1
|
Octobre G, Delprat N, Doumèche B, Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. ENVIRONMENTAL RESEARCH 2024; 249:118330. [PMID: 38341074 DOI: 10.1016/j.envres.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples. Commonly accepted analytical techniques (HPLC-MS, GC-MS, ELISA tests) are available, but these highly sensitive and time-consuming techniques suffer from high cost and from the need for bulky equipment, user training and sample pre-treatment. Biosensors can be used as complementary early-warning systems that are less sensitive and less selective. On the other hand, they are rapid, inexpensive, easy-to-handle and allow direct detection of the sample, on-site, without any further step other than dilution. This review focuses on enzyme- and cell- (or subcellular elements) based biosensors. Different enzymes (such as tyrosinase or peroxidase) whose activity is inhibited by herbicides are presented. Photosynthetic cells such as algae or cyanobacteria are also reported, as well as subcellular elements (thylakoids, chloroplasts). Atrazine, diuron, 2,4-D and glyphosate appear as the most frequently detected herbicides, using amperometry or optical transduction (mainly based on chlorophyll fluorescence). The recent new WSSA/HRAC classification of herbicides is also included in the review.
Collapse
Affiliation(s)
- Guillaume Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| | - Nicolas Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Béatrice Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| |
Collapse
|
2
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
4
|
Rathnayake IVN, Munagamage T, Pathirathne A, Megharaj M. Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1579-1593. [PMID: 34662298 DOI: 10.2166/wst.2021.339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioavailable content of metals in aquatic systems has become critical in assessing the toxic effect of metals accumulating in the environment. Considering the need for rapid measurements, an optical microalgal-cyanobacterial array biosensor was developed using two strains of microalgae, Mesotaenium sp. and a strain of cyanobacteria Synechococcus sp. to detect Cd2+, Cr6+ and Zn2+ in aquatic systems. Microalgal and cyanobacterial cells were immobilized in a 96-well microplate using sol-gel method using silica. Optimum operational conditions for the biosensor array such as exposure time, storage stability, pH, and multiple metal effect were tested. A 10 min exposure time yielded optimum fluorescence values. Metal toxicity increased with decreasing pH, resulting in low relative fluorescence (%) and decreased with increasing pH, resulting in higher relative fluorescence (%). The optimum storage time for biosensor strains were 4 weeks for microalgal cultures and 8 weeks for cyanobacterial culture, at 4 °C storage temperature. The metal mixtures showed less effect on the inhibition of relative fluorescence (%) of microalgal/cyanobacterial cultures, displaying an antagonistic behavior among the metals tested. As a single unit, this photosynthetic array biosensor will be a valuable tool in detecting multi-metals in aquatic systems.
Collapse
Affiliation(s)
- I V N Rathnayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka E-mail:
| | - Thilini Munagamage
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka E-mail:
| | - A Pathirathne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, School of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms. Biosens Bioelectron 2021; 181:113120. [PMID: 33714858 DOI: 10.1016/j.bios.2021.113120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Polydiacetylene (PDA) is a versatile polymer that has been studied in numerous fields because of its unique optical properties derived from alternating multiple bonds in the polymer backbone. The conjugated structure in the polymer backbone enables PDA to possess the ability of blue-red colorimetric transition when π-π interactions in the PDA backbone chain are disturbed by the external environment. The chromatic property of PDA disturbed by external stimuli can also emit fluorescence in the red region. Owing to the unique characteristics of PDA, it has been widely studied in facile and label-free sensing applications based on colorimetric or fluorescence signals for several decades. Among the various PDA structures, membrane structures assembled by amphiphilic molecules are widely used as a versatile platform because facile modification of the synthetic membrane provides extensive applications, such as receptor-ligand interactions, resulting in potent biosensors. To use PDA as a sensory material, several methods have been studied to endow the specificity to PDA molecules and to amplify the signal from PDA supramolecules. This is because selective and sensitive detection of target materials is required at an appropriate level corresponding to each material for applicable sensor applications. This review focuses on factors that affect the sensitivity of PDA composites and several strategies to enhance the sensitivity of the PDA sensor to various structures. Owing to these strategies, the PDA sensor system has achieved a higher level of sensitivity and selectivity, enabling it to detect multiple target materials for a full field of application.
