1
|
Ricco C, Eldaboush A, Liu ML, Werth VP. Extracellular Vesicles in the Pathogenesis, Clinical Characterization, and Management of Dermatomyositis: A Narrative Review. Int J Mol Sci 2024; 25:1967. [PMID: 38396646 PMCID: PMC10889219 DOI: 10.3390/ijms25041967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer particles secreted from cells that primarily assist in cell-to-cell communication through the content of their cargo, such as proteins and RNA. EVs have been implicated in the pathogenesis of various autoimmune diseases, including dermatomyositis (DM), an inflammatory autoimmune disease characterized by distinct cutaneous manifestations, myopathy, and lung disease. We sought to review the role of EVs in DM and understand how they contribute to the pathogenesis and clinical characterization of the disease. We summarized the research progress on EVs in dermatomyositis based on recent publications. EV cargoes, such as double-stranded DNA, microRNA, and proteins, contribute to DM pathogenesis and mediate the proinflammatory response and cytokine release through signaling pathways such as the stimulator of interferon genes (STING) pathway. These nucleic acids and proteins have been proposed as disease-specific, stable biomarkers to monitor disease activity and responses to therapy. They also correlate with clinical parameters, inflammatory markers, and disease severity scores. Furthermore, some markers show an association with morbidities of DM, such as muscle weakness and interstitial lung disease. The continued study of EVs will help us to further elucidate our understanding of dermatomyositis.
Collapse
Affiliation(s)
- Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria P. Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
4
|
Ferreira CR, Cruz MAE, Bolean M, Andrilli LHDS, Millan JL, Ramos AP, Bottini M, Ciancaglini P. Annexin A5 stabilizes matrix vesicle-biomimetic lipid membranes: unravelling a new role of annexins in calcification. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:721-733. [PMID: 37938350 PMCID: PMC10682239 DOI: 10.1007/s00249-023-01687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023]
Abstract
Matrix vesicles are a special class of extracellular vesicles thought to actively contribute to both physiologic and pathologic mineralization. Proteomic studies have shown that matrix vesicles possess high amounts of annexin A5, suggesting that the protein might have multiple roles at the sites of calcification. Currently, Annexin A5 is thought to promote the nucleation of apatitic minerals close to the inner leaflet of the matrix vesicles' membrane enriched in phosphatidylserine and Ca2+. Herein, we aimed at unravelling a possible additional role of annexin A5 by investigating the ability of annexin A5 to adsorb on matrix-vesicle biomimetic liposomes and Langmuir monolayers made of dipalmitoylphosphatidylserine (DPPS) and dipalmitoylphosphatidylcholine (DPPC) in the absence and in the presence of Ca2+. Differential scanning calorimetry and dynamic light scattering measurements showed that Ca2+ at concentrations in the 0.5-2.0 mM range induced the aggregation of liposomes probably due to the formation of DPPS-enriched domains. However, annexin A5 avoided the aggregation of liposomes at Ca2+ concentrations lower than 1.0 mM. Surface pressure versus surface area isotherms showed that the adsorption of annexin A5 on the monolayers made of a mixture of DPPC and DPPS led to a reduction in the area of excess compared to the theoretical values, which confirmed that the protein favored attractive interactions among the membrane lipids. The stabilization of the lipid membranes by annexin A5 was also validated by recording the changes with time of the surface pressure. Finally, fluorescence microscopy images of lipid monolayers revealed the formation of spherical lipid-condensed domains that became unshaped and larger in the presence of annexin A5. Our data support the model that annexin A5 in matrix vesicles is recruited at the membrane sites enriched in phosphatidylserine and Ca2+ not only to contribute to the intraluminal mineral formation but also to stabilize the vesicles' membrane and prevent its premature rupture.
Collapse
Affiliation(s)
- Claudio R Ferreira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Marcos Antônio E Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Luiz Henrique da S Andrilli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Massimo Bottini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil.
- Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo, Brazil.
