1
|
Wen Q, Chen Y, Rao X, Yang R, Zhao Y, Li J, Xu S, Liang Z. Preparation of magnesium Ferrite-Doped magnetic biochar using potassium ferrate and seawater mineral at low temperature for removal of cationic pollutants. BIORESOURCE TECHNOLOGY 2022; 350:126860. [PMID: 35219789 DOI: 10.1016/j.biortech.2022.126860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar has captured a great interest for remediation of environment as an easily separable carbonous adsorbent. Herein, a highly adsorptive magnetic biochar was manufactured through seawater mineral and K2FeO4 co-promoted pyrolysis of jackfruit peel at 300 °C for removal of different cationic pollutants, and characterized by element analysis, FTIR, SEM-EDS, XRD, XPS and so on. MgFe2O4 was generated without external base and a 19.42 emu/g saturation magnetization was achieved. Simultaneously, iron oxides and oxygen containing groups were introduced. The magnetic biochar exhibited 61.30 mg/g, 129.61 mg/g, and 1238.30 mg/g adsorption capacities for Cu2+, methylene blue (MB), and malachite green (MG) at 25 °C, respectively, and remarkably surpassed the corresponding pristine biochar. The adsorption of MB and MG was mainly realized by electrostatic interaction, hydrogen bonding, complexation, and π-π electron-donor-acceptor interaction, and that of Cu2+ was attributed to electrostatic interaction, hydrogen bonding, and complexation.
Collapse
Affiliation(s)
- Qin Wen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Yijia Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Xin Rao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Run Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Yiming Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Jihui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; School of Science, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China.
| | - Shuying Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, Hainan University, Haikou 570228, PR China
| | - Zhenyi Liang
- School of Science, Hainan University, Haikou 570228, PR China
| |
Collapse
|
2
|
Talesh Ramezani A, Rabiei R, Badiei A, Mohammadi Ziarani G, Ghasemi JB. A new fluorescence probe for detection of Cu +2 in blood samples: Circuit logic gate. Anal Biochem 2021; 639:114525. [PMID: 34929153 DOI: 10.1016/j.ab.2021.114525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
Abstract
A Fluorescence probe was designed based on 8-hydroxyquinoline chitosan silica precursor (HQCS) for selective detection of Al3+, Cu2+. The HQCS has no observable fluorescence signal, but after the addition of Al3+, a huge fluorescence signal appeared, and the selective quenching was absorbed after the addition of Cu2+. The effect of other different cations, including Cu2+, Mg2+, Ca2+, Pb2+, Zn2+, Hg2+, Ag+, Fe3+, and K+ was studied. The addition of Cu2+ to the probe (HQCSAL) decreased the fluorescence very repeatable, and the variation of the fluorescence vs. Cu2+ was monotonic and linear. Therefore, the prepared probe was used to determine Cu2+ ions in real samples. The mechanism of fluorescence variation by adding cations to the probe solution was studied using the Stern-Volmer equation. Under the optimum conditions, the linear range and detection limit were 3.5-31 μM and 1 μM, respectively. The probe accuracy on the copper determination in the blood and tap waters was comparable to the ICP-OES results. The circuit logic gate mimic was designed for the fluorescence behavior of the probe constituents.