Collapse
|
6
|
Baral M, Krishna Prasad S, Bhat SA, Nayak RA, Yelamaggad CV. Conjunctive Photoluminescence Enhancement Through Plasmonic and Photonic Band‐Gap Pathways in a Chiral Self‐Assembled System. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marlin Baral
- Centre for Nano and Soft Matter Sciences Jalahalli, Bangalore 560013 India
- Mangalore University Mangalagangotri, Karnataka India
| | - S. Krishna Prasad
- Centre for Nano and Soft Matter Sciences Jalahalli, Bangalore 560013 India
| | - Sachin A. Bhat
- Centre for Nano and Soft Matter Sciences Jalahalli, Bangalore 560013 India
- Mangalore University Mangalagangotri, Karnataka India
| | - Rashmi A. Nayak
- CSIR-National Chemical Laboratory Pune, Maharastra 411008 India
| | - C. V. Yelamaggad
- Centre for Nano and Soft Matter Sciences Jalahalli, Bangalore 560013 India
| |
Collapse
|
7
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Homburg SV, Venkanna D, Kraushaar K, Kruse O, Kroke E, Patel AV. Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels. Colloids Surf B Biointerfaces 2019; 173:233-241. [DOI: 10.1016/j.colsurfb.2018.09.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
|
9
|
Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 2018; 126:389-404. [PMID: 30469077 DOI: 10.1016/j.bios.2018.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Food quality and safety has become a subject of major concern for authorities and professionals in the food supply chain. Rapid methods, particularly biosensors, have exceptional specificity and sensitivity, rapid response times, low cost, relatively compact size, and are user friendly to operate. Cell-based biosensors are portable, and provide the biological activity of the analyte suitable for an initial screening of food. In this overview, the utilization of cell-based biosensors for food safety and quality analyses, such as detecting toxins, foodborne pathogens, allergens, and evaluating toxicity and function are summarized. Our results will promote the future development of cell-based biosensors in the food field.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
10
|
Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples. Biosens Bioelectron 2018; 117:669-677. [DOI: 10.1016/j.bios.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023]
|
11
|
Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018; 111:102-116. [DOI: 10.1016/j.bios.2018.04.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
|
12
|
One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:75-85. [PMID: 28477084 DOI: 10.1007/s00249-017-1213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/16/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
The biocompatible silica precursor tetrakis(2-hydroxyethyl)orthosilicate with ethylene glycol residues was used instead of the common alcohol-containing tetraethoxysilane for the first time to prepare a biorecognition element by entrapping the marine microalga Porphyridium purpureum into a silica matrix by a one-stage sol-gel procedure at conditions (pH, ionic strength, and temperature) appropriate for living cells. We show that the microalga immobilized in this way fully maintains its viability and functionality. We furthermore show that the silica matrix had a stabilizing effect, providing microalgal survival and functionality at increased temperature. The high optical transparency of the silica matrix allowed us to study the optical properties of Porphyridium purpureum thoroughly. When irradiated by a laser, intense fluorescence of chlorophyll-a and phycoerythrin of the photosynthetic system was observed. The characteristics of this fluorescence differed notably from that observed with P. purpureum in suspension before immobilization; possible reasons for this and an underlying mechanism are discussed.
