1
|
Zawistowski RK, Crane BR. Differential Responses in the Core, Active Site and Peripheral Regions of Cytochrome c Peroxidase to Extreme Pressure and Temperature. J Mol Biol 2024; 436:168799. [PMID: 39332669 PMCID: PMC11563881 DOI: 10.1016/j.jmb.2024.168799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
In consideration of life in extreme environments, the effects of hydrostatic pressure on proteins at the atomic level have drawn substantial interest. Large deviations of temperature and pressure from ambient conditions can shift the free energy landscape of proteins to reveal otherwise lowly populated structural states and even promote unfolding. We report the crystal structure of the heme-containing peroxidase, cytochrome c peroxidase (CcP) at 1.5 and 3.0 kbar and make comparisons to structures determined at 1.0 bar and cryo-temperatures (100 K). Pressure produces anisotropic changes in CcP, but compressibility plateaus after 1.5 kbar. CcP responds to pressure with volume declines at the periphery of the protein where B-factors are relatively high but maintains nearly intransient core structure, hydrogen bonding interactions and active site channels. Changes in active-site solvation and heme ligation reveal pressure sensitivity to protein-ligand interactions and a potential docking site for the substrate peroxide. Compression at the surface affects neither alternate side-chain conformers nor B-factors. Thus, packing in the core, which resembles a crystalline solid, limits motion and protects the active site, whereas looser packing at the surface preserves side-chain dynamics. These data demonstrate that conformational dynamics and packing densities are not fully correlated in proteins and that encapsulation of cofactors by the polypeptide can provide a precisely structured environment resistant to change across a wide range of physical conditions.
Collapse
Affiliation(s)
- Rebecca K Zawistowski
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Girard E, Lopes P, Spoerner M, Dhaussy AC, Prangé T, Kalbitzer HR, Colloc'h N. High Pressure Promotes Binding of the Allosteric Inhibitor Zn 2+-Cyclen in Crystals of Activated H-Ras. Chemistry 2024; 30:e202400304. [PMID: 38647362 DOI: 10.1002/chem.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+-cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H-Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+-cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+-cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+-cyclen to H-Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x-ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low-populated conformations at ambient conditions, enabling the design of specific inhibitors.
Collapse
Affiliation(s)
- Eric Girard
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | - Pedro Lopes
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Spoerner
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | | | - Thierry Prangé
- CiTCoM, CNRS, Faculté de Pharmacie, Université de Paris-Cité, Paris, France
| | - Hans Robert Kalbitzer
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Nathalie Colloc'h
- ISTCT UMR6030, Centre Cyceron, CNRS - Université de Caen Normandie - Normandie Université, Caen, France
| |
Collapse
|
3
|
Zhang S, McCallum SA, Gillilan R, Wang J, Royer CA. High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. J Phys Chem B 2022; 126:10597-10607. [PMID: 36455152 PMCID: PMC10314987 DOI: 10.1021/acs.jpcb.2c05498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY USA 14853
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY USA 12180
| |
Collapse
|
4
|
Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B 2022; 10:8616-8628. [PMID: 36268634 DOI: 10.1039/d2tb01688e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules inspires the construction of protocells and drives the formation of cellular membraneless organelles. The resulting biomolecular condensates featuring dynamic assembly, disassembly, and phase transition play significant roles in a series of biological processes, including RNA metabolism, DNA damage response, signal transduction and neurodegenerative disease. Intensive investigations have been conducted for understanding and manipulating intracellular phase-separated disease-related proteins (e.g., FUS, tau and TDP-43). Herein, we review current studies on the regulation strategies of intracellular LLPS focusing on FUS, which are categorized into physical stimuli, biochemical modulators, and protein structural modifications, with summarized molecular mechanisms. This review is expected to provide a sketch of the modulation of FUS LLPS with its pros and cons, and an outlook for the potential clinical treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Determination of protein-protein interactions at the single-molecule level using optical tweezers. Q Rev Biophys 2022; 55:e8. [PMID: 35946323 DOI: 10.1017/s0033583522000075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study protein–protein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.
Collapse
|
6
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Prangé T, Carpentier P, Dhaussy AC, van der Linden P, Girard E, Colloc'h N. Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization. Acta Crystallogr D Struct Biol 2022; 78:162-173. [DOI: 10.1107/s2059798321012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein–ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.
