1
|
Yamada H, Sueyoshi K, Hisamoto H, Endo T. Modulating Optical Characteristics of Nanoimprinted Plasmonic Device by Re-Shaping Process of Polymer Mold. MICROMACHINES 2021; 12:mi12111323. [PMID: 34832735 PMCID: PMC8622264 DOI: 10.3390/mi12111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Metal nanostructures exhibit specific optical characteristics owing to their localized surface plasmon resonance (LSPR) and have been studied for applications in various optical devices. The LSPR property strongly depends on the size and shape of metal nanostructures; thus, plasmonic devices must be designed and fabricated according to their uses. Nanoimprint lithography (NIL) is an effective process for repeatedly fabricating metal nanostructures with controlled sizes and shapes and require optical properties. NIL is a powerful method for mass-producible, low-cost, and large-area fabrication. However, the process lacks flexibility in adjusting the size and shape according to the desirable optical characteristics because the size and shape of metal nanostructures are determined by a single corresponding mold. Here, we conducted a re-shaping process through the air-plasma etching of a polymer's secondary mold (two-dimensional nanopillar array made of cyclo-olefin polymer (COP)) to modulate the sizes and shapes of nanopillars; then, we controlled the spectral characteristics of the imprinted plasmonic devices. The relationship between the structural change of the mold, which was based on etching time, and the optical characteristics of the corresponding plasmonic device was evaluated through experiments and simulations. According to evaluation results, the diameter of the nanopillar was controlled from 248 to 139 nm due to the etching time and formation of a pit structure. Consequently, the spectral properties changed, and responsivity to the surrounding dielectric environment was improved. Therefore, plasmonic devices based on the re-shaped COP mold exhibited a high responsivity to a refractive index of 906 nm/RIU at a wavelength of 625 nm.
Collapse
Affiliation(s)
- Hirotaka Yamada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (H.Y.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (H.Y.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102–8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (H.Y.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (H.Y.); (K.S.); (H.H.)
- Correspondence:
| |
Collapse
|
2
|
Miranda B, Rea I, Dardano P, De Stefano L, Forestiere C. Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. BIOSENSORS-BASEL 2021; 11:bios11040107. [PMID: 33916580 PMCID: PMC8066870 DOI: 10.3390/bios11040107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, optical biosensors based on nanostructured materials have obtained increasing interest since they allow the screening of a wide variety of biomolecules with high specificity, low limits of detection, and great sensitivity. Among them, flexible optical platforms have the advantage of adapting to non-planar surfaces, suitable for in vivo and real-time monitoring of diseases and assessment of food safety. In this review, we summarize the newest and most advanced platforms coupling optically active materials (noble metal nanoparticles) and flexible substrates giving rise to hybrid nanomaterials and/or nanocomposites, whose performances are comparable to the ones obtained with hard substrates (e.g., glass and semiconductors). We focus on localized surface plasmon resonance (LSPR)-based and surface-enhanced Raman spectroscopy (SERS)-based biosensors. We show that large-scale, cost-effective plasmonic platforms can be realized with the currently available techniques and we emphasize the open issues associated with this topic.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Correspondence:
| | - Carlo Forestiere
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| |
Collapse
|
3
|
Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Bhalla N, Estrela P. Exploiting the signatures of nanoplasmon-exciton coupling on proton sensitive insulator-semiconductor devices for drug discovery applications. NANOSCALE 2018; 10:13320-13328. [PMID: 29974109 DOI: 10.1039/c8nr04540b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multimodal sensing methods have a great promise in biosensing applications as they can measure independently several properties that characterise the biomolecular interaction to be detected as well as providing inherent on-chip validation of the sensing signals. This work describes the mechanisms of a concept of insulator-semiconductor field-effect devices coupled with nanoplasmonic sensing as a promising technology, which can be used for a wide range of analytical sensing applications. The developed method involves coupling of the localized surface plasmons (LSPs) within gold nanoparticles (AuNPs) and excitons within pH sensitive silicon nitride (Si3N4) nanofilms for screening inhibitors of kinase, which constitute an important class of chemotherapy drugs. In parallel to this optical sensing, the pH sensitivity of silicon nitride is used to detect the release of protons associated with kinase activity. By changing the insulator and AuNPs characteristics, this work demonstrates the nanoplasmonic-exciton effects taking place, enabling the developed platform to be used for screening kinase inhibitors and as a dual mode electro-optical biosensor for routine bio/chemical sensing applications.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, BA2 7AY, UK.
