expression in Escherichia coli of a putative manganese-catalase gene from mesophilic bacterium, Bacillus subtilis R5. The gene product, CatBsu, produced as a soluble protein, was purified to apparent homogeneity and biochemically characterized. The absorption spectra and nonsignificant inhibition by sodium azide indicated that it is a manganese-catalase. The protein was in homohexameric form in solution, with a subunit molecular weight of 30 kDa, containing ~2 Mn2+ and ~1 Ca2+ per subunit. CatBsu showed highest activity at pH 8.0 and 55 °C. It was found to be highly active with a specific activity of 25,290 μmol min-1 mg-1 and apparent Km and kcat values of 98 mM and 1.27 × 104 s-1 subunit-1, respectively. Although from a mesophilic source, it exhibited a half-life of 2 h at 80 °C. Furthermore, the active site and metal binding residues in CatBsu were predicted by homology modelling and molecular docking. To the best of our knowledge, this is the first characterization of a manganese-catalase from genus Bacillus.
Collapse
Affiliation(s)
- Abeera Shaeer
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
26
|
Zhang C, Wang X, Pi S, Wei Z, Wang C, Yang F, Li G, Nie G, Hu G. Cadmium and molybdenum co-exposure triggers autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143570. [PMID: 33243500 DOI: 10.1016/j.scitotenv.2020.143570] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and excessive molybdenum (Mo) are detrimental to animals, but the combined nephrotoxic impacts of Cd and Mo on duck are still unclear. To evaluate the combined impacts of Cd and Mo on autophagy via Cytochrome P450s (CYP450s)/reactive oxygen species (ROS) pathway, duck renal tubular epithelial cells were treated with 3CdSO4·8H2O (4.0 μM Cd), (NH4)6Mo7O24·4H2O (500.0 μM Mo), butylated hydroxy anisole (BHA) (100.0 μM) and combination of Cd and Mo or Cd, Mo and BHA for 12 h, and combined cytotoxicity was investigated. The results indicated that Mo or/and Cd induced CYP1A1, CYP1B1, CYP2C9, CYP3A8 and CYP4B1 mRNA levels, decreased superoxide dismutase (SOD), catalase (CAT) activities and glutathione peroxidase (GSH-Px) content, and increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Besides, Mo or/and Cd elevated the number of autophagosome and microtubule-associated protein light chain 3 (LC3) puncta, upregulated mRNA levels of Beclin-1, LC3A, LC3B, Atg5 and adenosine 5'-monophosphate (AMP)-activated protein kinase α1 (AMPKα-1), inhibited Dynein, p62 and mammalian target of rapamycin (mTOR) mRNA levels, increased Beclin-1 and LC3II/LC3I protein levels. Moreover, the changes of these factors in Mo and Cd co-treated groups were more apparent. Additionally, BHA could efficiently alleviate the changes of above these indicators co-induced by Mo and Cd. Overall, these results manifest Cd and Mo co-exposure may synergistically trigger autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China.