Collapse
|
8
|
Girard E, Lopes P, Spoerner M, Dhaussy AC, Prangé T, Kalbitzer HR, Colloc'h N. Equilibria between conformational states of the Ras oncogene protein revealed by high pressure crystallography. Chem Sci 2022; 13:2001-2010. [PMID: 35308861 PMCID: PMC8848853 DOI: 10.1039/d1sc05488k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this work, we experimentally investigate the allosteric transitions between conformational states on the Ras oncogene protein using high pressure crystallography. Ras protein is a small GTPase involved in central regulatory processes occurring in multiple conformational states. Ras acts as a molecular switch between active GTP-bound, and inactive GDP-bound states, controlling essential signal transduction pathways. An allosteric network of interactions between the effector binding regions and the membrane interacting regions is involved in Ras cycling. The conformational states which coexist simultaneously in solution possess higher Gibbs free energy than the ground state. Equilibria between these states can be shifted by applying pressure favouring conformations with lower partial molar volume, and has been previously analyzed by high-pressure NMR spectroscopy. High-pressure macromolecular crystallography (HPMX) is a powerful tool perfectly complementary to high-pressure NMR, allowing characterization at the molecular level with a high resolution the different allosteric states involved in the Ras cycling. We observe a transition above 300 MPa in the crystal leading to more stable conformers. Thus, we compare the crystallographic structures of Ras(wt)·Mg2+·GppNHp and Ras(D33K)·Mg2+·GppNHp at various high hydrostatic pressures. This gives insight into per-residue descriptions of the structural plasticity involved in allosteric equilibria between conformers. We have mapped out at atomic resolution the different segments of Ras protein which remain in the ground-state conformation or undergo structural changes, adopting excited-energy conformations corresponding to transient intermediate states. Such in crystallo phase transitions induced by pressure open the possibility to finely explore the structural determinants related to switching between Ras allosteric sub-states without any mutations nor exogenous partners. The equilibria between structural states induced by pressure within the crystal structure of Ras are illustrated with different colors corresponding to different Ras substates.![]()
Collapse
Affiliation(s)
- Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Pedro Lopes
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Michael Spoerner
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | | | - Thierry Prangé
- CiTCoM UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, Paris, France
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Nathalie Colloc'h
- ISTCT UMR 6030, CNRS, Université de Caen Normandie, CERVOxy Group, Centre Cyceron, Caen, France
| |
Collapse
|
9
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
10
|
Kitahara R, Yamazaki R, Ide F, Li S, Shiramasa Y, Sasahara N, Yoshizawa T. Pressure-Jump Kinetics of Liquid-Liquid Phase Separation: Comparison of Two Different Condensed Phases of the RNA-Binding Protein, Fused in Sarcoma. J Am Chem Soc 2021; 143:19697-19702. [PMID: 34787417 DOI: 10.1021/jacs.1c07571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) undergoes liquid-liquid phase separation (LLPS) both in vivo and in vitro. Self-assembled liquid droplets of FUS transform into reversible hydrogels and into more irreversible and toxic aggregates. Although LLPS can be a precursor of irreversible aggregates, a generic method to study kinetics of the formation of LLPS has not been developed. Here, we demonstrated the pressure-jump kinetics of phase transition between the 1-phase state and FUS-LLPS states observed at low pressure (<2 kbar, LP-LLPS) and high pressure (>2 kbar, HP-LLPS) using high-pressure UV/vis spectroscopy. Absorbance (turbidity) changes were reproduced repeatedly using pressure cycles. The Johnson-Mehl-Avrami-Kolmogorov theory was used to understand droplet formation occurring via nucleation and growth. The Avrami exponent n, representing the dimensionality of growing droplets, and the reaction rate constant k were calculated. The HP-LLPS formation rate was ∼2-fold slower than that of LP-LLPS. The Avrami exponent obtained for both LLPS states could be explained by diffusion-limited growth. Nucleation and growth rates decreased during LP-LLPS formation (n = 0.51), and the nucleation rate decreased with a constant growth rate in HP-LLPS formation (n = 1.4). The HP-LLPS vanishing rate was ∼20-fold slower than that of LP-LLPS. This difference in vanishing rates indicates a stronger intermolecular interaction in HP-LLPS than in LP-LLPS, which might promote transformation into irreversible aggregates in the droplets. Further, direct transition from HP-LLPS to LP-LLPS was observed. This indicates that interconversion between LP-LLPS and HP-LLPS occurs in equilibrium. Formation of reversible liquid droplets, followed by phase transition into another liquid phase, could thus be part of the physiological maturation process of FUS-LLPS.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryota Yamazaki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Fumika Ide
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Shujie Li
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yutaro Shiramasa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Naoya Sasahara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
11
|
Comparative Assessment of NMR Probes for the Experimental Description of Protein Folding Pathways with High-Pressure NMR. BIOLOGY 2021; 10:biology10070656. [PMID: 34356511 PMCID: PMC8301334 DOI: 10.3390/biology10070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.