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Shi W, Gao Y, Wu Y, Sun J, Xu B, Lu X, Wang Q. A multifunctional polydopamine/genipin/alendronate nanoparticle licences fibrin hydrogels osteoinductive and immunomodulatory potencies for repairing bone defects. Int J Biol Macromol 2023; 249:126072. [PMID: 37524274 DOI: 10.1016/j.ijbiomac.2023.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Here, we fabricated a hybrid nanoparticle composed of polydopamine nanoparticles (pNPs), alendronate (Al) and genipin (GP) for cranial bone defect repair. Al was crosslinked into pNPs via GP (Al@pNPs), after which hybrid nanoparticles were obtained. By embedding these Al@pNPs into the fibrin hydrogels, a multifunctional bone repair scaffold was fabricated (Al@pNPs/Fg). The Al@pNPs/Fg exhibited three synergistic effects on the bone microenvironment: i) enhanced ectomesenchymal stem cell (EMSC) osteogenic differentiation by activating the piezo 1 channel; ii) inhibited the formation and function of osteoclasts related to the NF-κB signaling pathways; and iii) promoted M2 polarization and anti-inflammatory factor expression under normal and simulated inflammatory conditions. Al@pNPs/Fg ultimately promoted cranial bone defect regeneration in an SD rat model. This simple and low-cost technology provides a new approach to constructing an efficient delivery system and has desirable biological properties, providing a tissue-committed niche for the repair of bone defects.
Collapse
Affiliation(s)
- Wentao Shi
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province 214122, PR China.
| | - Yan Gao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Yiqing Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Jiaqi Sun
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Bai Xu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Xiaojie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
6
|
Gao J, Ren P, Gong H. Morphological and mechanical alterations in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Front Bioeng Biotechnol 2023; 11:1080241. [PMID: 36756384 PMCID: PMC9900117 DOI: 10.3389/fbioe.2023.1080241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objectives: This study aimed to investigate the morphological and mechanical changes in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Materials and methods: Hip joints of guinea pigs were investigated at 1, 3, 6, and 9 months of age (hereafter denoted as 1 M, 3 M, 6 M, and 9 M, respectively; n = 7 in each group). Morphological and mechanical alterations during spontaneous hip osteoarthritis in guinea pigs were investigated. The alterations included the micromechanical properties of articular cartilage (stiffness and creep deformation), microstructure of the subchondral bone (bone mineral density, bone volume fraction, trabecular thickness, trabecular number, and trabecular separation), micromorphology of the articular cartilage, and surface nanostructure (grain size and roughness) of the articular cartilage and subchondral bone. Results: Micromechanical properties of articular cartilage in 1 M showed the lowest stiffness and highest creep deformation with no significant differences in stiffness or creep deformation amongst 3 M, 6 M, and 9 M. Articular cartilage thickness decreased with age. The earliest degeneration of articular cartilage occurred at 6 months of age, characterised by surface unevenness and evident chondrocytes reduction in micromorphology, as well as increased grain size and decreased roughness in nanostructure. No degeneration at micro- or nanostructure of subchondral bone was observed before 9 months. Conclusion: Morphological degeneration of cartilage occurred before degeneration of mechanical properties. Meanwhile, degeneration of cartilage occurred before degeneration of subchondral bone during hip osteoarthritis. The current study provided novel insights into the structural and micromechanical interaction of hip osteoarthritis, which can serve as a theoretical basis for understanding the formation and progression of osteoarthritis.
Collapse
Affiliation(s)
- Jiazi Gao
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He Gong
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China,*Correspondence: He Gong,
| |
Collapse
|
7
|
Sebinelli HG, Andrilli LHS, Favarin BZ, Cruz MAE, Bolean M, Fiore M, Chieffo C, Magne D, Magrini A, Ramos AP, Millán JL, Mebarek S, Buchet R, Bottini M, Ciancaglini P. Shedding Light on the Role of Na,K-ATPase as a Phosphatase during Matrix-Vesicle-Mediated Mineralization. Int J Mol Sci 2022; 23:ijms232315072. [PMID: 36499456 PMCID: PMC9739803 DOI: 10.3390/ijms232315072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.
Collapse
Affiliation(s)
- Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Luiz Henrique Silva Andrilli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Bruno Zoccaratto Favarin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Marcos Aantonio Eufrasio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Michele Fiore
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Carolina Chieffo
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - David Magne
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | | | - Saida Mebarek
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Rene Buchet
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Massimo Bottini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.B.); (P.C.)
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.B.); (P.C.)
| |
Collapse
|
8
|
Andrilli LHS, Sebinelli HG, Favarin BZ, Cruz MAE, Ramos AP, Bolean M, Millán JL, Bottini M, Ciancaglini P. NPP1 and TNAP hydrolyze ATP synergistically during biomineralization. Purinergic Signal 2022:10.1007/s11302-022-09882-2. [DOI: 10.1007/s11302-022-09882-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
|
9
|
Ultrasensitive Diamond Microelectrode Application in the Detection of Ca2+ Transport by AnnexinA5-Containing Nanostructured Liposomes. BIOSENSORS 2022; 12:bios12070525. [PMID: 35884328 PMCID: PMC9313143 DOI: 10.3390/bios12070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca2+ resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca2+ ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca2+. The ion transport appears Ca2+-selective, since dispensing proteoliposomes in the presence of Mg2+ did not result in potential drop. The experimental conditions were adjusted to ensure an excess of Ca2+, thus confirming that the potential reduction was not only due to the binding of Ca2+ to AnxA5 but to the transfer of ions to the lumen of the proteoliposomes. Ca2+ uptake stopped immediately after the addition of EDTA. Therefore, our data provide evidence of selective Ca2+ transport into the proteoliposomes and support the possible function of AnxA5 as a hydrophilic pore once incorporated into lipid membrane, mediating the mineralization initiation process occurring in matrix vesicles.