Collapse
|
13
|
Buckova M, Licbinsky R, Jandova V, Krejci J, Pospichalova J, Huzlik J. Fast Ecotoxicity Detection Using Biosensors. WATER, AIR, AND SOIL POLLUTION 2017; 228:166. [PMID: 28450754 PMCID: PMC5382182 DOI: 10.1007/s11270-017-3341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/14/2017] [Indexed: 05/27/2023]
Abstract
The article provides information about a new device, AlgaTox developed in the R&D project sponsored by the Technology Agency (n.TA02030179) and patented in Czech Republic (CZ 305687). Its functionality is based on the use of biosensor, and its main advantage is fast response rate. The toxicity detection is achieved through precise measurement of green algae oxygen production dynamics after their exposure to light of wavelength of 680 nm. Clark sensor with a resolution of 0.05% of the equilibrium oxygen concentrations and stability at a constant pressure and temperature of 0.1% of the equilibrium oxygen concentration at the 24-h measurement is used for the oxygen detection. Laboratory testing of the device has been made using silver nitrate, substance with known inhibitory effect on algae. Real samples of aqueous soil extracts and waste sample from old dried-up industrial tailing pond enriched with insecticide have been also tested. The values of oxygen production inhibition or stimulation determined with the new device in the evaluation of real samples were up to six times higher in comparison with the corresponding values of inhibition (stimulation) of growth rates determined by standard procedure.
Collapse
Affiliation(s)
- Martina Buckova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Roman Licbinsky
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Vilma Jandova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Jan Krejci
- BVT Technologies, a.s, Strážek 206, 592 53 Strážek, Czech Republic
| | | | - Jiri Huzlik
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| |
Collapse
|
14
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. ENVIRONMENT INTERNATIONAL 2016; 92-93:106-18. [PMID: 27071051 DOI: 10.1016/j.envint.2016.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/23/2023]
Abstract
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, 72511 Al-Kharja, Egypt
| | - Steven W Van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea.
| |
Collapse
|
16
|
Huang Y, Tian Z, Sun LP, Sun D, Li J, Ran Y, Guan BO. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle. OPTICS EXPRESS 2015; 23:26962-26968. [PMID: 26480357 DOI: 10.1364/oe.23.026962] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower.
Collapse
|
17
|
Nagy L, Magyar M, Szabó T, Hajdu K, Giotta L, Dorogi M, Milano F. Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 2015; 15:363-73. [PMID: 24678673 PMCID: PMC4030625 DOI: 10.2174/1389203715666140327102757] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/25/2022]
Abstract
Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms,
where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The
protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications
are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite
materials have been assembled by using reaction centres and different carrier matrices for different purposes
in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides).
In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to
be overcome in the different applications. We will also show possible research directions for the close future in this specific
field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Milano
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. ter 1, 6720 Szeged, Hungary.
| |
Collapse
|
18
|
Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction. Biosens Bioelectron 2013; 54:484-91. [PMID: 24316451 DOI: 10.1016/j.bios.2013.10.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2022]
Abstract
The microalgal species Dictyosphaerium chlorelloides (D. c.) was immobilized into porous silicone films and their photosynthetic activity was monitored with an integrated robust luminescent O2 sensor. The biosensor specificity towards a particular pesticide has been achieved by manufacturing a fiber-optic dual-head device containing both analyte-sensitive and analyte-resistant D. c. strains. The latter are not genetically modified microalgae, but a product of modified Luria-Delbrück fluctuation analysis followed by ratchet selection cycles. In this way the target herbicide decreases the O2 production of the analyte-sensitive immobilized strain without affecting the analyte-resistant population response; any other pollutant will lower the O2 production of both strains. The effect of the sample flow-rate, exposure time to the herbicide, biomass loading, biosensor film thickness, intensity of the actinic light, illumination cycle, and temperature on the biosensor response has been evaluated using waterborne simazine as test bench. The biosensing device is able to provide in situ measurements of the herbicide concentration every 180 min. The biosensor limit of detection for this herbicide was 12 μg L(-1), with a working range of 50-800 μg L(-1). The biosensor specificity to simazine has been assessed by comparing its response to that of isoproturon.