Collapse
|
12
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Fernández Del Río B, Rey A. Behavior of Proteins under Pressure from Experimental Pressure-Dependent Structures. J Phys Chem B 2021; 125:6179-6191. [PMID: 34100621 PMCID: PMC8478274 DOI: 10.1021/acs.jpcb.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based models are coarse-grained representations of the interactions responsible for the protein folding process. In their simplest form, they use only the native contact map of a given protein to predict the main features of its folding process by computer simulation. Given their limitations, these models are frequently complemented with sequence-dependent contributions or additional information. Specifically, to analyze the effect of pressure on the folding/unfolding transition, special forms of these interaction potentials are employed, which may a priori determine the outcome of the simulations. In this work, we have tried to keep the original simplicity of structure-based models. Therefore, we have used folded structures that have been experimentally determined at different pressures to define native contact maps and thus interactions dependent on pressure. Despite the apparently tiny structural differences induced by pressure, our simulation results provide different thermodynamic and kinetic behaviors, which roughly correspond to experimental observations (when there is a possible comparison) of two proteins used as benchmarks, hen egg-white lysozyme and dihydrofolate reductase. Therefore, this work shows the feasibility of using experimental native structures at different pressures to analyze the global effects of this physical property on the protein folding process.
Collapse
Affiliation(s)
- Beatriz Fernández Del Río
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Antonio Rey
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
14
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
15
|
Xu X, Gagné D, Aramini JM, Gardner KH. Volume and compressibility differences between protein conformations revealed by high-pressure NMR. Biophys J 2021; 120:924-935. [PMID: 33524371 DOI: 10.1016/j.bpj.2020.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Proteins often interconvert between different conformations in ways critical to their function. Although manipulating such equilibria for biophysical study is often challenging, the application of pressure is a potential route to achieve such control by favoring the population of lower volume states. Here, we use this feature to study the interconversion of ARNT PAS-B Y456T, which undergoes a dramatic +3 slip in the β-strand register as it switches between two stably folded conformations. Using high-pressure biomolecular NMR approaches, we obtained the first, to our knowledge, quantitative data testing two key hypotheses of this process: the slipped conformation is both smaller and less compressible than the wild-type equivalent, and the interconversion proceeds through a chiefly unfolded intermediate state. Data collected in steady-state pressure and time-resolved pressure-jump modes, including observed pressure-dependent changes in the populations of the two conformers and increased rate of interconversion between conformers, support both hypotheses. Our work exemplifies how these approaches, which can be generally applied to protein conformational switches, can provide unique information that is not easily accessible through other techniques.
Collapse
Affiliation(s)
- Xingjian Xu
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York; Ph.D Program in Biochemistry, The Graduate Center, CUNY, New York, New York
| | - Donald Gagné
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York
| | - James M Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York; Department of Chemistry and Biochemistry, City College of New York, New York, New York; Ph.D. Programs in Biochemistry, Chemistry, and Biology, The Graduate Center, CUNY, New York, New York.
| |
Collapse
|
16
|
Viewing rare conformations of the β 2 adrenergic receptor with pressure-resolved DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:31824-31831. [PMID: 33257561 DOI: 10.1073/pnas.2013904117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein. The β2AR exhibits a low level of agonist-independent G protein activation. The structural origin of this basal activity and its suppression by inverse agonists is unknown but could involve a unique receptor conformation that promotes G protein activation. Alternatively, a conformational selection model proposes that a minor population of the canonical active receptor conformation exists in equilibrium with inactive forms, thus giving rise to basal activity of the ligand-free receptor. Previous spin-labeling and fluorescence resonance energy transfer experiments designed to monitor the positional distribution of TM6 did not detect the presence of the active conformation of ligand-free β2AR. Here we employ spin-labeling and pressure-resolved double electron-electron resonance spectroscopy to reveal the presence of a minor population of unliganded receptor, with the signature outward TM6 displacement, in equilibrium with inactive conformations. Binding of inverse agonists suppresses this population. These results provide direct structural evidence in favor of a conformational selection model for basal activity in β2AR and provide a mechanism for inverse agonism. In addition, they emphasize 1) the importance of minor populations in GPCR catalytic function; 2) the use of spin-labeling and variable-pressure electron paramagnetic resonance to reveal them in a membrane protein; and 3) the quantitative evaluation of their thermodynamic properties relative to the inactive forms, including free energy, partial molar volume, and compressibility.