Collapse
Affiliation(s)
| | - Razieh Rabiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
ZHANG Y, GUO L, LI Y, HE X, CHEN L, ZHANG Y. [Preparation of molecularly imprinted polymers-functionalized silica nanoparticles for the separation and recognition of aristolochic acids]. Se Pu 2021; 39:1137-1145. [PMID: 34505436 PMCID: PMC9404064 DOI: 10.3724/sp.j.1123.2021.06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Indexed: 11/25/2022] Open
Abstract
Aristolochic acids (AAs), which is commonly found in Aristolochia and Asarum plants, has been widely used in several traditional medicine practices due to their anti-inflammatory, anti-malarial, and anti-hyperglycemic activities. Recently, researchers have found a “decisive link” between liver cancer and aristolochic acid after analyzing a large number of liver cancer samples around the world. Therefore, a highly sensitive and selective method is required for the analysis of AAs in traditional Chinese medicines (TCM). For the determination of AAs in TCM, pretreatment is indispensable because in actual TCM samples, AAs is present in trace amounts and the complex matrix exerts interference. In the past decades, molecularly imprinted polymers (MIPs) have attracted considerable attention as an alternative for the trace analysis in complicated matrices. In this study, MIP-coated SiO2 nanoparticles (SiO2@MIP NPs) was prepared for the determination of aristolochic acid by surface molecular imprinting using aristolochic acid Ⅰ (AAI ) as the template molecule, 2-vinylpyridine (VPY) as the functional monomer, and ethyleneglycol dimethacrylate (EGDMA) as the cross-linking agent. Core-shell-structure SiO2@MIP NPs were obtained by modifying vinyl groups on the surface of SiO2 NPs, coating MIPs films onto the silica surface via selective polymerization, and final extraction of template AAI and generation of the recognition site. To find a suitable functional monomer for the best imprinting effect, the interaction between the template and the functional monomers, including acrylic acid (AA), methyl acrylic acid (MAA), 2-vinyl pyridine (VPY), acrylamide (AM), and methylacrylamide (MAM) was investigated. Electrostatic interaction between AAI and VPY resulted in the maximum decrease in absorbance of AAI at 250 nm. Therefore, VPY was chosen for the preparation of MIP. The morphological and physical properties of the MIPs were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis, and N2 adsorption and desorption surface analysis. TEM images showed that SiO2 NPs were monodispersed with diameter of about 200 nm. The clear core-shell structure of SiO2@MIP NPs was observed, and the thickness of MIPs coating was about 35 nm. The FT-IR spectra of SiO2 NPs, vinyl group modified SiO2 and SiO2@MIP NPs revealed that the vinyl group and organic MIP layer were successfully modified at SiO2 sequentially. The results of thermogravimetric analysis were consistent with the FT-IR data for different SiO2 NPs. The nitrogen gas adsorption-desorption experiments showed that SiO2@MIP NPs and non-imprinted polymer (SiO2@NIP NPs) have the same pore volumes, while the surface area and pore size of MIPs were slightly larger than those of NIPs. Therefore, the difference in adsorption between SiO2@MIP NPs and SiO2@NIP NPs resulted from the imprinted sites on the MIP surface, rather than the difference in their surface areas. The adsorption properties of SiO2@MIP NPs were demonstrated by kinetic, isothermal, and selective adsorption experiments. The results of these experiments displayed that SiO2@MIP NPs reached adsorption equilibrium within a short period (120 s) and possessed a much higher rebinding ability than SiO2@NIP NPs. To verify the selectivity of SiO2@MIP NPs for AAI, three structural analogues (viz. tanshinone ⅡA, 2-methoxy-5-nitrophenol, and benzoic acid) were selected. The results showed that the binding capacity of SiO2@MIP NPs was much higher than those of these analogues. SiO2@MIP NPs have high adsorption capacity (5.74 mg/g), high imprinting factor (4.9), good selectivity coefficient (2.3-6.6) towards the structural analogues. SiO2@MIP NPs was used as an adsorbent and combined with HPLC for the selective separation of AAI in TCM. The recoveries of Kebia trifoliate samples spiked with three levels of AAI (0.3, 0.5, and 1.0 μg/mL) ranged from 73% to 83%. The results suggested that the proposed SiO2@MIP NPs could be used for selective enrichment of AAI from real complex TCM samples.
Collapse
|
4
|
Al-Anber MA, Al-Adaileh N, Al-Momani IF, Al-Anber Z. Encapsulation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione into the silica gel matrix for capturing uranium(VI) ion species. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Weheish HL, Ahmed SH, Abdou AA, Orabi AH, Mahmoud WH. Extraction chromatographic separation of thorium by silica gel impregnated with cyanex 923. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07730-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Adsorption of Pb(II) by tourmaline-montmorillonite composite in aqueous phase. J Colloid Interface Sci 2020; 575:367-376. [DOI: 10.1016/j.jcis.2020.04.110] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 01/03/2023]
|
7
|
Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonance. INT J POLYM SCI 2020. [DOI: 10.1155/2020/3489509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A polypyrrole-chitosan-calcium ferrite nanocomposite was prepared using the electrodeposition method. The prepared layer was characterized by using Fourier transform infrared spectroscopy, the X-ray diffraction technique, and field emission electron microscopy. The thickness of the thin layers was in the range of 2.8 nm to 59.5 nm, and the refractive index of the composite layer was in the range of 1.66131+0.156i to 1.62734+0.167i. Detection and removal of cationic and anionic dyes, such as methylene blue and methylene orange, are subject of great interest for protecting environmental water. The layer composite was used to detect methylene orange and methylene blue using the surface plasmon resonance technique. Consequently, the polypyrrole-chitosan-calcium-ferrite composite layer interacted with the anionic and cationic dyes. The resonance angle shift for the detection of the cationic dye was larger than the resonance angle shift for the anionic dye. The sensor limit was achieved from a sensogram at about 0.01 ppm.
