1
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Gattermann N. Iron overload in acquired sideroblastic anemias and MDS: pathophysiology and role of chelation and luspatercept. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:443-449. [PMID: 39644054 DOI: 10.1182/hematology.2024000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Besides transfusion therapy, ineffective erythropoiesis contributes to systemic iron overload in myelodysplastic syndromes with ring sideroblasts (MDS-RS) via erythroferrone-induced suppression of hepcidin synthesis in the liver, leading to increased intestinal iron absorption. The underlying pathophysiology of MDS-RS, characterized by disturbed heme synthesis and mitochondrial iron accumulation, is less well understood. Several lines of evidence indicate that the mitochondrial transporter ABCB7 is critically involved. ABCB7 is misspliced and underexpressed in MDS-RS, due to somatic mutations in the splicing factor SF3B1. The pathogenetic significance of ABCB7 seems related to its role in stabilizing ferrochelatase, the enzyme incorporating iron into protoporphyrin IX to make heme. Although iron-related oxidative stress is toxic, many patients with MDS do not live long enough to develop clinical complications of iron overload. Furthermore, it is difficult to determine the extent to which iron overload contributes to morbidity and mortality in older patients with MDS, because iron-related complications overlap with age-related medical problems. Nevertheless, high-quality registry studies showed that transfusion dependency is associated with the presence of toxic iron species and inferior survival and confirmed a significant survival benefit of iron chelation therapy. The most widely used iron chelator in patients with MDS is deferasirox, owing to its effectiveness and convenient oral administration. Luspatercept, which can reduce SMAD2/SMAD3-dependent signaling implicated in suppression of erythropoiesis, may obviate the need for red blood cell transfusion in MDS-RS for more than a year, thereby diminishing further iron loading. However, luspatercept cannot be expected to substantially reduce the existing iron overload.
Collapse
|
3
|
Ogunbileje JO, Harris N, Wynn T, Kashif R, Stover B, Osa-Andrews B. ATP-Binding Cassette Transporter of Clinical Significance: Sideroblastic Anemia. J Pers Med 2024; 14:636. [PMID: 38929857 PMCID: PMC11204910 DOI: 10.3390/jpm14060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The ATP-binding cassette (ABC) transporters are a vast group of 48 membrane proteins, some of which are of notable physiological and clinical importance. Some ABC transporters are involved in functions such as the transport of chloride ions, bilirubin, reproductive hormones, cholesterol, and iron. Consequently, genetic or physiological disruption in these functions is manifested in various disease processes like cystic fibrosis, Tangier disease, and sideroblastic anemia. Among other etiologies, primary sideroblastic anemia results from a genetic mutation in the ATP-binding cassette-7 (ABCB7), a member of the ABC transporter family. There are not many articles specifically tackling the disease processes caused by ABC transporters in detail. Some testing methodologies previously reported in the available literature for investigating sideroblastic anemia need updating. Here, we expound on the relevance of ABCB7 as a clinically important ABC transporter and a rare participant in the disease process of Sideroblastic anemia. The other genetic and secondary etiologies of sideroblastic anemia, which do not involve mutations in the ABCB7 protein, are also described. We review the pathophysiology, clinical course, symptoms, diagnosis, and treatment of sideroblastic anemia with a focus on modern technologies for laboratory testing.
Collapse
Affiliation(s)
| | - Neil Harris
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tung Wynn
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Reema Kashif
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brian Stover
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
4
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Key J, Gispert S, Auburger G. Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production. Genes (Basel) 2024; 15:694. [PMID: 38927630 PMCID: PMC11202940 DOI: 10.3390/genes15060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.
Collapse
Affiliation(s)
| | | | - Georg Auburger
- Experimental Neurology, Clinic of Neurology, University Hospital, Goethe University Frankfurt, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.)
| |
Collapse
|
6
|
Ye H, Hu H, Zhou X, Dong M, Ren J. Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy. Curr Opin Pharmacol 2024; 74:102430. [PMID: 38237386 DOI: 10.1016/j.coph.2023.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
Septic cardiomyopathy is one of the predominant culprit factors contributing to the rising mortality in patients with severe sepsis. Among various mechanisms responsible for the etiology of septic heart anomalies, disruption of mitochondrial homeostasis has gained much recent attention, resulting in myocardial inflammation and even cell death. Ferroptosis is a novel category of regulated cell death (RCD) provoked by iron-dependent phospholipid peroxidation through iron-mediated phospholipid (PL) peroxidation, enroute to the rupture of plasma membranes and eventually cell death. This review summarizes the recent progress of ferroptosis in mitochondrial homeostasis during septic cardiomyopathy. We will emphasize the role of mitochondrial iron transport channels and the antioxidant system in ferroptosis. Finally, we will summarize and discuss future research, which should help guide disease treatment.