Collapse
|
17
|
Dubois C, Herrada I, Barthe P, Roumestand C. Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways. Molecules 2020; 25:E5551. [PMID: 33256081 PMCID: PMC7731413 DOI: 10.3390/molecules25235551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
High-hydrostatic pressure is an alternative perturbation method that can be used to destabilize globular proteins. Generally perfectly reversible, pressure exerts local effects on regions or domains of a protein containing internal voids, contrary to heat or chemical denaturant that destabilize protein structures uniformly. When combined with NMR spectroscopy, high pressure (HP) allows one to monitor at a residue-level resolution the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. The use of HP-NMR has long been hampered by technical difficulties. Owing to the recent development of commercially available high-pressure sample cells, HP-NMR experiments can now be routinely performed. This review summarizes recent advances of HP-NMR techniques for the characterization at a quasi-atomic resolution of the protein folding energy landscape.
Collapse
Affiliation(s)
| | | | | | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (I.H.); (P.B.)
| |
Collapse
|
18
|
Li S, Yao H, Kameda T, Jiang W, Kitahara R. Volumetric Properties for the Binding of 1,4-Dioxane to Amide Naphthotubes in Water. J Phys Chem B 2020; 124:9175-9181. [PMID: 32955890 DOI: 10.1021/acs.jpcb.0c07690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host-guest interactions between naphthalene-based molecular tubes and small molecules have been studied to understand selective recognition. However, the volumetric properties of complexation remain largely unknown. In this study, we investigated the volumetric properties for the binding of 1,4-dioxane to a pair of naphthotubes (i.e., anti- and syn-isomers), each possessing two inwardly directed amide groups in the hydrophobic cavity, using nuclear magnetic resonance and fluorescence spectroscopy coupled with pressure perturbation. We found that the partial molar volume change for the association of 1,4-dioxane with the naphthotube was -6.3 ± 0.1 mL/mol for the anti-isomer and 3.2 ± 0.4 mL/mol for the syn-isomer. Moreover, the hydrogen bonds of the naphthotubes with 1,4-dioxane were less compressible than those with water molecules, indicating that more rigid hydrogen bonds existed in the complexes with 1,4-dioxane. Molecular dynamics simulations showed that one opening of the cavity in the syn-isomer was widened because of the repulsion between the four COO- charges, which allowed more water molecules to access the hydrophobic cavity than in the case of the anti-isomer. The difference in the partial molar volume change was explained by variations in the hydration of naphthotube hydrophobic cavities. The enhanced understanding of the molecular basis of volume changes during 1,4-dioxane-naphthotube complexation may provide insights into ligand binding to bioreceptors.
Collapse
Affiliation(s)
- Shujie Li
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
19
|
Nonose S. Temperature-Resolved Proton Transfer Reactions of Biomolecular Ions. Mass Spectrom (Tokyo) 2020; 9:A0083. [PMID: 32547897 PMCID: PMC7242783 DOI: 10.5702/massspectrometry.a0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Temperature-resolved proton transfer reactions of multiply-protonated angiotensin I, disulfide-intact and -reduced lysozyme, and ubiquitin ions to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for the proton transfer were determined from the intensities of the parent and product ions in mass spectra. Dramatic changes were observed in the distribution of product ions and the reaction rate constants. In particular, the rate constants for disulfide-intact lysozyme ions changed more drastically with the change in charge state and temperature compared to the corresponding values for disulfide-reduced ions. Proton transfer reactions were enhanced or suppressed as the result of the formation of complexes between the ions with gaseous molecules, which is related to changes in their conformation with changing.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
20
|
Wakamoto T, Kitazawa S, Kameda T, Kitahara R. Dynamic aspects of pressure and temperature-stabilized intermediates of outer surface protein A. Proteins 2020; 88:1423-1433. [PMID: 32519353 DOI: 10.1002/prot.25962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 06/06/2020] [Indexed: 01/18/2023]
Abstract
Structural characterization of alternatively folded and partially disordered protein conformations remains challenging. Outer surface protein A (OspA) is a pivotal protein in Borrelia infection, which is the etiological agent of Lyme disease. OspA exists in equilibrium with intermediate conformations, in which the central and the C-terminal regions of the protein have lower stabilities than the N-terminal. Here, we characterize pressure- and temperature-stabilized intermediates of OspA by nuclear magnetic resonance spectroscopy combined with paramagnetic relaxation enhancement (PRE). We found that although the C-terminal region of the intermediate was partially disordered, it retains weak specific contact with the N-terminal region, owing to a twist of the central β-sheet and increased flexibility in the polypeptide chain. The disordered C-terminal region of the pressure-stabilized intermediate was more compact than that of the temperature-stabilized form. Further, molecular dynamics simulation demonstrated that temperature-induced disordering of the β-sheet was initiated at the C-terminal region and continued through to the central region. An ensemble of simulation snapshots qualitatively described the PRE data from the intermediate and indicated that the intermediate structures of OspA may expose tick receptor-binding sites more readily than does the basic folded conformation.