Collapse
|
8
|
Yakout AA, Shaker MA, Elwakeel KZ, Alshitari W. Response surface methodological optimization of batch Cu(II) sorption onto succinic acid functionalized SiO2 nanoparticles. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalizing nanosilica (n-SiO2) particles with suitable active organic moiety leads to the formation of surfaces with precisely controlled physical and chemical characteristics. In this work, a novel nanosorbent (31 ± 2.4 nm), namely succinic acid functionalized nanosilica (n-SiO2@SA), was synthesized via a simple protocol using microwave irradiation to remove Cu(II) ions from aqueous media. The successful functionalization of n-SiO2 was confirmed by FTIR, and the thermal stability of n-SiO2@SA was investigated by TGA study. Other techniques, including HRTEM, DLS and zeta-potential, were utilized to investigate the chemical, surface, and morphological properties of the fabricated n-SiO2@SA. The response surface methodology (RSM) combined with three-level, three-factorial Box–Behnken design (BBD) was applied to optimize the multivariable sorption system using data obtained from 17 batch runs to reach 98.9% of Cu(II) ion removal. The predicted optimal conditions were as follows: contact time = 30 min, pH = 7.1, initial Cu(II) concentration = 317.5 mg L−1, and sorbent dose = 15 mg at which the maximum sorption capacities for n-SiO2 and n-SiO2@SA were 209.3 and 386.4 mg g−1, respectively, at 25 °C, thus supporting the validity of functionalization process. Non-linear regression and linear least-squares methods confirm the suitability of Langmuir model to describe the experimental endothermic, feasible, and chemisorption data, whereas the normalized standard deviation Δq% recommends the pseudo second-order kinetic model to represent the kinetic data. Real Cu-contaminated wastewaters were used to examine n-SiO2@SA nanosorbent for removing Cu(II) ions.
Collapse
Affiliation(s)
- Amr A. Yakout
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat A. Shaker
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khalid Z. Elwakeel
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Wael Alshitari
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Hüseynli S, Çimen D, Bereli N, Denizli A. Molecular Imprinted Based Quartz Crystal Microbalance Nanosensors for Mercury Detection. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800071. [PMID: 31565367 PMCID: PMC6436597 DOI: 10.1002/gch2.201800071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Indexed: 06/10/2023]
Abstract
Mercury(II) ions are emerging as a result of more human activity, especially coal-fired power plants, industrial processes, waste incineration plants, and mining. The mercury found in different forms after spreading around diffuses the nature of other living things. Although the damage to health is not yet clear, it is obvious that it is the cause of many diseases. This work detects the problem of mercury(II) ions, one of the active pollutants in wastewater. For this purpose, it is possible to detect the smallest amount of mercury(II) ions by means of the mercury(II) ions suppressed quartz crystal microbalance nanosensor developed. Zinc(II) and cadmium(II) ions are chosen as competitor elements. Developed nanosensor technology is known as the ideal method in the laboratory environment to detect mercury(II) ions from wastewater because of its low cost and precise result orientation. The range of linearity and the limit of detection are measured as 0.25 × 10-9-50 × 10-9 m. The detection limit is found to be 0.21 × 10-9 m. The mercury(II) ions imprinted nanosensors prepared according to the obtained experimental findings show high selectivity and sensitivity to detect mercury(II) ions from wastewater.