| | | |
Collapse
|
5
|
Fathi F, Rahbarghazi R, Rashidi MR. Label-free biosensors in the field of stem cell biology. Biosens Bioelectron 2018; 101:188-198. [DOI: 10.1016/j.bios.2017.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023]
|
6
|
Bhalla N, Chiang HJ, Shen AQ. Cell biology at the interface of nanobiosensors and microfluidics. Methods Cell Biol 2018; 148:203-227. [DOI: 10.1016/bs.mcb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Lundstrom K. Cell-impedance-based label-free technology for the identification of new drugs. Expert Opin Drug Discov 2017; 12:335-343. [PMID: 28276704 DOI: 10.1080/17460441.2017.1297419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery has progressed from relatively simple binding or activity screening assays to high-throughput screening of sophisticated compound libraries with emphasis on miniaturization and automation. The development of functional assays has enhanced the success rate in discovering novel drug molecules. Many technologies, originally based on radioactive labeling, have sequentially been replaced by methods based on fluorescence labeling. Recently, the focus has switched to label-free technologies in cell-based screening assays. Areas covered: Label-free, cell-impedance-based methods comprise of different technologies including surface plasmon resonance, mass spectrometry and biosensors applied for screening of anticancer drugs, G protein-coupled receptors, receptor tyrosine kinase and virus inhibitors, drug and nanoparticle cytotoxicity. Many of the developed methods have been used for high-throughput screening in cell lines. Cell viability and morphological damage prediction have been monitored in three-dimensional spheroid human HT-29 carcinoma cells and whole Schistosomula larvae. Expert opinion: Progress in label-free, cell-impedance-based technologies has facilitated drug screening and may enhance the discovery of potential novel drug molecules through, and improve target molecule identification in, alternative signal pathways. The variety of technologies to measure cellular responses through label-free cell-impedance based approaches all support future drug development and should provide excellent assets for finding better medicines.
Collapse
|
8
|
Nishiyama H, Saito Y. Electrostatically tunable plasmonic devices fabricated on multi-photon polymerized three-dimensional microsprings. OPTICS EXPRESS 2016; 24:637-644. [PMID: 26832293 DOI: 10.1364/oe.24.000637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrostatically tunable plasmonic devices on three-dimensional (3D) microsprings were fabricated using multi-photon polymerization followed by metal deposition. These plasmonic devices comprised a nanostructured Au microplate and two 3D microsprings. The maximum plasmon excitation efficiency was 35%, a value achieved with incident light of wavelength 632.8 nm. The efficiency could be continuously changed from almost zero to maximum by inclining the microplates with the application of DC voltage up to 50 V. Such dynamic functionality is useful for the realization of highly integrated optoelectronic devices and tunable metamaterials.
Collapse
|
9
|
Raghu D, Christodoulides JA, Delehanty JB, Byers JM, Raphael MP. A Label-free Technique for the Spatio-temporal Imaging of Single Cell Secretions. J Vis Exp 2015. [PMID: 26650542 PMCID: PMC4692743 DOI: 10.3791/53120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inter-cellular communication is an integral part of a complex system that helps in maintaining basic cellular activities. As a result, the malfunctioning of such signaling can lead to many disorders. To understand cell-to-cell signaling, it is essential to study the spatial and temporal nature of the secreted molecules from the cell without disturbing the local environment. Various assays have been developed to study protein secretion, however, these methods are typically based on fluorescent probes which disrupt the relevant signaling pathways. To overcome this limitation, a label-free technique is required. In this paper, we describe the fabrication and application of a label-free localized surface plasmon resonance imaging (LSPRi) technology capable of detecting protein secretions from a single cell. The plasmonic nanostructures are lithographically patterned onto a standard glass coverslip and can be excited using visible light on commercially available light microscopes. Only a small fraction of the coverslip is covered by the nanostructures and hence this technique is well suited for combining common techniques such as fluorescence and bright-field imaging. A multidisciplinary approach is used in this protocol which incorporates sensor nanofabrication and subsequent biofunctionalization, binding kinetics characterization of ligand and analyte, the integration of the chip and live cells, and the analysis of the measured signal. As a whole, this technology enables a general label-free approach towards mapping cellular secretions and correlating them with the responses of nearby cells.