Collapse
Affiliation(s)
- Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Huantao Hu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoliang Zhou
- Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Rottet S, Iqbal S, Xifaras R, Singer MT, Scott C, Deplazes E, Callaghan R. Biochemical interactions between the Atm1-like transporter from Novosphingobium aromaticivorans and heavy metals. Arch Biochem Biophys 2023:109696. [PMID: 37481198 DOI: 10.1016/j.abb.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Novosphingobium aromaticivorans has the ability to survive in harsh environments by virtue of its suite of iron-containing oxygenases that biodegrade an astonishing array of aromatic compounds. It is also resistant to heavy metals through Atm1, an ATP-binding cassette protein that mediates active efflux of heavy metals conjugated to glutathione. However, Atm1 orthologues in higher organisms have been implicated in the intracellular transport of organic iron complexes. Our hypothesis suggests that the ability of Atm1 to remove heavy metals is related to the need for regulated iron handling in N. aromaticivorans to support high oxygenase activity. Here we provide the first data demonstrating a direct interaction between an iron-porphyrin compound (hemin) and NaAtm1. Hemin displayed considerably higher binding affinity and lower EC50 to stimulate ATP hydrolysis by Atm1 than Ag-GSH, GSSG or GSH, established substrates of the transporter. Co-incubation of NaAtm1, hemin with Ag-GSH in ATPase assays revealed a non-competitive interaction, indicating distinct binding sites on NaAtm1 and this property was reinforced using molecular docking analysis. Our data suggests that NaAtm1 has considerable versatility in transporting organic conjugates of metals and that this versatility enables it to play roles in detoxification processes for toxic metals and in homeostasis of iron. The ability to play these distinct roles is enabled by the plasticity of the substrate binding site within the central cavity of NaAtm1.
Collapse
Affiliation(s)
- Sarah Rottet
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Shagufta Iqbal
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Rachel Xifaras
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael T Singer
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Richard Callaghan
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Feng S, Jia J, Lv G, Wang Y. Knockdown of ABCB7 inhibits esophageal cancer progression by inhibiting the TGF-β/Smad signaling. Arch Biochem Biophys 2023; 742:109620. [PMID: 37142077 DOI: 10.1016/j.abb.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Esophageal cancer accounts for the seventh in human cancers, and the sixth in the global cancer death. ATP-binding cassette, sub-family B (MDR/TAP), member 7 (ABCB7) maintains intracellular iron homeostasis and involved in the regulation of tumor progression. However, the role and mechanism of ABCB7 in esophageal cancer remained unclear. METHODS Here, we investigated its role and regulatory mechanism by knocking down ABCB7 in Eca109 and KYSE30 cells. RESULTS ABCB7 was significantly upregulated in esophageal cancer tissues, and was strongly associated with metastasis and poor prognosis of patients. ABCB7 knockdown inhibits the proliferation, migration and invasion of esophageal cancer cells. Importantly, ABCB7 knockdown induces apoptosis and non-apoptotic cell death in flow cytometry analysis. Higher intracellular total iron concentration was observed in ABCB7 knockdown Eca109 and KYSE30 cells. We further analyzed ABCB7 expression related genes in esophageal cancer tissues. COX7B were positively correlated with the expression of ABCB7 in 440 esophageal cancer tissues. COX7B rescued the inhibition of cell proliferation and elevated total iron concentration induced by ABCB7 knockdown. In addition, Western blot results showed that ABCB7 knockdown reversed the epithelial-mesenchymal transition (EMT) process and inhibited the TGF-β signaling pathway in Eca109 and KYSE30 cells. CONCLUSION In conclusion, ABCB7 knockdown inhibits the TGF-β signaling pathway, inhibits the survival of esophageal cancer cells by inducing cell death, and reverses the EMT process. Targeting ABCB7 or COX7B could be a novel strategy for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Shiyun Feng
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, China; Department of Thoracic Surgery, The First Hospital of Jilin University, China
| | - Jiabao Jia
- Department of Thoracic Surgery, The First Hospital of Jilin University, China
| | - Guangchao Lv
- Department of Thoracic Surgery, The First Hospital of Jilin University, China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, China.