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
27
|
Wong HS, Mezera V, Dighe P, Melov S, Gerencser AA, Sweis RF, Pliushchev M, Wang Z, Esbenshade T, McKibben B, Riedmaier S, Brand MD. Superoxide produced by mitochondrial site I Q inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic Biol Med 2021; 164:223-232. [PMID: 33421588 DOI: 10.1016/j.freeradbiomed.2020.12.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Superoxide produced by mitochondria has been implicated in numerous physiologies and pathologies. Eleven different mitochondrial sites that can produce superoxide and/or hydrogen peroxide (O2.-/H2O2) have been identified in vitro, but little is known about their contributions in vivo. We introduce novel variants of S1QELs and S3QELs (small molecules that suppress O2.-/H2O2 production specifically from mitochondrial sites IQ and IIIQo, respectively, without compromising bioenergetics), that are suitable for use in vivo. When administered by intraperitoneal injection, they achieve total tissue concentrations exceeding those that are effective in vitro. We use them to study the engagement of sites IQ and IIIQo in mice lacking functional manganese-superoxide dismutase (SOD2). Lack of SOD2 is expected to elevate superoxide levels in the mitochondrial matrix, and leads to severe pathologies and death about 8 days after birth. Compared to littermate wild-type mice, 6-day-old Sod2-/- mice had significantly lower body weight, lower heart succinate dehydrogenase activity, and greater hepatic lipid accumulation. These pathologies were ameliorated by treatment with a SOD/catalase mimetic, EUK189, confirming previous observations. A 3-day treatment with S1QEL352 decreased the inactivation of cardiac succinate dehydrogenase and hepatic steatosis in Sod2-/- mice. S1QEL712, which has a distinct chemical structure, also decreased hepatic steatosis, confirming that O2.- derived specifically from mitochondrial site IQ is a significant driver of hepatic steatosis in Sod2-/- mice. These findings also demonstrate the ability of these new S1QELs to suppress O2.- production in the mitochondrial matrix in vivo. In contrast, suppressing site IIIQo using S3QEL941 did not protect, suggesting that site IIIQo does not contribute significantly to mitochondrial O2.- production in the hearts or livers of Sod2-/- mice. We conclude that the novel S1QELs are effective in vivo, and that site IQ runs in vivo and is a significant driver of pathology in Sod2-/- mice.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Vojtech Mezera
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Pratiksha Dighe
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Ramzi F Sweis
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Zhi Wang
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Tim Esbenshade
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Bryan McKibben
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
28
|
Abstract
Significance: Oxidative stress in moderation positively affects homeostasis through signaling, while in excess it is associated with adverse health outcomes. Both activities are generally attributed to reactive oxygen species (ROS); hydrogen peroxide as the signal, and cysteines on regulatory proteins as the target. However, using antioxidants to affect signaling or benefit health has not consistently translated into expected outcomes, or when it does, the mechanism is often unclear. Recent Advances: Reactive sulfur species (RSS) were integral in the origin of life and throughout much of evolution. Sophisticated metabolic pathways that evolved to regulate RSS were easily "tweaked" to deal with ROS due to the remarkable similarities between the two. However, unlike ROS, RSS are stored, recycled, and chemically more versatile. Despite these observations, the relevance and regulatory functions of RSS in extant organisms are generally underappreciated. Critical Issues: A number of factors bias observations in favor of ROS over RSS. Research conducted in room air is hyperoxic to cells, and promotes ROS production and RSS oxidation. Metabolic rates of rodent models greatly exceed those of humans; does this favor ROS? Analytical methods designed to detect ROS also respond to RSS. Do these disguise the contributions of RSS? Future Directions: Resolving the ROS/RSS issue is vital to understand biology in general and human health in particular. Improvements in experimental design and analytical methods are crucial. Perhaps the most important is an appreciation of all the attributes of RSS and keeping an open mind.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA
| |
Collapse
|
29
|
Sierra-Campos E, Valdez-Solana M, Avitia-Domínguez C, Campos-Almazán M, Flores-Molina I, García-Arenas G, Téllez-Valencia A. Effects of Moringa oleifera Leaf Extract on Diabetes-Induced Alterations in Paraoxonase 1 and Catalase in Rats Analyzed through Progress Kinetic and Blind Docking. Antioxidants (Basel) 2020; 9:antiox9090840. [PMID: 32911700 PMCID: PMC7555439 DOI: 10.3390/antiox9090840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
In our study, we aimed to evaluate the effects of Moringa oleifera leaves extract on rat paraoxonase 1 (rPON1) and catalase (rCAT) activities in alloxan-induced diabetic rats. Our study included three groups; group C (control, n = 5); group D (diabetic, n = 5); and group DM (M. oleifera extract-supplemented diabetic rats, n = 5). Daily oral administration of M. oleifera extract at 200 mg/kg doses produced an increase in endogenous antioxidants. Serum rPON1 (lactonase) and liver cytosol catalase activities were determined by a spectrophotometric assay using progress curve analysis. We found a decrease in the Vm value of rPON1 in diabetic rats, but dihydrocoumarin (DHC) affinity (Km) was slightly increased. The value of Vm for the DM group was found to be reduced approximately by a factor of 3 compared with those obtained for group C, whereas Km was largely changed (96 times). Catalase activity was significantly higher in the DM group. These data suggest that the activation of rPON1 and rCAT activities by M. oleifera extracts may be mediated via the effect of the specific flavonoids on the enzyme structure. In addition, through molecular blind docking analysis, rPON1 was found to have two binding sites for flavonoids. In contrast, flavonoids bound at four sites in rCAT. In conclusion, the data suggest that compounds from M. oleifera leaves extract were able to influence the catalytic activities of both enzymes to compensate for the changes provoked by diabetes in rats.