Collapse
Affiliation(s)
- Deepa Raghu
- Materials Science and Technology, Naval Research Laboratory
| | | | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory
| | - Jeff M Byers
- Materials Science and Technology, Naval Research Laboratory
| | - Marc P Raphael
- Materials Science and Technology, Naval Research Laboratory;
| |
Collapse
|
10
|
Raphael MP, Christodoulides JA, Byers JM, Anderson GP, Liu JL, Turner KB, Goldman ER, Delehanty JB. Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. PLASMONICS (NORWELL, MASS.) 2015; 10:1649-1655. [PMID: 26594135 PMCID: PMC4644190 DOI: 10.1007/s11468-015-9969-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 06/05/2023]
Abstract
Localized surface plasmon resonance (LSPR) spectroscopy and imaging are emerging biosensor technologies which tout label-free biomolecule detection at the nanoscale and ease of integration with standard microscopy setups. The applicability of these techniques can be limited by the restrictions that surface-conjugated ligands must be both sufficiently small and orientated to meet analyte sensitivity requirements. We demonstrate that orientated single domain antibodies (sdAb) can optimize nanoplasmonic sensitivity by comparing three anti-ricin sdAb constructs to biotin-neutravidin, a model system for small and highly orientated ligand studies. LSPR imaging of electrostatically orientated sdAb exhibited a ricin sensitivity equivalent to that of the biotinylated LSPR biosensors for neutravidin. These results, combined with the facts that sdAb are highly stable and readily produced in bacteria and yeast, build a compelling case for the increased utilization of sdAbs in nanoplasmonic applications.
Collapse
Affiliation(s)
- Marc P. Raphael
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Joseph A. Christodoulides
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jeff M. Byers
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - George P. Anderson
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jinny L. Liu
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Kendrick B. Turner
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Ellen R. Goldman
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - James B. Delehanty
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| |
Collapse
|
11
|
Satija J, Tharion J, Mukherji S. Facile synthesis of size and wavelength tunable hollow gold nanostructures for the development of a LSPR based label-free fiber-optic biosensor. RSC Adv 2015. [DOI: 10.1039/c5ra13941d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hollow bimetallic nanostructures have recently emerged as attractive plasmonic materials due to the ease of optical tunability by changing their size/composition.
Collapse
Affiliation(s)
- Jitendra Satija
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400 076
- India
- School of Bio Sciences and Technology
| | - Joseph Tharion
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400 076
- India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400 076
- India
- Centre of Excellence for Nanoelectronics
| |
Collapse
|
12
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|
13
|
Yoo SM, Kim DK, Lee SY. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 2014; 132:112-7. [PMID: 25476286 DOI: 10.1016/j.talanta.2014.09.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/27/2022]
Abstract
A localized surface plasmon resonance (LSPR)-based sensor with an immobilized aptamer ligand was developed and used for the label-free and accurate detection of bacteria through observing the changes in the peak extinction intensity. The ability of this biosensor to recognize pathogenic bacteria was analyzed and conditions were optimized with different probe concentrations, incubation time for aptamer immobilization, and incubation time for cell binding. A single LSPR-based sensor was used to successfully detect and identify three different bacterial species as proof-of-concept experiments; in all cases, the sensor showed a detection limit of 30 cfu per assay. Furthermore, the sensor system could clearly identify various target bacterial species in a multiplexed mode with high specificities on a single chip. The label-free bacteria sensor developed by combining LSPR and aptamers will be useful for diagnosing various infectious diseases through a single convenient assay.