Collapse
Affiliation(s)
- Takuro Wakamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Ryo Kitahara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
21
|
Plamitzer L, Bouř P. Pressure dependence of vibrational optical activity of model biomolecules. A computational study. Chirality 2020; 32:710-721. [PMID: 32150771 DOI: 10.1002/chir.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Change of molecular properties with pressure is an attracting means to regulate molecular reactivity or biological activity. However, the effect is usually small and so far explored rather scarcely. To obtain a deeper insight and estimate the sensitivity of vibrational optical activity spectra to pressure-induced conformational changes, we investigate small model molecules. The Ala-Ala dipeptide, isomaltose disaccharide and adenine-uracil dinucleotide were chosen to represent three different biomolecular classes. The pressure effects were modeled by molecular dynamics and density functional theory simulations. The dinucleotide was found to be the most sensitive to the pressure, whereas for the disaccharide the smallest changes are predicted. Pressure-induced relative intensity changes in vibrational circular dichroism and Raman optical activity spectra are predicted to be 2-3-times larger than for non-polarized IR and Raman techniques.
Collapse
Affiliation(s)
- Luboš Plamitzer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, Prague 2, 121 16, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
22
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
23
|
Kumar N, Marx D. How do ribozymes accommodate additional water molecules upon hydrostatic compression deep into the kilobar pressure regime? Biophys Chem 2019; 252:106192. [DOI: 10.1016/j.bpc.2019.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
|
24
|
Saotome T, Doret M, Kulkarni M, Yang YS, Barthe P, Kuroda Y, Roumestand C. Folding of the Ig-Like Domain of the Dengue Virus Envelope Protein Analyzed by High-Hydrostatic-Pressure NMR at a Residue-Level Resolution. Biomolecules 2019; 9:biom9080309. [PMID: 31357538 PMCID: PMC6723665 DOI: 10.3390/biom9080309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne endemic disease in tropical and subtropical regions, causing a significant public health problem in Southeast Asia. Domain III (ED3) of the viral envelope protein contains the two dominant putative epitopes and part of the heparin sulfate receptor binding region that drives the dengue virus (DENV)’s fusion with the host cell. Here, we used high-hydrostatic-pressure nuclear magnetic resonance (HHP-NMR) to obtain residue-specific information on the folding process of domain III from serotype 4 dengue virus (DEN4-ED3), which adopts the classical three-dimensional (3D) ß-sandwich structure known as the Ig-like fold. Interestingly, the folding pathway of DEN4-ED3 shares similarities with that of the Titin I27 module, which also adopts an Ig-like fold, but is functionally unrelated to ED3. For both proteins, the unfolding process starts by the disruption of the N- and C-terminal strands on one edge of the ß-sandwich, yielding a folding intermediate stable over a substantial pressure range (from 600 to 1000 bar). In contrast to this similarity, pressure-jump kinetics indicated that the folding transition state is considerably more hydrated in DEN4-ED3 than in Titin I27.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Maxime Doret
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Manjiri Kulkarni
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Yin-Shan Yang
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
25
|
Roche J, Royer CA, Roumestand C. Exploring Protein Conformational Landscapes Using High-Pressure NMR. Methods Enzymol 2019; 614:293-320. [DOI: 10.1016/bs.mie.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
27
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
28
|
Dreydoppel M, Becker P, Raum HN, Gröger S, Balbach J, Weininger U. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure. J Phys Chem B 2018; 122:8846-8852. [PMID: 30185038 DOI: 10.1021/acs.jpcb.8b06888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Paul Becker
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Stefan Gröger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| |
Collapse
|
29
|
Nakajima T, Kuroi K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M. Anomalous pressure effects on the photoreaction of a light-sensor protein from Synechocystis, PixD (Slr1694), and the compressibility change of its intermediates. Phys Chem Chem Phys 2018; 18:25915-25925. [PMID: 27711633 DOI: 10.1039/c6cp05091c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated. While the absorption spectra of the dark and light states are not sensitive to pressure, the formation yield of the first intermediate decreases with pressure to about 40% at 150 MPa. Upon blue-light illumination with a sufficiently strong intensity, the transient grating signal, which represents the dissociation of the SyPixD decamer, was observed at 0.1 MPa, and the signal intensity significantly decreased with increasing pressure. This behavior shows that the dissociation of the decamer from the second intermediate state is suppressed by pressure. However, while the decamer undergoes no dissociation upon excitation of one monomer unit at 0.1 MPa, dissociation is gradually induced with increasing pressure. For solving this strange behavior, the compressibility changes of the intermediates were measured as a function of pressure at weak light intensity. Interestingly, the compressibility change was negative at low pressure, but became positive with increasing pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity was also discussed.