Collapse
Affiliation(s)
- Sabina Hüseynli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Duygu Çimen
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Nilay Bereli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| |
Collapse
|
10
|
Aden M, Ubol RN, Knorr M, Husson J, Euvrard M. Efficent removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydr Polym 2017; 173:372-382. [PMID: 28732879 DOI: 10.1016/j.carbpol.2017.05.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Three types of organo-mineral composites have been probed as adsorbents for the removal of Ni(II) ions from aqueous solution. Native Aerosil 200 silica particles have been encapsulated with carboxymethylchitosan (CM-CS) providing SiO2+CM-CS, surface-silanized silica particles SiO2NH2+CM-CS were obtained by treatment with APTES and subsequent encapsulation by CM-CS. Alternatively, surface-carboxylated Aerosil 200 was coated by CM-CS affording SiO2CO2H+CM-CS. The materials have been characterized by various techniques. The effects of counter ions (Cl-, Br-, CH3COO-, NO3- and SO42-), pH and initial Ni(II) concentration on the adsorption capacities have been systematically investigated. The maximum adsorption capacity qm of CM-CS-coated silica was determined using the Langmuir adsorption isotherm. For SiO2CO2H+CM-CS, SiO2+CM-CS and SiO2NH2+CM-CS, they decrease at pH 7 in the order 256mg/g>140mg/g>105mg/g. The adsorption kinetic fits well with a pseudo-second order model. These carbohydrate-derived biosorbents are excellent adsorbents with capacities superior to most other adsorbents reported in the literature.
Collapse
Affiliation(s)
- Moumin Aden
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Faculté des Sciences, Université de Djibouti, Avenue Djanaleh, 1904, Djibouti
| | - Rattiya Na Ubol
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Division of Chemistry, School of Science, University of Phayao, 56000, Thailand
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France.
| | - Jérôme Husson
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Myriam Euvrard
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France.
| |
Collapse
|
11
|
|
12
|
Roy ML, Gagnon C, Gagnon J. New method for sequestration of silver nanoparticles in aqueous media: in route toward municipal wastewater. Chem Cent J 2016; 10:54. [PMID: 27570541 PMCID: PMC5002176 DOI: 10.1186/s13065-016-0198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Nanomaterials are widely used in industry for their specific properties. Silver nanoparticles (Ag NPs) are largely used in several consumer products notably for their antibacterial properties and will likely be found in wastewater, then in the receiving environment. The development of a product capable to sequestrate those released contaminants is needed. Under environmental conditions, the biopolymer chitosan can generally coordinate the cationic metals. Ag NPs present unique properties due to their high surface/mass ratio which are promising for their sequestration. Results The immobilization of chitosan on functionalized silica assisted by microwaves gives a sequestering agent of silver while being easily recoverable. The IR spectrum confirmed the immobilization of N,N–dimethylchitosan (DMC) on silica core. The immobilized DMC gave a percentage of sequestration of Ag NPs (120 µg L−1) in nanopure water of 84.2 % in 4 h. The sequestration efficiency was largely dependent of temperature. By addition of hydrosulfide ions, the percentage of sequestration increased up to 100 %. The immobilized DMC recovered a large portion of silver regardless the speciation (Ag NP or Ag+). In wastewater, the immobilized DMC sequestered less Ag NPs (51.7 % in 97 % wastewater). The presence of anionic (sodium dodecyl sulfate and sodium N–lauroylsarcosinate) and non-ionic surfactants (cetyl alcohol) increased the hydrophobicity of Ag NPs and decreased the percentage of sequestration. Conclusions The immobilized DMC is a promising tool for sequestrating such emerging pollutant at low concentrations in a large volume of sample that would allow the characterization of concentrated Ag NPs by transmission electron microscopy. The efficiency of the support to sequestrate would likely be influenced by the chemical environment of the Ag NP solution. Electronic supplementary material The online version of this article (doi:10.1186/s13065-016-0198-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Laine Roy
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| | - Christian Gagnon
- Centre Saint-Laurent, Environment Canada, 105 McGill st., 7th floor, Montreal, QC H2Y 2E7 Canada
| | - Jonathan Gagnon
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| |
Collapse
|
13
|
Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan. Appl Microbiol Biotechnol 2015; 100:879-91. [DOI: 10.1007/s00253-015-7137-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/23/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
14
|
Zhong G, Guo W, Liu Y, Wei Y, Meng X, Hu Z, Liu F. Preparation of tetrasulfide-functionalized silica particles by hydrothermal assisted grafting method for removal of lead (II) via dynamic solid phase extraction. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
16
|
Tobiasz A, Walas S. Solid-phase-extraction procedures for atomic spectrometry determination of copper. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.06.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zhao J, Zhu YJ, Wu J, Zheng JQ, Zhao XY, Lu BQ, Chen F. Chitosan-coated mesoporous microspheres of calcium silicate hydrate: Environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. J Colloid Interface Sci 2014; 418:208-15. [DOI: 10.1016/j.jcis.2013.12.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
18
|
Samiey B, Cheng CH, Wu J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review. MATERIALS (BASEL, SWITZERLAND) 2014; 7:673-726. [PMID: 28788483 PMCID: PMC5453072 DOI: 10.3390/ma7020673] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 11/16/2022]
Abstract
Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied.