Collapse
Affiliation(s)
- Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, Gómez Palacio 35010, Mexico; (M.V.-S.); (I.F.-M.)
- Correspondence: (E.S.-C.); (A.T.-V.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, Gómez Palacio 35010, Mexico; (M.V.-S.); (I.F.-M.)
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Avenida Universidad y Fanny Anitúa S/N, Durango 34000, Mexico; (C.A.-D.); (M.C.-A.)
| | - Mara Campos-Almazán
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Avenida Universidad y Fanny Anitúa S/N, Durango 34000, Mexico; (C.A.-D.); (M.C.-A.)
| | - Ismael Flores-Molina
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, Gómez Palacio 35010, Mexico; (M.V.-S.); (I.F.-M.)
| | - Guadalupe García-Arenas
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango Campus, Gómez Palacio 35010, Mexico;
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Avenida Universidad y Fanny Anitúa S/N, Durango 34000, Mexico; (C.A.-D.); (M.C.-A.)
- Correspondence: (E.S.-C.); (A.T.-V.)
| |
Collapse
|
30
|
Lindeque RM, Woodley JM. The Effect of Dissolved Oxygen on Kinetics during Continuous Biocatalytic Oxidations. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rowan M. Lindeque
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
31
|
Fainsod A, Bendelac-Kapon L, Shabtai Y. Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Subcell Biochem 2020; 95:197-225. [PMID: 32297301 DOI: 10.1007/978-3-030-42282-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior-posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel.
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| |
Collapse
|
32
|
Guo K, Su L, Wang Y, Liu H, Lin J, Cheng P, Yin X, Liang M, Wang Q, Huang Z. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food Funct 2020; 11:5004-5016. [DOI: 10.1039/d0fo00560f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C. elegans-based activity guided and size-based isolation of antioxidant peptide fractions from a sea cucumber protein hydrolyzate and their bioinformatic characterization.
Collapse
|
33
|
Singh KRB, Nayak V, Sarkar T, Singh RP. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 2020; 10:27194-27214. [PMID: 35515804 PMCID: PMC9055511 DOI: 10.1039/d0ra04736h] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cerium oxide nanoparticles have revolutionized the biomedical field and is still in very fast pace of development. Hence, this work elaborates the physicochemical properties, biosynthesis, and biomedical applications of cerium oxide nanoparticles.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Tanushri Sarkar
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
34
|
Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. J Virol 2019; 93:JVI.00653-19. [PMID: 31391270 DOI: 10.1128/jvi.00653-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is an equine lentivirus similar to HIV-1, targets host immune cells, and causes a life-long infection in horses. The Chinese live EIAV vaccine is attenuated from long-term passaging of a highly virulent strain in vitro The parent pathogenic strain (EIAVDLV34) induces a host inflammatory storm to cause severe pathological injury of animals. However, the vaccine strain (EIAVDLV121) induces a high level of apoptosis to eliminate infected cells. To investigate how these processes are regulated, we performed a comparative proteomics analysis and functional study in equine monocyte-derived macrophages (eMDMs) and found that the divergent mitochondrial protein expression profiles caused by EIAV strains with different virulence led to disparate mitochondrial function, morphology, and metabolism. This in turn promoted the distinct transformation of macrophage inflammatory polarization and intrinsic apoptosis. In EIAVDLV34-infected cells, a high level of glycolysis and increased mitochondrial fragmentation were induced, resulting in the M1-polarized proinflammatory-type transformation of macrophages and the subsequent production of a strong inflammatory response. Following infection with