Collapse
Affiliation(s)
- Tsubasa Nakajima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Kunisato Kuroi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Koji Okajima
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
30
|
Kangur L, Jones MR, Freiberg A. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy. Biophys Chem 2017; 231:27-33. [PMID: 28438349 DOI: 10.1016/j.bpc.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds.
Collapse
Affiliation(s)
- Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
31
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
32
|
Schultz KM, Klug CS. High-pressure EPR spectroscopy studies of the E. coli lipopolysaccharide transport proteins LptA and LptC. APPLIED MAGNETIC RESONANCE 2017; 48:1341-1353. [PMID: 29332998 PMCID: PMC5761346 DOI: 10.1007/s00723-017-0948-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli, LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.
Collapse
Affiliation(s)
| | - Candice S Klug
- Corresponding author information: , Phone: 1-414-955-4015, ORCID: 0000-0003-4547-320X
| |
Collapse
|
33
|
Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:15-31. [PMID: 29157491 DOI: 10.1016/j.pnmrs.2017.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christian Roumestand
- Centre de Biochimie Structural INSERM U1054, CNRS UMMR 5058, Université de Montpellier, Montpellier 34090, France.
| |
Collapse
|
34
|
Abstract
In this review, I discuss the various methods researchers use to unfold proteins in the lab in order to understand protein folding both
in vitro and
in vivo. The four main techniques, chemical-, heat-, pressure- and force-denaturation, produce distinctly different unfolded conformational ensembles. Recent measurements have revealed different folding kinetics from different unfolding mechanisms. Thus, comparing these distinct unfolded ensembles sheds light on the underlying free energy landscape of folding.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, USA
| |
Collapse
|
35
|
Mahmud MN, Oda M, Usui D, Inoshima Y, Ishiguro N, Kamatari YO. A multispecific monoclonal antibody G2 recognizes at least three completely different epitope sequences with high affinity. Protein Sci 2017; 26:2162-2169. [PMID: 28791742 DOI: 10.1002/pro.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/29/2017] [Indexed: 11/09/2022]
Abstract
A monoclonal antibody (mAb) G2 possesses an unusual characteristic of reacting with at least three proteins (ATP6V1C1, SEPT3, and C6H10orf76) other than its original antigen, chicken prion protein (ChPrP). The epitopes on ChPrP and ATP6V1C1 have been identified previously. In this study, we identified the epitope in the third protein, SEPT3. Interestingly, there was no amino acid sequence similarity among the epitopes on the three proteins. These epitopes had high binding affinities to G2 (KD = ∼10-7 M for monovalent binding and KD = ∼10-9 M for divalent binding), as determined using a SPR biosensor. This is the first report on a three-in-one mAb recognizing completely different epitope sequences with high affinity. Additionally, competitive ELISA indicated that the binding sites on G2, specific for the three different epitopes, overlapped, suggesting that the antigen-binding site may be flexible in the free form and capable of adapting to at least three different conformations to enable interactions with three different antigens.
Collapse
Affiliation(s)
- Md Nuruddin Mahmud
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Daiki Usui
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yasuo Inoshima
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Naotaka Ishiguro
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
36
|
Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Arch Biochem Biophys 2017. [DOI: 10.1016/j.abb.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Sci Rep 2017; 7:1858. [PMID: 28500341 PMCID: PMC5431840 DOI: 10.1038/s41598-017-02097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating the effect of pressure sheds light on the dynamics and plasticity of proteins, intrinsically correlated to functional efficiency. Here we detail the structural response to pressure of neuroglobin (Ngb), a hexacoordinate globin likely to be involved in neuroprotection. In murine Ngb, reversible coordination is achieved by repositioning the heme more deeply into a large internal cavity, the “heme sliding mechanism”. Combining high pressure crystallography and coarse-grain simulations on wild type Ngb as well as two mutants, one (V101F) with unaffected and another (F106W) with decreased affinity for CO, we show that Ngb hinges around a rigid mechanical nucleus of five hydrophobic residues (V68, I72, V109, L113, Y137) during its conformational transition induced by gaseous ligand, that the intrinsic flexibility of the F-G loop appears essential to drive the heme sliding mechanism, and that residue Val 101 may act as a sensor of the interaction disruption between the heme and the distal histidine.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie Univ., CERVOxy team, centre Cyceron, 14000, Caen, France.