Collapse
Affiliation(s)
- Babak Samiey
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad 68137-17133, Iran.
| | - Chil-Hung Cheng
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Jiangning Wu
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
19
|
Ouyang A, Liang J. Tailoring the adsorption rate of porous chitosan and chitosan–carbon nanotube core–shell beads. RSC Adv 2014. [DOI: 10.1039/c4ra04131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous chitosan beads are widely used as adsorption media in environmental and biomedical areas.
Collapse
Affiliation(s)
- An Ouyang
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084, P. R. China
- Key Laboratory for Advanced Materials Processing Technology
- Ministry of Education
| | - Ji Liang
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084, P. R. China
- Key Laboratory for Advanced Materials Processing Technology
- Ministry of Education
| |
Collapse
|
20
|
Rodrigues D, Rocha-Santos TAP, Freitas AC, Gomes AMP, Duarte AC. Strategies based on silica monoliths for removing pollutants from wastewater effluents: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:126-138. [PMID: 23714248 DOI: 10.1016/j.scitotenv.2013.04.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Silica monoliths have been used for more than half a century in a wide variety of applications, such as stationary phases for microextraction fibers, capillary columns for chromatography, in the encapsulation of biomolecules for affinity chromatography and for microfluidic or microarray chips and, more recently, and less well known for wastewater treatment. The main objective of this review article is to specifically overview the strategies that use silica monoliths for the removal of chemical pollutants from wastewater effluents or prepared solutions. The discussion of advantages and drawbacks of such strategies will be supported with the main studies carried out so far which have been performed in laboratory environment only. The application and potential research interest in several strategies using composites and biocomposites based silica monoliths as cleaning systems are also discussed.
Collapse
Affiliation(s)
- Dina Rodrigues
- Department of Chemistry &CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
21
|
El-Din HMN, El-Naggar AWM, Abu-El Fadle FI. Radiation Synthesis of pH-Sensitive Hydrogels From Carboxymethyl Cellulose/Poly(ethylene Oxide) Blends as Drug Delivery Systems. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Kaur S, Dhillon GS. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 2013; 40:155-75. [DOI: 10.3109/1040841x.2013.770385] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Lin S, Chang CC, Lin CW. A REVERSIBLE OPTICAL SENSOR BASED ON CHITOSAN FILM FOR THE SELECTIVE DETECTION OF COPPER IONS. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2012. [DOI: 10.4015/s101623721250041x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heavy metals greatly influence animal physiology, even at small doses. Among these metals, the copper ion is of great concern due to its effects on humans and wide applications in industry. Compared to atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry, which destroy the samples that are analyzed, optical techniques do not decompose the analyte and have become a popular field of recent research. In this paper, we combined a novel optical detector that did not require sample-labeling, called surface plasmon resonance (SPR), with chitosan to detect copper ions by modifying the functional groups of chitosan through pH modification. Compared to other optical detectors, the SPR system was relatively fast and involved fewer experimental confounding factors. The three-dimensional structure of chitosan was used to obtain lower detection limits. Moreover, modification of the chitosan functional groups resulted in efficient regeneration by controlling the pH. A detection limit of 0.1 μM was obtained (linear range: 0.5–10 μM, R2 = 0.976), and the specificity was certified by comparing the copper ion with six other ions. Additionally, we successfully regenerated the SPR chips by modifying the functional groups. In conclusion, the chitosan–SPR system detected copper ions with improved detection limits using a quick and simple regeneration method.