EIAVDLV121, the infected cells were transformed into M2-polarized anti-inflammatory macrophages by inhibition of glycolysis. In this case, a decrease in the mitochondrial membrane potential and impairment of the electron transport chain led to increased levels of apoptosis and reactive oxygen species. These results correlated with viral pathogenicity loss and may help provide an understanding of the key mechanism of lentiviral attenuation.IMPORTANCE Following viral infection, the working pattern and function of the cell can be transformed through the impact on mitochondria. It still unknown how the mitochondrial response changes in cells infected with viruses in the process of virulence attenuation. EIAVDLV121 is the only effective lentiviral vaccine for large-scale use in the world. EIAVDLV34 is the parent pathogenic strain. Unlike EIAVDLV34-induced inflammation storms, EIAVDLV121 can induce high levels of apoptosis. For the first time, we found that, after the mitochondrial protein expression profile is altered, EIAVDLV34-infected cells are transformed into M1-polarized-type macrophages and cause inflammatory injury and that the intrinsic apoptosis pathway is activated in EIAVDLV121-infected cells. These studies shed light on how the mitochondrial protein expression profile changes between cells infected by pathogenic lentivirus strains and cells infected by attenuated lentivirus strains to drive different cellular responses, especially from inflammation to apoptosis.
Collapse
|
35
|
Gómez S, Navas-Yuste S, Payne AM, Rivera W, López-Estepa M, Brangbour C, Fullà D, Juanhuix J, Fernández FJ, Vega MC. Peroxisomal catalases from the yeasts Pichia pastoris and Kluyveromyces lactis as models for oxidative damage in higher eukaryotes. Free Radic Biol Med 2019; 141:279-290. [PMID: 31238127 DOI: 10.1016/j.freeradbiomed.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
Catalases are among the main scavengers of reactive oxygen species (ROS) present in the peroxisome, thereby preventing oxidative cellular and tissular damage. In human, multiple diseases are associated with malfunction of these organelles, which causes accumulation of ROS species and consequently the inefficient detoxification of cells. Despite intense research, much remains to be clarified about the precise molecular role of catalase in cellular homeostasis. Yeast peroxisomes and their peroxisomal catalases have been used as eukaryotic models for oxidative metabolism, ROS generation and detoxification, and associated pathologies. In order to provide reliable models for oxidative metabolism research, we have determined the high-resolution crystal structures of peroxisomal catalase from two important biotechnology and basic biology yeast models, Pichia pastoris and Kluyveromyces lactis. We have performed an extensive functional, biochemical and stability characterization of both enzymes in order to establish their differential activity profiles. Furthermore, we have analyzed the role of the peroxisomal catalase under study in the survival of yeast to oxidative burst challenges combining methanol, water peroxide, and sodium chloride. Interestingly, whereas catalase activity was induced 200-fold upon challenging the methylotrophic P. pastoris cells with methanol, the increase in catalase activity in the non-methylotrophic K. lactis was only moderate. The inhibitory effect of sodium azide and β-mercaptoethanol over both catalases was analyzed, establishing IC50 values for both compounds that are consistent with an elevated resistance of both enzymes toward these inhibitors. Structural comparison of these two novel catalase structures allows us to rationalize the differential susceptibility to inhibitors and oxidative bursts. The inherent worth and validity of the P. pastoris and K. lactis yeast models for oxidative damage will be strengthened by the availability of reliable structural-functional information on these enzymes, which are central to our understanding of peroxisomal response toward oxidative stress.