Collapse
|
10
|
Wang Y, Weremiejczyk L, Strzelecka‐Kiliszek A, Maniti O, Amabile Veschi E, Bolean M, Ramos AP, Ben Trad L, Magne D, Bandorowicz‐Pikula J, Pikula S, Millán JL, Bottini M, Goekjian P, Ciancaglini P, Buchet R, Dou WT, Tian H, Mebarek S, He XP, Granjon T. Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e38. [PMID: 38939118 PMCID: PMC11080897 DOI: 10.1002/jex2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/29/2024]
Abstract
Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.
Collapse
Affiliation(s)
- Yubo Wang
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - Liliana Weremiejczyk
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | | | | | - Ekeveliny Amabile Veschi
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Mayte Bolean
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | | | - David Magne
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | | | - Slawomir Pikula
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Massimo Bottini
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - René Buchet
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | - Wei Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | | - Xiao P. He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | |
Collapse
|
11
|
Chaiin P, Yostaworakul J, Rungnim C, Khemthong P, Yata T, Boonrungsiman S. Self-calcifying lipid nanocarrier for bone tissue engineering. Biochim Biophys Acta Gen Subj 2022; 1866:130047. [PMID: 34757163 DOI: 10.1016/j.bbagen.2021.130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. METHODS We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. RESULTS The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
Collapse
Affiliation(s)
- Poowadon Chaiin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jakarwan Yostaworakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Chompoonut Rungnim
- NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), Pathumthani 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
12
|
Ramos AP, Bolean M, Cruz MAE, Andrilli LHS, Nogueira LFB, Sebinelli HG, Dos Santos ALN, Favarin BZ, Macedo JMM, Veschi EA, Ferreira CR, Millán JL, Bottini M, Ciancaglini P. Langmuir monolayers and proteoliposomes as models of matrix vesicles involved in biomineralization. Biophys Rev 2022; 13:893-895. [PMID: 35059014 DOI: 10.1007/s12551-021-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Mayte Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Marcos A E Cruz
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Luiz H S Andrilli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Lucas F B Nogueira
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Heitor G Sebinelli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | | | - Bruno Z Favarin
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Jeferson M M Macedo
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Ekeveliny A Veschi
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Claudio R Ferreira
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| | | | - Massimo Bottini
- Sanford Burnham Prebys, La Jolla, CA USA.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pietro Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP Brazil
| |
Collapse
|
13
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|
15
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
16
|
Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14040289. [PMID: 33805145 PMCID: PMC8064082 DOI: 10.3390/ph14040289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.
Collapse
|
17
|
Schlesinger PH, Braddock DT, Larrouture QC, Ray EC, Riazanski V, Nelson DJ, Tourkova IL, Blair HC. Phylogeny and chemistry of biological mineral transport. Bone 2020; 141:115621. [PMID: 32858255 PMCID: PMC7771281 DOI: 10.1016/j.bone.2020.115621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.
Collapse
Affiliation(s)
- Paul H Schlesinger
- Dept of Cell Biology, Washington University, Saint Louis, MO, United States of America
| | - Demetrios T Braddock
- Dept. of Pathology, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT, United States of America
| | - Quitterie C Larrouture
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vladimir Riazanski
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Irina L Tourkova
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
18
|
Cruz MAE, Ferreira CR, Tovani CB, de Oliveira FA, Bolean M, Caseli L, Mebarek S, Millán JL, Buchet R, Bottini M, Ciancaglini P, Paula Ramos A. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A physicochemical understanding of matrix vesicle-driven biomineralization. J Struct Biol 2020; 212:107607. [PMID: 32858148 DOI: 10.1016/j.jsb.2020.107607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.