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Giovanna Avella
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy.,BIOGEM Research Institute, Ariano Irpino, Italy
| | - Anne-Claire Dhaussy
- CRISTMAT UMR 6508 CNRS ENSICAEN UNICAEN Normandie Univ., 6 bd du Maréchal Juin, 14050, Caen, France
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, 4 avenue de l'Observatoire, 75270, Paris, France
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy
| | - Eric Girard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| |
Collapse
|
38
|
Kitazawa S, Fossat MJ, McCallum SA, Garcia AE, Royer CA. NMR and Computation Reveal a Pressure-Sensitive Folded Conformation of Trp-Cage. J Phys Chem B 2017; 121:1258-1267. [DOI: 10.1021/acs.jpcb.6b11810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soichiro Kitazawa
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Martin J. Fossat
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
- Laboratoire Charles
Coulomb UMR 5221 CNRS-UM, Montpellier, France
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Angel E. Garcia
- Department
of Physics, Rensselaer Polytechnic Institute, Troy, New York
| | | |
Collapse
|
39
|
Decaneto E, Suladze S, Rosin C, Havenith M, Lubitz W, Winter R. Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP. Biophys J 2016; 109:2371-81. [PMID: 26636948 DOI: 10.1016/j.bpj.2015.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP or MMP-14) is a zinc-transmembrane metalloprotease involved in the degradation of extracellular matrix and tumor invasion. While changes in solvation of MT1-MMP have been recently studied, little is known about the structural and energetic changes associated with MT1-MMP while interacting with substrates. Steady-state kinetic and thermodynamic data (including activation energies and activation volumes) were measured over a wide range of temperatures and pressures by means of a stopped-flow fluorescence technique. Complementary temperature- and pressure-dependent Fourier-transform infrared measurements provided corresponding structural information of the protein. MT1-MMP is stable and active over a wide range of temperatures (10-55 °C). A small conformational change was detected at 37 °C, which is responsible for the change in activity observed at the same temperature. Pressure decreases the enzymatic activity until complete inactivation occurs at 2 kbar. The inactivation is associated with changes in the rate-limiting step of the reaction caused by additional hydration of the active site upon compression and/or minor conformational changes in the active site region. Based on these data, an energy and volume diagram could be established for the various steps of the enzymatic reaction.
Collapse
Affiliation(s)
- Elena Decaneto
- Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany; Department of Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
| | - Saba Suladze
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Christopher Rosin
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
40
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 2016; 54:11157-61. [PMID: 26352026 DOI: 10.1002/anie.201505416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/11/2022]
Abstract
The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure-dependent (15) N-relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT ) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol(-1) and 40 μL mol(-1) bar(-1) , respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on-pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| | - David S Libich
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Virginia Meyer
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Julien Roche
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| |
Collapse
|
41
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Abstract
At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.
Collapse
|
43
|
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015; 19:721-40. [DOI: 10.1007/s00792-015-0760-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
44
|
A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci U S A 2015; 112:E2775-84. [PMID: 25964355 DOI: 10.1073/pnas.1500352112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High pressure (HP) or urea is commonly used to disturb folding species. Pressure favors the reversible unfolding of proteins by causing changes in the volumetric properties of the protein-solvent system. However, no mechanistic model has fully elucidated the effects of urea on structure unfolding, even though protein-urea interactions are considered to be crucial. Here, we provide NMR spectroscopy and 3D reconstructions from X-ray scattering to develop the "push-and-pull" hypothesis, which helps to explain the initial mechanism of chemical unfolding in light of the physical events triggered by HP. In studying MpNep2 from Moniliophthora perniciosa, we tracked two cooperative units using HP-NMR as MpNep2 moved uphill in the energy landscape; this process contrasts with the overall structural unfolding that occurs upon reaching a threshold concentration of urea. At subdenaturing concentrations of urea, we were able to trap a state in which urea is preferentially bound to the protein (as determined by NMR intensities and chemical shifts); this state is still folded and not additionally exposed to solvent [fluorescence and small-angle X-ray scattering (SAXS)]. This state has a higher susceptibility to pressure denaturation (lower p1/2 and larger ΔVu); thus, urea and HP share concomitant effects of urea binding and pulling and water-inducing pushing, respectively. These observations explain the differences between the molecular mechanisms that control the physical and chemical unfolding of proteins, thus opening up new possibilities for the study of protein folding and providing an interpretation of the nature of cooperativity in the folding and unfolding processes.
