1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Telek E, Ujfalusi Z, Kemenesi G, Zana B, Jakab F, Hild G, Lukács A, Hild G. A Possible Way to Relate the Effects of SARS-CoV-2-Induced Changes in Transferrin to Severe COVID-19-Associated Diseases. Int J Mol Sci 2022; 23:6189. [PMID: 35682873 PMCID: PMC9181396 DOI: 10.3390/ijms23116189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 infections are responsible for the COVID-19 pandemic. Transferrin has been found to explain the link between diseases associated with impaired iron transport and COVID-19 infection. The effect of SARS-CoV-2 on human whole blood was studied by differential scanning calorimetry. The analysis of the thermal transition curves showed that the melting temperature of the transferrin-related peak decreased in the presence of SARS-CoV-2. The ratio of the under-curve area of the two main peaks was greatly affected, while the total enthalpy of the heat denaturation remained nearly unchanged in the presence of the virus. These results indicate that SARS-CoV-2, through binding to transferrin, may influence its Fe3+ uptake by inducing thermodynamic changes. Therefore, transferrin may remain in an iron-free apo-conformational state, which depends on the SARS-CoV-2 concentration. SARS-CoV-2 can induce disturbance in erythropoiesis due to toxicity generated by free iron overload.
Collapse
Affiliation(s)
- Elek Telek
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; (E.T.); (Z.U.); (A.L.)
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; (E.T.); (Z.U.); (A.L.)
| | - Gábor Kemenesi
- Szentágothai Research Centre, Virological Research Group, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary; (G.K.); (B.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
| | - Brigitta Zana
- Szentágothai Research Centre, Virological Research Group, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary; (G.K.); (B.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
| | - Ferenc Jakab
- Szentágothai Research Centre, Virological Research Group, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary; (G.K.); (B.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
| | - Gabriella Hild
- Languages for Biomedical Purposes and Communication, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary;
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; (E.T.); (Z.U.); (A.L.)
| | - Gábor Hild
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary; (E.T.); (Z.U.); (A.L.)
- Department of Medical Imaging, Clinical Centre, University of Pécs, Ifjúság Str. 13, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Klymets HV, Iskra RY, Svarchevska OZ. Hematological parameters and protein metabolism in the blood of pregnant rats under the effect of vanadium citrate. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Dose-dependent changes in protein metabolism in the blood and hematological parameters of pregnant rats under the effect of vanadium citrate are presented in the article. The animals were divided into five groups: group I – non-pregnant females, II – pregnant females consuming pure water without additives, III, IV, V – females which during the mating and pregnancy period received the solution of vanadium citrate at concentrations of 0.03, 0.125 and 0.50 μg V/mL water. The research findings show that in pregnant animals of group II, the level of urea and alkaline phosphatase activity increased, meanwhile aspartate aminotransferase activity decreased, as compared to the non-pregnant females of group І. The levels of total protein and albumin decreased; however, the content of β-globulins increased in the pregnant animals of group II, as compared with that in group I. Also, in the rats of group II, there was a decrease in hemolysis time, total content of erythrocytes and hemoglobin, the content of old and mature erythrocytes, while the content of young erythrocytes increased, as compared to group I. The platelet content and thrombocrit in rats of group II increased in comparison with group I. The content of leukocytes and lymphocytes in pregnant animals of group II decreased, while the content of granulocytes increased, in contrast to non-pregnant rats. Under the effect of vanadium citrate at concentrations of 0.03–0.50 μg V/mL, there was a significant increase in the maximum number of prohemolized erythrocytes, the time of maximum hemolysis was delayed by 0.4–0.6 min, as compared with the pregnant rats of group II. This did not affect the time of total hemolysis in rats of groups III and V, as compared with the pregnant animals in group II. Under the effect of vanadium citrate, an increase in the content of young erythrocytes was observed, as compared with group II. The hemoglobin content decreased at the concentration of 0.125 μg V/mL, while at the concentration of 0.50 μg V/mL it increased, as compared to the pregnant animals of group II. Also, under the effect of vanadium citrate there was a decrease in the mean hemoglobin concentration in the erythrocyte. In pregnant animals fed with vanadium citrate solutions, the platelet content and thrombocrit, the relative width of platelet distribution by volume decreased, as compared with the pregnant rats of group II. The content of leukocytes, lymphocytes and granulocytes under the effect of vanadium citrate increased, as compared with the pregnant animals in group II. Under the effect of vanadium citrate at the concentration of 0.03 μg V/mL, the level of albumin, creatinine and aspartate aminotransferase activity increased in blood plasma in comparison with group II. Meanwhile, at the concentration of 0.125 μg V/mL, the relative content of γ-globulins and aspartate aminotransferase activity increased, alkaline phosphatase activity and urea level decreased in comparison with group II. However at the concentration of 0.50 μg V/mL, the relative α- and γ-globulins content and aspartate aminotransferase activity increased, at the same time, the relative β-globulins content and urea level decreased in comparison with group II. Therefore, vanadium citrate normalizes the indicators of protein metabolism during pregnancy, thus it can be considered as a potential dietary drug for the pregnant.