Collapse
|
19
|
Bio-inspired encapsulation and functionalization of living cells with artificial shells. Colloids Surf B Biointerfaces 2013; 113:483-500. [PMID: 24120320 DOI: 10.1016/j.colsurfb.2013.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Abstract
In nature, most single cells do not have structured shells to provide extensive protection apart from diatoms and radiolarians. Fabrication of biomimetic structures based on living cells encapsulated with artificial shells has a great impact on the area of cell-based sensors and devices as well as fundamental studies in cell biology. The past decade has witnessed a rapid increase of research concerning the new fabrication strategies, functionalization and applications of this kind of encapsulated cells. In this review, the latest fabrication strategies on how to encapsulate living cells with functional shells based on the diversity of artificial shells are discussed: hydrogel matrix shells, sol-gel shells, polymeric shells, and induced mineral shells. Classical different types of artificial shells are introduced and their advantages and disadvantages are compared and explained. The biomedical applications of encapsulated cells with particular emphasis on cell implant protection, cell separation, biosensors, cell therapy and tissue engineering are also described and a recap of this review and the future perspectives on these active areas is given finally.
Collapse
|
20
|
Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research. Appl Microbiol Biotechnol 2013; 97:1809-19. [DOI: 10.1007/s00253-012-4686-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
|
21
|
Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Adv 2013. [DOI: 10.1039/c3ra40605a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels. SENSORS 2012; 12:16879-91. [PMID: 23223083 PMCID: PMC3571815 DOI: 10.3390/s121216879] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 12/02/2022]
Abstract
A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl)-1,1-dimethylurea) (DCMU) and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 μM, obtained with the strain C. reinhardtii after 40 minutes of exposure.
Collapse
|
23
|
Abstract
Bionanocomposites are a novel class of nanosized materials. They contain the constituent of biological origin and particles with at least one dimension in the range of 1–100 nm. There are similarities with nanocomposites but also fundamental differences in the methods of preparation, properties, functionalities, biodegradability, biocompatibility, and applications. The article includes two parts. Bionanocomposite definition and classification along with nanoparticles, biomaterials, and methods of their preparation are initially reviewed. Then, novel approaches developed by our team are presented. The first approach concerns the preparation of bionanocomposites from chitosan and nanoparticles. It is based on the regulated charging of polysaccharide by the gradual shift of solution pH. When charges appear, the biomacromolecules come into the electrostatic interactions with negatively charged nanoparticles that cause the jellification of solutions. It is also applied to form films. They have a nacre-like structure from stacked planar nanoparticles separated by aligned biomacromolecules. The second approach deals with the biomimicking mineralization of biopolymers by using a novel silica precursor. Its advantage over the current sol-gel processing is in the compatibility and regulation of processes and structure of generated silica. Another example of the mineralization is presented by titania. Syntheses are performed in anhydrous ethylene glycol. Processes and structure of bionanocomposites are regulated by water that is added in an amount to only hydrate functional groups in the carbohydrate macromolecule.
Collapse
Affiliation(s)
- Yury Shchipunov
- 1Institute of Chemistry, Far East Department, Russian Academy of Sciences, 690022 Vladivostok, Russia; The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University, San 30, Jangjun Dong, Geumjung Gu, Busan, 609-735 Korea
| |
Collapse
|
24
|
Sassolas A, Prieto-Simón B, Marty JL. Biosensors for Pesticide Detection: New Trends. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajac.2012.33030] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Evaluation of encapsulation stress and the effect of additives on viability and photosynthetic activity of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 2011; 91:1633-46. [DOI: 10.1007/s00253-011-3517-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/13/2011] [Accepted: 07/25/2011] [Indexed: 12/01/2022]
|
26
|
Tapered optical fiber sensor for label-free detection of biomolecules. SENSORS 2011; 11:3780-90. [PMID: 22163821 PMCID: PMC3231329 DOI: 10.3390/s110403780] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 12/02/2022]
Abstract
This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair.