Collapse
Affiliation(s)
- Seung Min Yoo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), KAIST, Daejeon 305-701, Korea
| | - Do-Kyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), KAIST, Daejeon 305-701, Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 plus program), KAIST, Daejeon 305-701, Korea.
| |
Collapse
|
14
|
Yang S, Wu T, Zhao X, Li X, Tan W. The optical property of core-shell nanosensors and detection of atrazine based on localized surface plasmon resonance (LSPR) sensing. SENSORS 2014; 14:13273-84. [PMID: 25057137 PMCID: PMC4168510 DOI: 10.3390/s140713273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/17/2014] [Accepted: 07/17/2014] [Indexed: 01/30/2023]
Abstract
Three different nanosensors with core-shell structures were fabricated by molecular self-assembly and evaporation techniques. Such closely packed nanoparticles exhibit fine optical properties which are useful for biochemical sensing. The refractive index sensitivity (RIS) of nanosensors was detected by varying the refractive index of the surrounding medium and the decay length of nanosensors was investigated using a layer-by-layer polyelectrolyte multilayer assembly. The results showed that the thickness of the Au shell plays an important role in determining the RIS and the decay length. A system based on localized surface plasmon resonances (LSPR) sensing was constructed in our study. The core-shell nanosensors can detect 10 ng/mL atrazine solutions and are suitable for pesticide residue detection.
Collapse
Affiliation(s)
- Shaobo Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Tengfei Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Xinhua Zhao
- School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300131, China.
| | - Xingfei Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Wenbin Tan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
15
|
Kwa T, Zhou Q, Gao Y, Rahimian A, Kwon L, Liu Y, Revzin A. Reconfigurable microfluidics with integrated aptasensors for monitoring intercellular communication. LAB ON A CHIP 2014; 14:1695-704. [PMID: 24700096 PMCID: PMC4386869 DOI: 10.1039/c4lc00037d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report the development of a microsystem integrating anti-TNF-α aptasensors with vacuum-actuatable microfluidic devices that may be used to monitor intercellular communications. Actuatable chambers were used to expose to mitogen a group of ~600 cells while not stimulating another group of monocytes only 600 μm away. Co-localizing groups of cells with miniature 300 μm diameter aptamer-modified electrodes enabled monitoring of TNF-α release from each group independently. The microsystem allowed observation of the sequence of events that included 1) mitogenic activation of the first group of monocytes to produce TNF-α, 2) diffusion of TNF-α to the location of the second group of cells and 3) activation of the second group of cells resulting in the production of TNF-α by these cells. Thus, we were able to experimentally verify reciprocal paracrine crosstalk between the two groups of cells secreting the same signalling molecule. Given the prevalence of such cellular communications during injury, cancer or immune response and the dearth of available monitoring techniques, the microsystem described here is envisioned to have significant impact on cell biology.
Collapse
Affiliation(s)
- Timothy Kwa
- Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Sciences Building, 451 Health Sciences Drive Room 2619, Davis, CA 95616, United States.