Collapse
Affiliation(s)
- Sara Gómez
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sergio Navas-Yuste
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Asia M Payne
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Wilmaris Rivera
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Miguel López-Estepa
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Clotilde Brangbour
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | | | | | - Francisco J Fernández
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - M Cristina Vega
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
36
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
37
|
Kleniewska P, Pawliczak R. The influence of apocynin, lipoic acid and probiotics on antioxidant enzyme levels in the pulmonary tissues of obese asthmatic mice. Life Sci 2019; 234:116780. [PMID: 31430453 DOI: 10.1016/j.lfs.2019.116780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Bronchial asthma and obesity are common health problems. Obesity is already responsible for 300,000 deaths per year. AIMS The aim of the present study was to assess whether apocynin, alpha lipoic acid and probiotic administration in combination with low-fat diet supplementation influences the levels of antioxidant enzymes in the pulmonary tissues of obese asthmatic mice. MAIN METHODS The study was performed on male C57/BL6 mice divided into 10 groups: (I) control; (II) asthma; (III) obesity; (IV) asthma + obesity; (V) asthma + obesity + apocynin p.o. 15 mg/kg/day for 12 weeks; (VI) asthma + obesity + low-fat diet for 12 weeks; (VII) asthma + obesity + low-fat diet for 12 weeks with apocynin p.o. 15 mg/kg/day; (VIII) asthma + obesity + low-fat diet with probiotics for 12 weeks; (IX) asthma + obesity + low-fat diet for 12 weeks with lipoic acid p.o. 100 mg/kg/day for 12 weeks; (X) asthma + obesity + standard diet with probiotics for 12 weeks. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activity were examined. The administration of apocynin alone and apocynin in combination with a low-fat diet resulted in a significant increase in SOD values (respectively p < 0.001; p = 0.010). Application of probiotics resulted in a decrease in CAT activity (p = 0.037) and an increase in GPx activity (p < 0.001) compared to obese asthmatic mice. The administration of lipoic acid resulted in an increase in GR activity (p = 0.024 vs. control). KEY FINDINGS Supplementation containing apocynin, lipoic acid and probiotics has a positive influence on the antioxidant capacity of the pulmonary tissues of obese asthmatic mice. SIGNIFICANCE These results may contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
38
|
Shaeer A, Aslam M, Rashid N. A highly stable manganese catalase from Geobacillus thermopakistaniensis: molecular cloning and characterization. Extremophiles 2019; 23:707-718. [DOI: 10.1007/s00792-019-01124-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
|
39
|
Sellaththurai S, Priyathilaka TT, Lee J. Molecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2019; 89:647-659. [PMID: 30936047 DOI: 10.1016/j.fsi.2019.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Organisms possess a cellular antioxidant defense system inclusive of ROS scavengers to maintain the homeostasis of antioxidant levels. Catalase is a major ROS scavenger enzyme that plays a significant role in the antioxidant defense mechanism of organisms by reducing toxic hydrogen peroxide molecules into a nontoxic form of oxygen and water with a high turnover rate. In the present study, we performed molecular and functional characterization of the catalase homolog from Hippocampus abdominalis (HaCat). The HaCat cDNA sequence was identified as a 1578 bp ORF (open reading frame) that encodes a polypeptide of 526 amino acids with 59.33 kDa molecular weight. Its estimated pI value is 7.7, and it does not have any signal sequences. HaCat shared a conserved domain arrangement including the catalase proximal active site signature and heme ligand signature domain with the previously identified catalase counterparts. Phylogenetic analysis displayed close evolutionary relationships between HaCat and catalases from other teleost fish. According to our qPCR results, ubiquitous expression of HaCat transcripts were observed in all the tested tissues with high expression in the kidney followed by liver. Significant modulations of HaCat transcription were observed in blood, liver, and kidney tissues post-challenge with Streptococcus iniae, Edwardsiella tarda, poly I:C, and LPS. Peroxidase activity of recombinant HaCat (rHaCat) was evaluated using an ABTS assay and the ROS removal effect was further confirmed by oxidative DNA damage protection and cell viability assays. The rHaCat showed more than 97% activity over a temperature and pH range of 10 °C-40 °C and 5 to 6, respectively. The above results suggest that HaCat plays an indispensable role in the oxidative homeostasis of the seahorse during pathogenic attack.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
40
|
The role of catalases in the prevention/promotion of oxidative stress. J Inorg Biochem 2019; 197:110699. [PMID: 31055214 DOI: 10.1016/j.jinorgbio.2019.110699] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Abstract
Catalases, heme enzymes which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, are important members of the antioxidant defense system of cells of almost all aerobic organisms. However, recent studies suggest that catalase may be involved in various other processes in the cell. The paper provides a review of reactions of catalases with their main substrate, hydrogen peroxide, and with oxidizing species such as hydroxyl radical, superoxide, nitric oxide, peroxynitrite, hypochlorous acid, and singlet oxygen. A number of these individuals are formed under oxidative eustress (good stress) as well as distress (bad stress), while others only under conditions of oxidative distress. Potential biological significance of the reactions of mammalian as well as bacterial catalases with oxidizing species is discussed. The majority of these reactions inhibit catalase. Authors emphasize that catalase inhibition, which may lead to significant increase of the local concentration of hydrogen peroxide, may be detrimental to the neighboring tissues, but in some pathological states (e.g. the defense directed against pathogenic bacteria rich in catalase, or induction of apoptosis of cancer cells which possess membrane-associated catalase) it may be beneficial for the host organism.