Collapse
|
27
|
Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF. A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:509-513. [PMID: 32938064 DOI: 10.1039/c0ay00627k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the fabrication of an amperometric whole-cell herbicide biosensor based on magnetic retention of living cells functionalised with magnetic nanoparticles (MNPs) on the surface of a screen-printed electrode. We demonstrate that Chlorella pyrenoidosa microalgae cells coated with biocompatible MNPs and retained on the electrode with a permanent magnet act as a sensing element for the fast detection of herbicides. The magnetic functionalisation does not affect the viability and photosynthesis activity-mediated triazine herbicide recognition in microalgae. The current of ferricyanide ion was recorded during alternating illumination periods and biosensor fabricated was used to detect atrazine (from 0.9 to 74 µM) and propazine (from 0.6 to 120 µM) (the limits of detection 0.7 and 0.4 µM, respectively). We believe that the methodology presented here can be widely used in fabrication of a number of whole cell biosensors since it allows for efficient and reversible cells immobilisation and does not affect the cellular metabolism.
Collapse
Affiliation(s)
- Alsu I Zamaleeva
- Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF.
| | - Ilziya R Sharipova
- Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF.
| | - Rezeda V Shamagsumova
- Department of Analytical Chemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF
| | - Alexey N Ivanov
- Department of Analytical Chemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF
| | - Gennady A Evtugyn
- Department of Analytical Chemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF
| | - Dilara G Ishmuchametova
- Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF.
| | - Rawil F Fakhrullin
- Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, RF.
| |
Collapse
|
28
|
Fakhrullin RF, Shlykova LV, Zamaleeva AI, Nurgaliev DK, Osin YN, García-Alonso J, Paunov VN. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromol Biosci 2011; 10:1257-64. [PMID: 20641044 DOI: 10.1002/mabi.201000161] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Green algae are a promising platform for the development of biosensors and bioelectronic devices. Here we report a reliable single-step technique for the functionalisation of living unicellular green algae Chlorella pyrenoidosa with biocompatible 15 nm superparamagnetic nanoparticles stabilised with poly(allylamine hydrochloride). The magnetised algae cells can be manipulated and immobilised using external permanent magnets. The distribution of the nanoparticles on the cell walls of C. pyrenoidosa was studied by optical and fluorescence microscopy, TEM, SEM and EDX spectroscopy. The viability and the magnetic properties of the magnetised algae are studied in comparison with the native cells. The technique may find a number of potential applications in biotechnology and bioelectronics.
Collapse
Affiliation(s)
- Rawil F Fakhrullin
- Biomaterials and Nanomaterials Group, Department of Biochemistry, Kazan (Idel-Ural) Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan
| | | | | | | | | | | | | |
Collapse
|
29
|
Rooke JC, Léonard A, Sarmento H, Meunier CF, Descy JP, Su BL. Novel photosynthetic CO2bioconvertor based on green algae entrapped in low-sodium silica gels. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02712j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron 2011; 26:1788-99. [DOI: 10.1016/j.bios.2010.09.005] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
|
31
|
Kvíderová J. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (chlorophyta). ENVIRONMENTAL TOXICOLOGY 2010; 25:554-563. [PMID: 19551890 DOI: 10.1002/tox.20516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three methods of algal assays--the standard assay, microassay, and the proposed fluorescence assay--are compared from the point of view of reliability of EC50 detection, the minimum required time for the detection, sensitivity of individual measurement, i.e. at which cell density the particular assay can be used for EC50 estimation, and the time stability of the EC50 values. The assays were performed with green alga Chlorella kessleri strain LARG/1 growing in potassium dichromate solution in Z-medium ranging from 0.01 to 100 mg Cr L⁻¹. The inoculation cell density was set according to the standards to 10⁴ cells mL⁻¹ and according to spectrophotometer/plate reader detection limit. The average EC50 ranged from 0.096 to 0.649 mg Cr L⁻¹ and there were no significant differences in EC50 between the assay type and the inoculation methods with the exception of the significant difference between EC(c)50₇₂ (EC50 established from biomass measured as chlorophyll a concentration after 72 h of cultivation) in the standard assay and EC(r)50 (EC50 derived from growth rate) in the microassay in the standard inoculation experiment due to low variability of their values. The EC(f)50 (EC50 derived from variable fluorescence measurement) values correspond to EC50 values derived from the growth rates. Fluorescence measurement revealed the toxic effect of the chromium after 24 h of exposure at cell density of 5 x 10⁴ cells mL⁻¹, less by half than other used assay methods. The positive correlation of EC(f)50 and time was found in the standard inoculation experiment but opposite effect was observed at the spectrophotometric one.