| |
Collapse
|
9
|
Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer’s Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration. Brain Sci 2023; 13:brainsci13030511. [PMID: 36979320 PMCID: PMC10046656 DOI: 10.3390/brainsci13030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and modified iron histochemical protocols, iron was found to be more tightly bound within cortical sections from patients with high levels of AD pathology compared to subjects with a diagnosis of something other than AD. To begin examining whether the bound iron could cause a functional iron deficiency, a protein-coding gene expression dataset of initial, middle, and advanced stages of AD from olfactory bulb tissue was analyzed for iron-related processes with an emphasis on anemia-related changes in initial AD to capture early pathogenic events. Indeed, anemia-related processes had statistically significant alterations, and the significance of these changes exceeded those for AD-related processes. Other changes in patients with initial AD included the expressions of transcripts with iron-responsive elements and for genes encoding proteins for iron transport and mitochondrial-related processes. In the latter category, there was a decreased expression for the gene encoding pitrilysin metallopeptidase 1 (PITRM1). Other studies have shown that PITRM1 has an altered activity in patients with AD and is associated with pathological changes in this disease. Analysis of a gene expression dataset from PITRM1-deficient or sufficient organoids also revealed statistically significant changes in anemia-like processes. These findings, together with supporting evidence from the literature, raise the possibility that a pathogenic mechanism of AD could be a functional deficiency of iron contributing to neurodegeneration.
Collapse
|
10
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteome changes in a human retinal pigment epithelial cell line during oxidative stress and following antioxidant treatment. Front Immunol 2023; 14:1138519. [PMID: 37153596 PMCID: PMC10154683 DOI: 10.3389/fimmu.2023.1138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common cause of blindness in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE) dysfunction and cell death thereby leading to AMD. Using improved RPE cell model systems, such as human telomerase transcriptase-overexpressing (hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during oxidative stress can be better understood. Using this model system, we identified changes in the expression of proteins involved in the cellular antioxidant responses after induction of oxidative stress. Some antioxidants such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that can reduce oxidative damage in cells. Alpha-tocopherol (α-Toc or αT) and gamma-tocopherol (γ-Toc or γT) are well-studied tocopherols, but signaling mechanisms underlying their respective cytoprotective properties may be distinct. Here, we determined what effect oxidative stress, induced by extracellularly applied tBHP in the presence and absence of αT and/or γT, has on the expression of antioxidant proteins and related signaling networks. Using proteomics approaches, we identified differential protein expression in cellular antioxidant response pathways during oxidative stress and after tocopherol treatment. We identified three groups of proteins based on biochemical function: glutathione metabolism/transfer, peroxidases and redox-sensitive proteins involved in cytoprotective signaling. We found that oxidative stress and tocopherol treatment resulted in unique changes in these three groups of antioxidant proteins indicate that αT and γT independently and by themselves can induce the expression of antioxidant proteins in RPE cells. These results provide novel rationales for potential therapeutic strategies to protect RPE cells from oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
11
|
Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 2023; 20:7-23. [PMID: 35788564 PMCID: PMC9252571 DOI: 10.1038/s41569-022-00735-4] [Citation(s) in RCA: 439] [Impact Index Per Article: 219.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
The maintenance of iron homeostasis is essential for proper cardiac function. A growing body of evidence suggests that iron imbalance is the common denominator in many subtypes of cardiovascular disease. In the past 10 years, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process that mediates the pathogenesis and progression of numerous cardiovascular diseases, including atherosclerosis, drug-induced heart failure, myocardial ischaemia-reperfusion injury, sepsis-induced cardiomyopathy, arrhythmia and diabetic cardiomyopathy. Therefore, a thorough understanding of the mechanisms involved in the regulation of iron metabolism and ferroptosis in cardiomyocytes might lead to improvements in disease management. In this Review, we summarize the relationship between the metabolic and molecular pathways of iron signalling and ferroptosis in the context of cardiovascular disease. We also discuss the potential targets of ferroptosis in the treatment of cardiovascular disease and describe the current limitations and future directions of these novel treatment targets.
Collapse
Affiliation(s)
- Xuexian Fang
- grid.410595.c0000 0001 2230 9154Department of Nutrition and Toxicology, School of Public Health, State Key Laboratory of Experimental Hematology, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hossein Ardehali
- grid.16753.360000 0001 2299 3507Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL USA
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
12
|
Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5124553. [PMID: 36120592 PMCID: PMC9473912 DOI: 10.1155/2022/5124553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.