Collapse
|
41
|
Mahdavi R, Khabbazi T, Safa J. Alpha lipoic acid supplementation improved antioxidant enzyme activities in hemodialysis patients. INT J VITAM NUTR RES 2019; 89:161-167. [PMID: 30987551 DOI: 10.1024/0300-9831/a000552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Cardiovascular disease (CVD) is the main cause of death in hemodialysis (HD) patients and oxidative stress is an important risk factor for CVD. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) are primary antioxidant enzymes in human cells acting against toxic reactive oxygen species (ROS) and their reduced activity may contribute to oxidative disorders in HD patients. Alpha lipoic acid (ALA) as a potent strong antioxidant may affect these enzymes. Objective: We examined the effects of ALA supplementation on antioxidant enzyme activities in HD patients. Method: In this double-blinded, randomized clinical trial, 63 HD patients (43 males and 20 females; age range: 22-79 years) were assigned into the ALA group (n: 31), receiving a daily dose of ALA (600 mg), or a control group (n: 32), receiving placebo for 8 weeks. Body mass index (BMI), antioxidant enzymes, albumin (Alb) and hemoglobin (Hb) were determined before and after intervention. Results: At baseline, the mean blood activities of SOD, GPx, and CAT in ALA group were 1032±366, 18.9±5.09 and 191±82.7 U/gHb which increased at the end of study to 1149±502, 19.1±7.19 and 208±86.6 U/gHb respectively. However, only the increase of SOD was statistically significant in comparison with placebo group (P = 0.04). The mean levels of Alb, Hb, weight and BMI were not significantly changed in study groups (P>0.05). Conclusion: ALA may be beneficial for HD patients by increasing the activity of antioxidant enzymes; however, further studies are needed to achieve precise results.
Collapse
Affiliation(s)
- Reza Mahdavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Khabbazi
- Nutritional Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Safa
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Corpas FJ, Río LAD, Palma JM. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E37. [PMID: 30744153 PMCID: PMC6409570 DOI: 10.3390/plants8020037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical endogenously generated in plant cells. Peroxisomes are cell organelles characterized by an active metabolism of reactive oxygen species (ROS) and are also one of the main cellular sites of NO production in higher plants. In this mini-review, an updated and comprehensive overview is presented of the evidence available demonstrating that plant peroxisomes have the capacity to generate NO, and how this molecule and its derived products, peroxynitrite (ONOO⁻) and S-nitrosoglutathione (GSNO), can modulate the ROS metabolism of peroxisomes, mainly throughout protein posttranslational modifications (PTMs), including S-nitrosation and tyrosine nitration. Several peroxisomal antioxidant enzymes, such as catalase (CAT), copper-zinc superoxide dismutase (CuZnSOD), and monodehydroascorbate reductase (MDAR), have been demonstrated to be targets of NO-mediated PTMs. Accordingly, plant peroxisomes can be considered as a good example of the interconnection existing between ROS and reactive nitrogen species (RNS), where NO exerts a regulatory function of ROS metabolism acting upstream of H₂O₂.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
43
|
Akther J, Nabi AHMN, Ebihara A. Heavy metals as environmental risk factors for cardiovascular diseases: from the perspective of the renin angiotensin aldosterone system and oxidative stress. REVIEWS IN AGRICULTURAL SCIENCE 2019; 7:68-83. [DOI: 10.7831/ras.7.0_68] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Jobaida Akther