| | | | | | | | | | | | | |
Collapse
|
16
|
Oh BR, Huang NT, Chen W, Seo JH, Chen P, Cornell TT, Shanley TP, Fu J, Kurabayashi K. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS NANO 2014; 8:2667-76. [PMID: 24568576 PMCID: PMC4004291 DOI: 10.1021/nn406370u] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Localized surface plasmon resonance (LSPR) nanoplasmonic effects allow for label-free, real-time detection of biomolecule binding events on a nanostructured metallic surface with simple optics and sensing tunability. Despite numerous reports on LSPR bionanosensing in the past, no study thus far has applied the technique for a cytokine secretion assay using clinically relevant immune cells from human blood. Cytokine secretion assays, a technique to quantify intercellular-signaling proteins secreted by blood immune cells, allow determination of the functional response of the donor's immune cells, thus providing valuable information about the immune status of the donor. However, implementation of LSPR bionanosensing in cellular functional immunoanalysis based on a cytokine secretion assay poses major challenges primarily owing to its limited sensitivity and a lack of sufficient sample handling capability. In this paper, we have developed a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. Our approach integrates LSPR bionanosensors in an optofluidic platform that permits trapping and stimulation of target immune cells in a microfluidic chamber with optical access for subsequent cytokine detection. The on-chip spatial confinement of the cells is the key to rapidly increasing a cytokine concentration high enough for detection by the LSPR setup, thereby allowing the assay time and sample volume to be significantly reduced. We have successfully applied this approach first to THP-1 cells and then later to CD45 cells isolated directly from human blood. Our LSPR optofluidics device allows for detection of TNF-α secreted from cells as few as 1000, which translates into a nearly 100 times decrease in sample volume than conventional cytokine secretion assay techniques require. We achieved cellular functional immunoanalysis with a minimal blood sample volume (3 μL) and a total assay time 3 times shorter than that of the conventional enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Bo-Ram Oh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nien-Tsu Huang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jung Hwan Seo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical and Design Engineering, Hongik University, Seoul, South Korea
| | - Pengyu Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy T. Cornell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas P. Shanley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Address correspondence to
| |
Collapse
|
17
|
Cheng XR, Hau BY, Endo T, Kerman K. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioelectron 2014; 53:513-8. [DOI: 10.1016/j.bios.2013.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022]
|
18
|
|
19
|
Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 2013; 806:55-73. [PMID: 24331040 DOI: 10.1016/j.aca.2013.10.048] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 01/28/2023]
Abstract
Motivated by potential benefits such as sensor miniaturization, multiplexing opportunities and higher sensitivities, refractometric nanoplasmonic biosensing has profiled itself in a short time span as an interesting alternative to conventional Surface Plasmon Resonance (SPR) biosensors. This latter conventional sensing concept has been subjected during the last decades to strong commercialization, thereby strongly leaning on well-developed thin-film surface chemistry protocols. Not surprisingly, the examples found in literature based on this sensing concept are generally characterized by extensive analytical studies of relevant clinical and diagnostic problems. In contrast, the more novel Localized Surface Plasmon Resonance (LSPR) alternative finds itself in a much earlier, and especially, more fundamental stage of development. Driven by new fabrication methodologies to create nanostructured substrates, published work typically focuses on the novelty of the presented material, its optical properties and its use - generally limited to a proof-of-concept - as a label-free biosensing scheme. Given the different stages of development both SPR and LSPR sensors find themselves in, it becomes apparent that providing a comparative analysis of both concepts is not a trivial task. Nevertheless, in this review we make an effort to provide an overview that illustrates the progress booked in both fields during the last five years. First, we discuss the most relevant advances in SPR biosensing, including interesting analytical applications, together with different strategies that assure improvements in performance, throughput and/or integration. Subsequently, the remaining part of this work focuses on the use of nanoplasmonic sensors for real label-free biosensing applications. First, we discuss the motivation that serves as a driving force behind this research topic, together with a brief summary that comprises the main fabrication methodologies used in this field. Next, the sensing performance of LSPR sensors is examined by analyzing different parameters that can be invoked in order to quantitatively assess their overall sensing performance. Two aspects are highlighted that turn out to be especially important when trying to maximize their sensing performance, being (1) the targeted functionalization of the electromagnetic hotspots of the nanostructures, and (2) overcoming inherent negative influence that stem from the presence of a high refractive index substrate that supports the nanostructures. Next, although few in numbers, an overview is given of the most exhaustive and diagnostically relevant LSPR sensing assays that have been recently reported in literature, followed by examples that exploit inherent LSPR characteristics in order to create highly integrated and high-throughput optical biosensors. Finally, we discuss a series of considerations that, in our opinion, should be addressed in order to bring the realization of a stand-alone LSPR biosensor with competitive levels of sensitivity, robustness and integration (when compared to a conventional SPR sensor) much closer to reality.