Collapse
|
13
|
Li P, Hendricks AL, Wang Y, Villones RLE, Lindkvist-Petersson K, Meloni G, Cowan JA, Wang K, Gourdon P. Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria. Nat Commun 2022; 13:4339. [PMID: 35896548 PMCID: PMC9329353 DOI: 10.1038/s41467-022-32006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/11/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, iron-sulfur clusters are essential cofactors for numerous physiological processes, but these clusters are primarily biosynthesized in mitochondria. Previous studies suggest mitochondrial ABCB7-type exporters are involved in maturation of cytosolic iron-sulfur proteins. However, the molecular mechanism for how the ABCB7-type exporters participate in this process remains elusive. Here, we report a series of cryo-electron microscopy structures of a eukaryotic homolog of human ABCB7, CtAtm1, determined at average resolutions ranging from 2.8 to 3.2 Å, complemented by functional characterization and molecular docking in silico. We propose that CtAtm1 accepts delivery from glutathione-complexed iron-sulfur clusters. A partially occluded state links cargo-binding to residues at the mitochondrial matrix interface that line a positively charged cavity, while the binding region becomes internalized and is partially divided in an early occluded state. Collectively, our findings substantially increase the understanding of the transport mechanism of eukaryotic ABCB7-type proteins.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Amber L Hendricks
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Yong Wang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Kaituo Wang
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
14
|
Invernici M, Selvolini G, Silva JM, Marrazza G, Ciofi-Baffoni S, Piccioli M. Interconversion between [2Fe-2S] and [4Fe-4S] cluster glutathione complexes. Chem Commun (Camb) 2022; 58:3533-3536. [PMID: 35195626 DOI: 10.1039/d1cc03566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here how different iron-sulfide-glutathione ratios, applied in in vitro conditions comparable to those present in the mitochondrial matrix, affect the speciation of iron-sulfur cluster glutathione complexes. An excess of sulfide with respect to iron ions promotes the formation of a tetranuclear [FeII2FeIII2S4(GS)4]2- complex, while an excess of iron ions favors the formation of a dinuclear [FeIIFeIIIS2(GS)4]3- complex. These two complexes establish an interconversion equilibrium. The latter might play a role in the composition of the mitochondrial labile iron pool potentially contributing to the regulation of cellular iron homeostasis.
Collapse
Affiliation(s)
- Michele Invernici
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - José Malanho Silva
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
15
|
Valacchi G, Pecorelli A, Toyokuni S. Mitochondrial involvement in the development and progression of diseases. Arch Biochem Biophys 2021; 711:109006. [PMID: 34400142 DOI: 10.1016/j.abb.2021.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Koleini N, Shapiro JS, Geier J, Ardehali H. Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest 2021; 131:e148671. [PMID: 34060484 DOI: 10.1172/jci148671] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron plays an important role in mammalian physiological processes. It is a critical component for the function of many proteins, including enzymes that require heme and iron-sulfur clusters. However, excess iron is also detrimental because of its ability to catalyze the formation of reactive oxygen species. As a result, cellular and systemic iron levels are tightly regulated to prevent oxidative damage. Iron deficiency can lead to a number of pathological conditions, the most prominent being anemia. Iron deficiency should be corrected to improve adult patients' symptoms and to facilitate normal growth during fetal development and childhood. However, inappropriate use of intravenous iron in chronic conditions, such as cancer and heart failure, in the absence of clear iron deficiency can lead to unwanted side effects. Thus, this form of therapy should be reserved for certain patients who cannot tolerate oral iron and need rapid iron replenishment. Here, we will review cellular and systemic iron homeostasis and will discuss complications of iron deficiency.
Collapse
|
17
|
Pearson SA, Cowan JA. Glutathione-coordinated metal complexes as substrates for cellular transporters. Metallomics 2021; 13:mfab015. [PMID: 33770183 PMCID: PMC8086996 DOI: 10.1093/mtomcs/mfab015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022]
Abstract
Glutathione is the major thiol-containing species in both prokaryotes and eukaryotes and plays a wide variety of roles, including detoxification of metals by sequestration, reduction, and efflux. ABC transporters such as MRP1 and MRP2 detoxify the cell from certain metals by exporting the cations as a metal-glutathione complex. The ability of the bacterial Atm1 protein to efflux metal-glutathione complexes appears to have evolved over time to become the ABCB7 transporter in mammals, located in the inner mitochondrial membrane. No longer needed for the role of cellular detoxification, ABCB7 appears to be used to transport glutathione-coordinated iron-sulfur clusters from mitochondria to the cytosol.
Collapse
Affiliation(s)
- Stephen A Pearson
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - J A Cowan
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|