Collapse
Affiliation(s)
- Jana Kvíderová
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82, Třeboň, Czech Republic.
| |
Collapse
|
32
|
How to design cell-based biosensors using the sol-gel process. Anal Bioanal Chem 2010; 400:965-76. [PMID: 21046077 DOI: 10.1007/s00216-010-4351-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/13/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
Abstract
Inorganic gels formed using the sol-gel process are promising hosts for the encapsulation of living organisms and the design of cell-based biosensors. However, the possibility to use the biological activity of entrapped cells as a biological signal requires a good understanding and careful control of the chemical and physical conditions in which the organisms are placed before, during, and after gel formation, and their impact on cell viability. Moreover, it is important to examine the possible transduction methods that are compatible with sol-gel encapsulated cells. Through an updated presentation of the current knowledge in this field and based on selected examples, this review shows how it has been possible to convert a chemical technology initially developed for the glass industry into a biotechnological tool, with current limitations and promising specificities.
Collapse
|
33
|
Andrade-Eiroa Á, de-Armas G, Estela JM, Cerdà V. Critical approach to synchronous spectrofluorimetry. I. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Peña-Vázquez E, Pérez-Conde C, Costas E, Moreno-Bondi MC. Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1059-1065. [PMID: 20354900 DOI: 10.1007/s10646-010-0487-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 05/29/2023]
Abstract
Test methods are needed to monitor Cu concentrations in reservoirs and water supplies. Dictyosphaerium chlorelloides (Chlorophyta) cells were immobilized in a silicate sol-gel and the toxic effects of Cu(II) were examined using different techniques: fluorescence measurements (using a spectrofluorometer with an optic fiber coupled to a flow cell or a 96-well-plate reader) or by Pulse Amplitude Modulation (PAM) parameters using a portable instrument and the pulse saturation method. Fm' and qN were the most sensitive indicator parameters when performing Cu analysis in water. D. chlorelloides PAM biosensor presented a detection limit of 0.6 mg l(-1) for Cu(II), within the limits to establish if Cu concentrations exceeded regulatory levels. Moreover, a 1.9 mg Cu l(-1) (30 microM) resistant strain of the D. chlorelloides microalgae was produced in order to obtain more selectivity on the metal determination.
Collapse
Affiliation(s)
- E Peña-Vázquez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
35
|
Meunier CF, Rooke JC, Hajdu K, Van Cutsem P, Cambier P, Léonard A, Su BL. Insight into cellular response of plant cells confined within silica-based matrices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6568-75. [PMID: 20146496 DOI: 10.1021/la9039286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The encapsulation of living plant cells into materials could offer the possibility to develop new green biochemical technologies. With the view to designing new functional materials, the physiological activity and cellular response of entrapped cells within different silica-based matrices have been assessed. A fine-tuning of the surface chemistry of the matrix has been achieved by the in situ copolymerization of an aqueous silica precursor and a biocompatible trifunctional silane bearing covalently bound neutral sugars. This method allows a facile control of chemical and physical interactions between the entrapped plant cells and the scaffold. The results show that the cell-matrix interaction has to be carefully controlled in order to avoid the mineralization of the cell wall which typically reduces the bioavailability of nutrients. Under appropriate conditions, the introduction of a trifunctional silane (ca. 10%) during the preparation of hybrid gels has shown to prolong the biological activity as well as the cellular viability of plant cells. The relations of cell behavior with some other key factors such as the porosity and the contraction of the matrix are also discussed.