Collapse
Affiliation(s)
- M-Carmen Estevez
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marinus A Otte
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Borja Sepulveda
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
20
|
Wu W, Yu L, Fang Z, Lie P, Zeng L. A lateral flow biosensor for the detection of human pluripotent stem cells. Anal Biochem 2013; 436:160-4. [DOI: 10.1016/j.ab.2013.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/27/2012] [Accepted: 01/29/2013] [Indexed: 02/08/2023]
|
21
|
Chen W, Huang NT, Li X, Yu ZTF, Kurabayashi K, Fu J. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization. Front Oncol 2013; 3:98. [PMID: 23626950 DOI: 10.3389/fonc.2013.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/10/2013] [Indexed: 11/13/2022] Open
Abstract
Rapid, accurate, and quantitative characterization of immune status of patients is of utmost importance for disease diagnosis and prognosis, evaluating efficacy of immunotherapeutics and tailoring drug treatments. Immune status of patients is often dynamic and patient-specific, and such complex heterogeneity has made accurate, real-time measurements of patient immune status challenging in the clinical setting. Recent advances in microfluidics have demonstrated promising applications of the technology for immune monitoring with minimum sample requirements and rapid functional immunophenotyping capability. This review will highlight recent developments of microfluidic platforms that can perform rapid and accurate cellular functional assays on patient immune cells. We will also discuss the future potential of integrated microfluidics to perform rapid, accurate, and sensitive cellular functional assays at a single-cell resolution on different types or subpopulations of immune cells, to provide an unprecedented level of information depth on the distribution of immune cell functionalities. We envision that such microfluidic immunophenotyping tools will allow for comprehensive and systems-level immunomonitoring, unlocking the potential to transform experimental clinical immunology into an information-rich science.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan Ann Arbor, MI, USA ; Department of Mechanical Engineering, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
22
|
Li N, Cheng XR, Brahmendra A, Prashar A, Endo T, Guyard C, Terebiznik M, Kerman K. Photonic crystals on copolymer film for bacteria detection. Biosens Bioelectron 2013; 41:354-8. [DOI: 10.1016/j.bios.2012.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 10/28/2022]
|
23
|
Raphael MP, Christodoulides JA, Delehanty JB, Long JP, Pehrsson PE, Byers JM. Quantitative LSPR imaging for biosensing with single nanostructure resolution. Biophys J 2013; 104:30-6. [PMID: 23332056 DOI: 10.1016/j.bpj.2012.11.3821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/02/2012] [Accepted: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
Localized surface plasmon resonance (LSPR) imaging has the potential to map complex spatio-temporal variations in analyte concentration, such as those produced by protein secretions from live cells. A fundamental roadblock to the realization of such applications is the challenge of calibrating a nanoscale sensor for quantitative analysis. Here, we introduce a new, to our knowledge, LSPR imaging and analysis technique that enables the calibration of hundreds of individual gold nanostructures in parallel. The calibration allowed us to map the fractional occupancy of surface-bound receptors at individual nanostructures with nanomolar sensitivity and a temporal resolution of 225 ms. As a demonstration of the technique's applicability to molecular and cell biology, the calibrated array was used for the quantitative LSPR imaging of anti-c-myc antibodies harvested from a cultured 9E10 hybridoma cell line without the need for further purification or processing.