Collapse
Affiliation(s)
- Shenhsiung Lin
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Chen Chang
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Preparation and Evaluation Properties of Pb<SUP>2�?</SUP> on-Imprinted Polymers on Chitosan Modified Multi-walled Carbon Nanotube. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Rajiv Gandhi M, Meenakshi S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). Int J Biol Macromol 2012; 50:650-7. [DOI: 10.1016/j.ijbiomac.2012.01.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|
26
|
Harben SM, Mosselmans JFW, Ryan ÁT, Whitwood AC, Walton PH. Polymer imprinting with iron-oxo-hydroxo clusters: [Fe6O2(OH)2(O2CC(Cl)=CH2)12(H2O)2], [Fe6O2(OH)2(O2C-Ph-(CH)=CH2)12(H2O)2] and [{Fe(O2CC(Cl)=CH2)(OMe)2}10]. Dalton Trans 2012; 41:208-18. [PMID: 22086273 DOI: 10.1039/c1dt11614b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the syntheses of imprinted polymers using iron-oxo-hydroxo clusters as templates. Three new iron clusters, [Fe(6)O(2)(OH)(2)(O(2)CC(Cl)=CH(2))(12)(H(2)O)(2)] (1), [{Fe(O(2)CC(Cl)=CH(2))(OMe)(2)}(10)] (2) and [Fe(6)O(2)(OH)(2)(O(2)C-Ph-(CH)=CH(2))(12)(H(2)O)(2)] (3) have been prepared from commercially-available carboxylic acids. Cluster-imprinted-polymers (CIPs) of 1, 2 and 3 were prepared with ethylene glycol dimethacrylate monomer, and of 1 with methyl methacrylate monomer. The imprinted sites within the CIPs were examined using EXAFS and diffuse reflectance UV/vis spectroscopy, demonstrating that the clusters 1, 2 and 3 were incorporated intact within the polymers. Extraction of the clusters from the CIPs imprinted with 1 and 3 gave new polymers that showed evidence of an imprinting effect.
Collapse
Affiliation(s)
- Spencer M Harben
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Rajiv Gandhi M, Meenakshi S. WITHDRAWN: Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). Int J Biol Macromol 2011:S0141-8130(11)00420-X. [PMID: 22100868 DOI: 10.1016/j.ijbiomac.2011.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
|
29
|
Pandey S, Mishra SB. Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 2011; 361:509-20. [DOI: 10.1016/j.jcis.2011.05.031] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 11/28/2022]
|
30
|
Dekhil A, Hannachi Y, Ghorbel A, Boubaker T. Comparative Study of the Removal of Cadmium from Aqueous Solution by using Low-cost Adsorbents. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jest.2011.520.533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Lai SM, Chen WC, Wu TW, Yang AJM, Yang CH. Properties and Preparation of Chitosan/Silanol Quaternary Ammonium Modified Silica Hybrids Using Sol–Gel Process. J MACROMOL SCI B 2011. [DOI: 10.1080/00222348.2010.518544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S.-M. Lai
- a Department of Chemical and Materials Engineering , National I-Lan University , Taiwan , Republic of China
| | - W.-C. Chen
- b Department of Chemical Engineering , Chinese Culture University , Taiwan , Republic of China
| | - Tai-Wei Wu
- c Institute of Materials Science and Nanotechnology , Chinese Culture University , Taiwan , Republic of China
| | - Arthur J.-M. Yang
- d Industrial Science & Technology Network, Inc , York , Pennsylvania , USA
| | - C.-H. Yang
- c Institute of Materials Science and Nanotechnology , Chinese Culture University , Taiwan , Republic of China
| |
Collapse
|
32
|
Singh V, Kumar† P. Design of Nanostructured Tamarind Seed Kernel Polysaccharide-Silica Hybrids for Mercury (II) Removal. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.534120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011; 40:2922-42. [PMID: 21359355 DOI: 10.1039/c0cs00084a] [Citation(s) in RCA: 1147] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | | | | |
Collapse
|
34
|
Wolman FJ, Copello GJ, Mebert AM, Targovnik AM, Miranda MV, Navarro del Cañizo AA, Díaz LE, Cascone O. Egg white lysozyme purification with a chitin–silica-based affinity chromatographic matrix. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1263-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Ge H, Huang S. Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 2010. [DOI: 10.1002/app.30843] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Li F, Dong PJ, Zhuang QF. Novel column-based protein refolding strategy using dye-ligand affinity chromatography based on macroporous biomaterial. J Chromatogr A 2009; 1216:4383-7. [DOI: 10.1016/j.chroma.2009.02.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
37
|
|
38
|
Moscofian ASO, Airoldi C. Synthesized layered inorganic-organic magnesium organosilicate containing a disulfide moiety as a promising sorbent for cations removal. JOURNAL OF HAZARDOUS MATERIALS 2008; 160:63-69. [PMID: 18395976 DOI: 10.1016/j.jhazmat.2008.02.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 11/01/2007] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
A new-layered inorganic-organic magnesium organosilicate was synthesized through a single step template sol-gel route under mild conditions, using a new alkoxysilane, containing a 2-aminophenyldisulfide molecule. Elemental analysis data based on the nitrogen atom showed an incorporation of 1.97mmol of organic pendant groups for each gram of the hybrid formed. The X-ray diffraction patterns demonstrated that this nanocompound exhibited lamellar structure, in agreement with that found for natural inorganic silicates. Infrared spectroscopy and nuclear magnetic resonance for the (29)Si nucleus in the solid state are in agreement with the success of the proposed synthetic method. The presence of nitrogen and sulfur basic centers attached to the pendant groups inside the lamellar structure is used as basic centers to coordinate cations from aqueous solution at the solid/liquid interface. The isotherms were fitted to Langmuir and Freundlich models. The maxima adsorption capacities for copper, lead and cadmium, calculated from Langmuir model, were 3.28, 1.42 and 0.35mmol g(-1), respectively. These values are comparable to other adsorbing nanomaterials. This behavior suggested that this new inorganic-organic hybrid could be employed as a promising adsorbent for cation removal from polluted systems.