Collapse
|
45
|
Cortines JR, Lima LMT, Mohana-Borges R, Millen TDA, Gaspar LP, Lanman JK, Prevelige PE, Silva JL. Structural insights into the stabilization of the human immunodeficiency virus type 1 capsid protein by the cyclophilin-binding domain and implications on the virus cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:341-8. [DOI: 10.1016/j.bbapap.2014.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/24/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023]
|
46
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Roche J, Dellarole M, Royer CA, Roumestand C. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies. Subcell Biochem 2015; 72:261-278. [PMID: 26174386 DOI: 10.1007/978-94-017-9918-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of progress has been made in recent years towards this goal, a number of important questions remain. These include characterizing the structural, thermodynamic and dynamic properties of the barriers between conformational states on the protein energy landscape, understanding the sequence dependence of folding cooperativity, defining more clearly the role of solvation in controlling protein stability and dynamics and probing the high energy thermodynamic states in the native state basin and their role in misfolding and aggregation. Fundamental to the elucidation of these questions is a complete thermodynamic parameterization of protein folding determinants. In this chapter, we describe the use of high-pressure coupled to Nuclear Magnetic Resonance (NMR) spectroscopy to reveal unprecedented details on the folding energy landscape of proteins.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, UMR UM1&UM2/5048 CNRS/1054 INSERM, 29 rue de Navacelles, 34090, Montpellier, France
| | | | | | | |
Collapse
|
48
|
Abstract
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
Collapse
Affiliation(s)
- László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary,
| |
Collapse
|
49
|
Silva JL, Barroso SPC, Mendes YS, Dumard CH, Santos PS, Gomes AMO, Oliveira AC. Pressure-Inactivated Virus: A Promising Alternative for Vaccine Production. Subcell Biochem 2015; 72:301-18. [PMID: 26174388 DOI: 10.1007/978-94-017-9918-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent years, many applications in diverse scientific fields with various purposes have examined pressure as a thermodynamic parameter. Pressure studies on viruses have direct biotechnological applications. Currently, most studies that involve viral inactivation by HHP are found in the area of food engineering and focus on the inactivation of foodborne viruses. Nevertheless, studies of viral inactivation for other purposes have also been conducted. HHP has been shown to be efficient in the inactivation of many viruses of clinical importance and the use of HHP approach has been proposed for the development of animal and human vaccines. Several studies have demonstrated that pressure can result in virus inactivation while preserving immunogenic properties. Viruses contain several components that can be susceptible to the effects of pressure. HHP has been a valuable tool for assessing viral structure function relationships because the viral structure is highly dependent on protein-protein interactions. In the case of small icosahedral viruses, incremental increases in pressure produce a progressive decrease in the folding structure when moving from assembled capsids to ribonucleoprotein intermediates (in RNA viruses), free dissociated units (dimers and/or monomers) and denatured monomers. High pressure inactivates enveloped viruses by trapping their particles in a fusion-like intermediate state. The fusogenic state, which is characterized by a smaller viral volume, is the final conformation promoted by HHP, in contrast with the metastable native state, which is characterized by a larger volume. The combined effects of high pressure with other factors, such as low or subzero temperature, pH and agents in sub-denaturing conditions (urea), have been a formidable tool in the assessment of the component's structure, as well as pathogen inactivation. HHP is a technology for the production of inactivated vaccines that are free of chemicals, safe and capable of inducing strong humoral and cellular immune responses. Here we present a current overview about the pressure-induced viral inactivation and the production of inactivated viral vaccines.
Collapse
Affiliation(s)
- Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil,
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Knowledge of the dynamical behavior of proteins, and in particular their conformational fluctuations, is essential to understanding the mechanisms underlying their reactions. Here, transient enhancement of the isothermal partial molar compressibility, which is directly related to the conformational fluctuation, during a chemical reaction of a blue light sensor protein from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixD, Tll0078) was investigated in a time-resolved manner. The UV-Vis absorption spectrum of TePixD did not change with the application of high pressure. Conversely, the transient grating signal intensities representing the volume change depended significantly on the pressure. This result implies that the compressibility changes during the reaction. From the pressure dependence of the amplitude, the compressibility change of two short-lived intermediate (I1 and I2) states were determined to be +(5.6 ± 0.6) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I1 and +(6.6 ± 0.7) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I2. This result showed that the structural fluctuation of intermediates was enhanced during the reaction. To clarify the relationship between the fluctuation and the reaction, the compressibility of multiply excited TePixD was investigated. The isothermal compressibility of I1 and I2 intermediates of TePixD showed a monotonic decrease with increasing excitation laser power, and this tendency correlated with the reactivity of the protein. This result indicates that the TePixD decamer cannot react when its structural fluctuation is small. We concluded that the enhanced compressibility is an important factor for triggering the reaction of TePixD. To our knowledge, this is the first report showing enhanced fluctuations of intermediate species during a protein reaction, supporting the importance of fluctuations.
Collapse
|