Collapse
|
24
|
Endo T, Ryuuno Y, Yanagida Y, Hatsuzawa T. Development of Plasmonic Chemical Sensor for Detection of Aldehyde Compounds. ACTA ACUST UNITED AC 2013. [DOI: 10.1541/ieejsmas.133.372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tatsuro Endo
- Graduate School of Engineering, Osaka Prefecture University
| | - Yoshiyuki Ryuuno
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Yasuko Yanagida
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Takeshi Hatsuzawa
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
25
|
Yuan J, Duan R, Yang H, Luo X, Xi M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomedicine 2012; 7:2921-8. [PMID: 22745553 PMCID: PMC3383265 DOI: 10.2147/ijn.s32641] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Detection of the human epididymis secretory protein 4 (HE4) biomarker plays an important role in the early diagnosis of ovarian cancer. This study aimed to develop a novel localized surface plasmon resonance (LSPR) biosensor for detecting HE4 in blood samples from patients with ovarian cancer. Methods Silver nanoparticles were fabricated using a nanosphere lithography method. The anti-HE4 antibody as a probe, which can distinctly recognize HE4, was assembled onto the nanochip surface using an amine coupling method. Detection was based on the shift in the extinction maximum of the LSPR spectrum before and after the HE4-anti-HE4 antibody reaction. These nanobiosensors were applied to detect HE4 in human serum samples and compare them using an enzyme-linked immunosorbent assay. Results Tests relating to the detection of HE4 demonstrated that the LSPR-based biosensor featured a fast detection speed, good specificity, effective reproducibility, and long-term stability. The linear range for LSPR was between 10 pM and 10,000 pM, with a detection limit of 4 pM. An excellent correlation between LSPR and enzyme-linked immunosorbent assay results was observed in human serum. Conclusion This study is the first clinical diagnostic application of the LSPR biosensor in ovarian cancer. The LSPR biosensor, a rapid, low-cost, label-free and portable screening tool, can serve as a very effective alternative for the clinical serological diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Jialing Yuan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
26
|
Saitakis M, Gizeli E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 2012; 69:357-71. [PMID: 21997385 PMCID: PMC11114954 DOI: 10.1007/s00018-011-0854-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Collapse
Affiliation(s)
- Michael Saitakis
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| |
Collapse
|
27
|
Chen S, Fang YM, Xiao Q, Li J, Li SB, Chen HJ, Sun JJ, Yang HH. Rapid visual detection of aluminium ion using citrate capped gold nanoparticles. Analyst 2012; 137:2021-3. [DOI: 10.1039/c2an35129c] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Huang Y, Cai D, Chen P. Micro- and Nanotechnologies for Study of Cell Secretion. Anal Chem 2011; 83:4393-406. [DOI: 10.1021/ac200358b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yinxi Huang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Dong Cai
- Biology Department, Boston College, Boston, Massachusetts 02467, United States
| | - Peng Chen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|
29
|
Vazquez-Mena O, Sannomiya T, Villanueva LG, Voros J, Brugger J. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications. ACS NANO 2011; 5:844-53. [PMID: 21192666 DOI: 10.1021/nn1019253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices.
Collapse
Affiliation(s)
- Oscar Vazquez-Mena
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Satija J, Bharadwaj R, Sai V, Mukherji S. Emerging use of nanostructure films containing capped gold nanoparticles in biosensors. Nanotechnol Sci Appl 2010; 3:171-88. [PMID: 24198481 DOI: 10.2147/nsa.s8981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The localized surface plasmon resonance (LSPR) property of gold nanoparticles (GNP) has been exploited in a variety of optical sensor configurations including solution-based bioassays, paper-based colorimetric detection, surface-confined nanoparticle film/array-based sensing, etc. Amongst these, gold nanostructured films are of great interest because of their high stability, good reproducibility, robustness, and cost-effectiveness. The inherent optical characteristics of GNP, are attributed to parameters like size and shape (eg, nanospheres, nanorods, nanostars), eg, LSPR spectral location sensitivity to the local environment, composition (eg, gold-silver or silica-gold nanoshells), sensing volume, mesospacing, and multiplexing. These properties allow sensor tunability, enabling enhanced sensitivity and better performance of these biosensors. Ultrasensitive biosensor designs were realized using gold nanostructured films fabricated by bottom-up as well as top-down approaches. In this review, we describe the past, present, and future trends in the development of GNP-LSPR-based sensors, concentrating on both design (fabrication) and application. In the process, we have discussed various combinations of GNP size and shape, substrate, and application domains.