Collapse
|
39
|
Carletto JS, Roux KCDP, Maltez HF, Martendal E, Carasek E. Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS. JOURNAL OF HAZARDOUS MATERIALS 2008; 157:88-93. [PMID: 18243546 DOI: 10.1016/j.jhazmat.2007.12.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 05/25/2023]
Abstract
This study presents the development of an on-line preconcentration system for zinc(II) determination in aqueous samples. The analyte was trapped in a mini-column filled with a chelating resin based on a chitosan biopolymer modified with 8-hydroxyquinoline obtained by the diazotization reaction. Flow and chemical variables of the system, as well as the potential interference ions, were optimized through a multivariate procedure. The factors selected were sample pH, eluent concentration (HNO(3)), and sample and eluent flow rates. It was verified through a full factorial design that the sample pH and eluent flow rate factors were statistically significant at the 95% confidence level. A final optimization of the significant factors was carried out using a Doehlert matrix. The preconcentration system was linear between 2.5 and 75 microgL(-1), with a regression coefficient of 0.9995. The enrichment factor was 17.6. The limits of detection and quantification were 0.8 and 2.5 microgL(-1), respectively. The repeatability and the analytical frequency were, respectively, 2.7 (25.0 microgL(-1), n=8) and 18 samples per hour. Results for recovery tests using mineral water samples were between 85 and 93%. Certified reference materials were analyzed in order to check the accuracy of the proposed method.
Collapse
|
40
|
Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies. Biosens Bioelectron 2008; 24:787-92. [PMID: 18692388 DOI: 10.1016/j.bios.2008.06.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/28/2008] [Accepted: 06/30/2008] [Indexed: 11/24/2022]
Abstract
A new procedure for fabricating deoxyribonucleic acid (DNA) electrochemical biosensor was developed based on covalent immobilization of target single-stranded DNA (ssDNA) on Au electrode that had been functionalized by direct coupling of sol-gel and self-assembled technologies. Two siloxanes, 3-mercaptopropyltrimethoxysiloxane (MPTMS) and 3-glycidoxypropyltrimethoxysiloxane (GPTMS) were used as precursors to prepare functionally self-assembly sol-gel film on Au electrode. The thiol group of MPTMS allowed assembly of MPTMS sol-gel on gold electrode surface. Through co-condensation between silanols, GPTMS sol-gel with epoxide groups interconnected into MPTMS sol-gel and enabled covalent immobilization of target NH(2)-ssDNA through epoxide/amine coupling reaction. The concentration of MPTMS and GPTMS influenced the performance of the resulting biosensor due to competitive sol-gel process. The linear range of the developed biosensor for determination of complementary ssDNA was from 2.51 x 10(-9) to 5.02 x 10(-7)M with a detection limit of 8.57 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of target ssDNA on self-assembled sol-gel matrix could serve as a versatile platform for DNA immobilization and fabrication of biosensors.
Collapse
|
41
|
Chitosan gel beads immobilized Cu (II) for selective adsorption of amino acids. ACTA ACUST UNITED AC 2008; 70:903-8. [DOI: 10.1016/j.jprot.2008.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 11/03/2007] [Accepted: 01/04/2008] [Indexed: 11/20/2022]
|
42
|
Hernandez-Ramirez O, Holmes SM. Novel and modified materials for wastewater treatment applications. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b716941h] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Djekic T. Effective intraparticle diffusion coefficients of CoCl2 in mesoporous functionalized silica adsorbents. ADSORPTION 2007. [DOI: 10.1007/s10450-007-9070-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|