Collapse
Affiliation(s)
- Christophe F Meunier
- Laboratory of Inorganic Materials Chemistry (CMI), The University of Namur (FUNDP), 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Whole cell imprinting in sol-gel thin films for bacterial recognition in liquids: macromolecular fingerprinting. Int J Mol Sci 2010; 11:1236-52. [PMID: 20480018 PMCID: PMC2871114 DOI: 10.3390/ijms11041236] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/26/2010] [Accepted: 03/22/2010] [Indexed: 11/16/2022] Open
Abstract
Thin films of organically modified silica (ORMOSILS) produced by a sol-gel method were imprinted with whole cells of a variety of microorganisms in order to develop an easy and specific probe to concentrate and specifically identify these microorganisms in liquids (e.g., water). Microorganisms with various morphology and outer surface components were imprinted into thin sol-gel films. Adsorption of target microorganism onto imprinted films was facilitated by these macromolecular fingerprints as revealed by various microscopical examinations (SEM, AFM, HSEM and CLSM). The imprinted films showed high selectivity toward each of test microorganisms with high adsorption affinity making them excellent candidates for rapid detection of microorganisms from liquids.
Collapse
|
37
|
Sicard C, Brayner R, Margueritat J, Hémadi M, Couté A, Yéprémian C, Djediat C, Aubard J, Fiévet F, Livage J, Coradin T. Nano-gold biosynthesis by silica-encapsulated micro-algae: a “living” bio-hybrid material. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01735c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Peña-Vázquez E, Maneiro E, Pérez-Conde C, Moreno-Bondi MC, Costas E. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology. Biosens Bioelectron 2009; 24:3538-43. [PMID: 19497732 DOI: 10.1016/j.bios.2009.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/19/2009] [Accepted: 05/11/2009] [Indexed: 11/26/2022]
Abstract
Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol-gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol-gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 microg L(-1)) and the broadest dynamic calibration range (19-860 microg L(-1)) with IC(50) 125+/-14 microg L(-1). Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity.
Collapse
Affiliation(s)
- Elena Peña-Vázquez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
39
|
Nguyen-Ngoc H, Durrieu C, Tran-Minh C. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:316-320. [PMID: 18556067 DOI: 10.1016/j.ecoenv.2008.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/08/2008] [Accepted: 04/27/2008] [Indexed: 05/26/2023]
Abstract
Synchronous-scan spectrofluorometry was applied to Chlorella vulgaris cells to assess the toxicity of heavy metals and herbicides in water. Simultaneous scan of both the excitation and emission spectra was done at a constant wavelength difference Deltalambda (20-140 nm) between the emission and excitation wavelengths in the range of 420-700 nm emission, where a peak of fluorescence was observed. Its position depends on Deltalambda. Fluorescence measurements were conducted with algal cells in suspension in water and immobilized in a translucent silica matrix. The influence of toxic chemicals was tested with cadmium as a heavy metal and with atrazine, diuron, DNOC and paraquat as herbicides. The toxic effect of those chemicals mainly results in a quenching of algal cells fluorescence by reducing their photosynthetic activity.
Collapse
Affiliation(s)
- Hanh Nguyen-Ngoc
- University of Technology HCM, 268 rue Ly Thuong Kiet, Ho Chi Minh, Viet Nam
| | | | | |
Collapse
|
40
|
Walcarius A, Collinson MM. Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:121-143. [PMID: 20636056 DOI: 10.1146/annurev-anchem-060908-155139] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The versatility of sol-gel chemistry enables us to generate a wide range of silica and organosilica materials with controlled structure, composition, morphology and porosity. These materials' hosting and recognition properties, as well as their wide-open structures containing many easily accessible active sites, make them particularly attractive for analytical purposes. In this review, we summarize the importance of silica sol-gels in analytical chemistry by providing examples from the separation sciences, optical and electrochemical sensors, molecular imprinting, and biosensors. Recent work suggests that manipulating the structure and composition of these materials at different scales (from molecular to macromolecular states and/or from micro- to meso- and/or macroporous levels) promises to generate chemical and biochemical sensing devices with improved selectivity and sensitivity.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, CNRS-Nancy Université, F-54600 Villers-les-Nancy, France.
| | | |
Collapse
|
41
|
|