Collapse
Affiliation(s)
- Marcos A E Cruz
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Claudio R Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Camila B Tovani
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | | | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences - Federal University of Sao Paulo, Brazil
| | - Saida Mebarek
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - Massimo Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| | - Ana Paula Ramos
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| |
Collapse
|
19
|
Dysbacteriosis-Derived Lipopolysaccharide Causes Embryonic Osteopenia through Retinoic-Acid-Regulated DLX5 Expression. Int J Mol Sci 2020; 21:ijms21072518. [PMID: 32260461 PMCID: PMC7177785 DOI: 10.3390/ijms21072518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/01/2022] Open
Abstract
Growing evidence suggests an adverse impact of gut microbiota dysbiosis on human health. However, it remains unclear whether embryonic osteogenesis is affected by maternal gut dysbacteriosis. In this study, we observed that elevated lipopolysaccharide (LPS) levels led to skeletal developmental retardation in an established mouse model of gut microbiota dysbiosis. Using chick embryos exposed to dysbacteriosis-derived LPS, we found restriction in the development of long bones as demonstrated by Alcian blue and alizarin red staining. Micro-CT and histological analysis exhibited decreased trabecular volume, bone mineral density, and collagen production, as well as suppressed osteoblastic gene expression (Ocn, Runx2, Osx, and Dlx5) in chick embryonic phalanges following LPS treatment. Atomic force microscopy manifested decreased roughness of MC3T3-E1 cells and poorly developed matrix vesicles (MVs) in presence of LPS. The expression of the aforementioned osteoblastic genes was suppressed in MC3T3-E1 cells as well. High-throughput RNA sequencing indicated that retinoic acid (RA) may play an important role in LPS-induced osteopenia. The addition of RA suppressed Dlx5 expression in MC3T3-E1 cells, as was also seen when exposed to LPS. Quantitative PCR, Western blot, and immunofluorescent staining showed that retinoic acid receptor α (RARα) was upregulated by LPS or RA treatment, while the expression of DLX5 was downregulated. CYP1B1 expression was increased by LPS treatment in MC3T3-E1 cells, which might be attributed to the increased inflammatory factors and subsequently activated NF-κB signaling. Eventually, blocking RA signals with AGN193109 successfully restored LPS-inhibited osteoblastic gene expression. Taken together, our data reveals that maternal gut microbiota dysbiosis can interfere with bone ossification, in which Dlx5 expression regulated by RA signaling plays an important role.
Collapse
|
20
|
Derradi R, Bolean M, Simão A, Caseli L, Millán J, Bottini M, Ciancaglini P, Ramos A. Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15232-15241. [PMID: 31702926 PMCID: PMC7105399 DOI: 10.1021/acs.langmuir.9b02590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix vesicles (MVs) are a special class of extracellular vesicles that drive bone and dentin mineralization by providing the essential enzymes and ions for the nucleation and propagation of mineral crystals. Tissue-nonspecific alkaline phosphatase (TNAP) is an integral protein of MV membrane and participates in biomineralization by hydrolyzing extracellular pyrophosphate (PPi), a strong mineralization inhibitor, and forming inorganic phosphate (Pi), necessary for the growth of mineral crystals inside MVs and their propagation once released in the extracellular matrix. MV membrane is enriched in cholesterol (CHOL), which influences the incorporation and activity of integral proteins in biologic membranes; however, how CHOL controls the incorporation and activity of TNAP in MV membrane has not yet been elucidated. In the present study, Langmuir monolayers were used as a MV membrane biomimetic model to assess how CHOL affects TNAP incorporation and activity. Surface pressure-area (π-A) isotherms of binary dipalmitoilphosphatidylcholine (DPPC)/CHOL monolayers showed that TNAP incorporation increases with CHOL concentration. Infrared spectroscopy showed that CHOL influences the conformation and orientation of the enzyme. Optical-fluorescence micrographs of the monolayers revealed the tendency of TNAP to incorporate into CHOL-rich microdomains. These data suggest that TNAP penetrates more efficiently and occupies a higher surface area into monolayers with a lower CHOL concentration due to the higher membrane fluidity. However, the quantity of enzyme transferred to solid supports as well as the enzymatic activity were higher using monolayers with a higher CHOL concentration due to increased rigidity that changes the enzyme orientation at the air-solid interface. These data provide new insights regarding the interfacial behavior of TNAP and CHOL in MVs and shed light on the biochemical and biophysical processes occurring in the MV membrane during biomineralization at the molecular level.
Collapse
Affiliation(s)
- R. Derradi
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - M. Bolean
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.M.S. Simão
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - L. Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of Sao Paulo, Rua Sao Nicolau, 210, Centro, Diadema, SP, Brazil, 09913-030
| | - J.L. Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - M. Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - P. Ciancaglini
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.P. Ramos
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| |
Collapse
|