Collapse
|
4
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem Biol Interact 2020; 332:109305. [PMID: 33130048 DOI: 10.1016/j.cbi.2020.109305] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Erythrocytes (RBCs) represent the main cell component in circulation and recently have become a topic of intensive scientific interest. The relevance of erythrocytes as a model for cytotoxicity screening of xenobiotics is under the spotlight of this review. Erythrocytes constitute a fundamental cellular model to study potential interactions with blood components of manifold novel polymer or biomaterials. Morphological changes, subsequent disruption of RBC membrane integrity, and hemolysis could be used to determine the cytotoxicity of various compounds. Erythrocytes undergo a programmed death (eryptosis) which could serve as a good model for evaluating certain mechanisms which correspond to apoptosis taking place in nucleated cells. Importantly, erythrocytes can be successfully used as a valuable cellular model in examination of oxidative stress generated by certain diseases or multiple xenobiotics since red cells are subjected to permanent oxidative stress. Additionally, the antioxidant capacity of erythrocytes, and the activity of anti-oxidative enzymes could reflect reactive oxygen species (ROS) generating properties of various substances and allow to determine their effects on tissues. The last part of this review presents the latest findings on the possible application of RBCs as drug delivery systems (DDS). In conclusion, all these findings make erythrocytes highly valuable cells for in vitro biocompatibility assessment, cytotoxicity screening of a wide variety of substances as well as drug delivery.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
5
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
6
|
Jiang P, Ni Z, Wang B, Ma B, Duan H, Li X, Ma X, Wei Q, Ji X, Liu Q, Xing S, Li M. Acute toxicity, twenty-eight days repeated dose toxicity and genotoxicity of vanadyl trehalose in kunming mice. Regul Toxicol Pharmacol 2017; 85:86-97. [DOI: 10.1016/j.yrtph.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
7
|
Abstract
The purpose of this study was to define the toxic effects of vanadium on thymic development in broilers fed on diets supplemented with 0, 5, 15, 30, 45 and 60 mg/kg of vanadium for 42 days. We examined the changes of relative weigh, cell cycle phase, apoptotic cells, and protein expression of Bcl-2, Bax, and caspase-3 in the thymus by the methods of flow cytometry, TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) and immunohistochemistry. The results showed that dietary high vanadium (30 mg/kg, 45 mg/kg and 60 mg/kg) caused the toxic effects on thymic development, which was characterized by decreasing relative weigh, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index (PI), and increasing percentages of apoptotic thymocytes. Concurrently, the protein expression levels of Bax and caspase-3 were increased, and protein expression levels of Bcl-2 were decreased. The thymic development suppression caused by dietary high vanadium further leads to inhibitive effects on T lymphocyte maturity and activity, and cellular immune function. The above-mentioned results provide new evidences for further understanding the vanadium immunotoxicity. In contrast, dietary 5 mg/kg vanadium promoted the thymic development by increasing relative weigh, decreasing G0/G1 phase, increasing S phase and PI, and reducing percentages of apoptotic thymocytes when compared to the control group and high vanadium groups.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
8
|
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases. Int J Mol Sci 2015; 16:12648-68. [PMID: 26053397 PMCID: PMC4490466 DOI: 10.3390/ijms160612648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/30/2023] Open
Abstract
This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| |
Collapse
|