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
44
|
Siderophore-Mediated Iron Acquisition Enhances Resistance to Oxidative and Aromatic Compound Stress in Cupriavidus necator JMP134. Appl Environ Microbiol 2018; 85:AEM.01938-18. [PMID: 30366993 DOI: 10.1128/aem.01938-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023] Open
Abstract
Many bacteria secrete siderophores to enhance iron uptake under iron-restricted conditions. In this study, we found that Cupriavidus necator JMP134, a well-known aromatic pollutant-degrading bacterium, produces an unknown carboxylate-type siderophore named cupriabactin to overcome iron limitation. Using genome mining, targeted mutagenesis, and biochemical analysis, we discovered an operon containing six open reading frames (cubA-F) in the C. necator JMP134 genome that encodes proteins required for the biosynthesis and uptake of cupriabactin. As the dominant siderophore of C. necator JMP134, cupriabactin promotes the growth of C. necator JMP134 under iron-limited conditions via enhanced ferric iron uptake. Furthermore, we demonstrated that the iron concentration-dependent expression of the cub operon is mediated by the ferric uptake regulator (Fur). Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and resistance to oxidative and aromatic compound stress in C. necator JMP134. In conclusion, we identified a carboxylate-type siderophore named cupriabactin, which plays important roles in iron scavenging, bacterial motility, biofilm formation, and stress resistance.IMPORTANCE Since siderophores have been widely exploited for agricultural, environmental, and medical applications, the identification and characterization of new siderophores from different habitats and organisms will have great beneficial applications. Here, we identified a novel siderophore-producing gene cluster in C. necator JMP134. This gene cluster produces a previously unknown carboxylate siderophore, cupriabactin. Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and oxidative stress resistance. Most notably, this system also plays important roles in increasing the resistance of C. necator JMP134 to stress caused by aromatic compounds, which provide a promising strategy to engineer more efficient approaches to degrade aromatic pollutants.
Collapse
|
45
|
Tomášková N, Varhač R, Lysáková V, Musatov A, Sedlák E. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1073-1083. [DOI: 10.1016/j.bbapap.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
46
|
Yuzugullu Karakus Y, Goc G, Balci S, Yorke BA, Trinh CH, McPherson MJ, Pearson AR. Identification of the site of oxidase substrate binding in Scytalidium thermophilum catalase. Acta Crystallogr D Struct Biol 2018; 74:979-985. [PMID: 30289408 PMCID: PMC6173053 DOI: 10.1107/s2059798318010628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
The catalase from Scytalidium thermophilum is a homotetramer containing a heme d in each active site. Although the enzyme has a classical monofunctional catalase fold, it also possesses oxidase activity towards a number of small organics, including catechol and phenol. In order to further investigate this, the crystal structure of the complex of the catalase with the classical catalase inhibitor 3-amino-1,2,4-triazole (3TR) was determined at 1.95 Å resolution. Surprisingly, no binding to the heme site was observed; instead, 3TR occupies a binding site corresponding to the NADPH-binding pocket in mammalian catalases at the entrance to a lateral channel leading to the heme. Kinetic analysis of site-directed mutants supports the assignment of this pocket as the binding site for oxidase substrates.
Collapse
Affiliation(s)
| | - Gunce Goc
- Department of Biology, Kocaeli University, Umuttepe, 41380 Kocaeli, Turkey
| | - Sinem Balci
- Department of Biology, Kocaeli University, Umuttepe, 41380 Kocaeli, Turkey
| | - Briony A. Yorke
- The Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Michael J. McPherson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
47
|
Sharma S, Samal RR, Subudhi U, Chainy GB. Lanthanum chloride-induced conformational changes of bovine liver catalase: A computational and biophysical study. Int J Biol Macromol 2018; 115:853-860. [DOI: 10.1016/j.ijbiomac.2018.04.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|
48
|
Dhall A, Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel) 2018; 7:E97. [PMID: 30042320 PMCID: PMC6116044 DOI: 10.3390/antiox7080097] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Cerium oxide nanoparticles (CeNPs) exhibit antioxidant properties both in vitro and in vivo. This is due to the self-regeneration of their surface, which is based on redox-cycling between 3+ and 4+ states for cerium, in response to their immediate environment. Additionally, oxygen vacancies in the lattice structure allow for alternating between CeO₂ and CeO2-x during redox reactions. Research to identify and characterize the biomedical applications of CeNPs has been heavily focused on investigating their use in treating diseases that are characterized by higher levels of reactive oxygen species (ROS). Although the bio-mimetic activities of CeNPs have been extensively studied in vitro, in vivo interactions and associated protein corona formation are not well understood. This review describes: (1) the methods of synthesis for CeNPs, including the recent green synthesis methods that offer enhanced biocompatibility and a need for establishing a reference CeNP material for consistency across studies; (2) their enzyme-mimetic activities, with a focus on their antioxidant activities; and, (3) recent experimental evidence that demonstrates their ROS scavenging abilities and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Atul Dhall
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | - William Self
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
49
|
Lespay-Rebolledo C, Perez-Lobos R, Tapia-Bustos A, Vio V, Morales P, Herrera-Marschitz M. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days. Neurotox Res 2018; 34:660-676. [PMID: 29959728 DOI: 10.1007/s12640-018-9928-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022]
Abstract
The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA implies a long-term metabolic insult, triggered by the length of hypoxia, the resuscitation/reoxigenation manoevres, but also by the developmental stage of the affected brain regions, and the integrity of cardiovascular and respiratory physiological functions, which are fundamental for warrantying a proper development.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Ronald Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Andrea Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Valentina Vio
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
- Department Neuroscience, Medical Faculty, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile.
| |
Collapse
|
50
|
Zhang LQ, Nsumu M, Huang P, Heruth DP, Riordan SM, Shortt K, Zhang N, Grigoryev DN, Li DY, Friesen CA, Van Haandel L, Leeder JS, Olson J, Ye SQ. Novel Protective Role of Nicotinamide Phosphoribosyltransferase in Acetaminophen-Induced Acute Liver Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1640-1652. [PMID: 29684358 DOI: 10.1016/j.ajpath.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
Acetaminophen overdose is the most common cause of acute liver injury (ALI) or acute liver failure in the United States. Its pathogenetic mechanisms are incompletely understood. Additional studies are warranted to identify new genetic risk factors for more mechanistic insights and new therapeutic target discoveries. The objective of this study was to explore the role and mechanisms of nicotinamide phosphoribosyltransferase (NAMPT) in acetaminophen-induced ALI. C57BL/6 Nampt gene wild-type (Nampt+/+), heterozygous knockout (Nampt+/-), and overexpression (NamptOE) mice were treated with overdose of acetaminophen, followed by histologic, biochemical, and transcriptomic evaluation of liver injury. The mechanism of Nampt in acetaminophen-induced hepatocytic toxicity was also explored in cultured primary hepatocytes. Three lines of evidence have convergently demonstrated that acetaminophen overdose triggers the most severe oxidative stress and necrosis, and the highest expression of key necrosis driving genes in Nampt+/- mice, whereas the effects in NamptOE mice were least severe relative to Nampt+/+ mice. Treatment of P7C3-A20, a small chemical molecule up-regulator of Nampt, ameliorated acetaminophen-induced mouse ALI over the reagent control. These findings support the fact that NAMPT protects against acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Li Q Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, Missouri.
| | - Marianne Nsumu
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Peixin Huang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Sean M Riordan
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Katherine Shortt
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri
| | - Nini Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Dmitry N Grigoryev
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Ding-You Li
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Leon Van Haandel
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Jody Olson
- The University of Kansas Liver Center, University of Kansas School of Medicine, Kansas City, Missouri
| | - Shui Q Ye
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri.
| |
Collapse
|