Collapse
Affiliation(s)
- Jitendra Satija
- Department of Bioscience and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | | | | | | |
Collapse
|
31
|
Lai T, Hou Q, Yang H, Luo X, Xi M. Clinical application of a novel sliver nanoparticles biosensor based on localized surface plasmon resonance for detecting the microalbuminuria. Acta Biochim Biophys Sin (Shanghai) 2010; 42:787-92. [PMID: 20926512 DOI: 10.1093/abbs/gmq085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to explore the clinical application of the nanobiosensor based on localized surface plasmon resonance (LSPR), we used our LSPR biosensor to detect the microalbuminuria in this work. The sliver nanoparticles were fabricated by using nanosphere lithography. The anti-human albumin antibody was immobilized on the sensor surface by amine coupling method. The different concentrations of commercial albumin and albumin in urine samples from three mild preeclampsia patients were determined according to the peak of LSPR extinction spectra. Under optimum conditions, our results showed that the biosensor displayed a detection limit of 1 ng/ml and wide dynamic range of 1 ng/ml to 1 μg/ml. Furthermore, the microalbuminuria of three patients was determined by our biosensor within a short assay time, without sample purification. This biosensor proposed herein is easy to prepare and could be used for low-cost, rapid, label-free, and sensitive screening of the microalbuminuria. This approach provides a promising platform for developing clinical diagnostic applications.
Collapse
Affiliation(s)
- Ting Lai
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
32
|
Milgram S, Cortes S, Villiers MB, Marche P, Buhot A, Livache T, Roupioz Y. On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin. Biosens Bioelectron 2010; 26:2728-32. [PMID: 20961746 DOI: 10.1016/j.bios.2010.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 01/09/2023]
Abstract
The secretions of molecules by cells are of tremendous interest for both fundamental insights studies and medical purposes. In this study, we propose a new biochip-based approach for the instantaneous monitoring of protein secretions, using antibody production by B lymphocytes cultured in vitro. This was possible thanks to the Surface Plasmon Resonance imaging (SPRi) of a protein biochip where antigen proteins (Hen Egg Lysozyme, HEL) were micro-arrayed along with series of control proteins. B cell hybridomas were cultured on the chip and the secretion of immunoglobulins (antibody) specific to HEL was monitored in real-time and detected within only few minutes rather than after a 30-60 min incubation with standard ELISA experiments. This fast and sensitive detection was possible thanks to the sedimentation of the cells on the biochip sensitive surface, where local antibody concentrations are much higher before dilution in the bulk medium. An other interesting feature of this approach for the secretion monitoring was the independence of the SPR response--after normalization--regarding to the density of the surface-immobilized probes. Such biosensor might thus pave the way to new tools capable of both qualitative and semi-quantitative analysis of proteins secreted by other immune cells.
Collapse
Affiliation(s)
- Sarah Milgram
- CREAB Group, SPRAM Laboratory UMR 5819 (CEA-CNRS-UJF), Institute for Nanosciences and Cryogeny, CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 2010; 398:227-38. [PMID: 20623273 DOI: 10.1007/s00216-010-3933-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 12/15/2022]
Abstract
It has been estimated that over a billion dollars in resources can be consumed to obtain clinical approval, and only a few new chemical entities are approved by the US Food and Drug Administration (FDA) each year. Therefore it is of utmost importance to obtain the maximum amount of information about biological activity, toxicological profile, biochemical mechanisms, and off-target interactions of drug-candidate leads in the earliest stages of drug discovery. Cell-based assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of the drug-discovery process. Nevertheless, cellular screening, relying on different strategies ranging from reporter gene technology to protein fragment complementation assays, still presents a variety of challenges. This review focuses on main advantages and limitations of different cell-based approaches, and future directions and trends in this fascinating field.
Collapse
Affiliation(s)
- Elisa Michelini
- Department of Pharmaceutical Sciences, University of Bologna, Via Mentana, 7, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
34
|
Aschner M. Chapter 8 - Nanoparticles: Transport across the olfactory epithelium and application to the assessment of brain function in health and disease. PROGRESS IN BRAIN RESEARCH 2010; 180:141-52. [PMID: 20302833 DOI: 10.1016/s0079-6123(08)80008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The exciting advances within nanotechnology are beginning to be harnessed by the medical field. Nanoparticles have been used for drug delivery into the brain and have been explored for imaging, sensing, and analytical purposes. The science of nanoparticles encompasses a vast array of biological, chemical, physical, and engineering research, different aspects of which are specifically addressed in each of the chapters of this volume. Nanomaterials such as nanospheres, nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots (Qdots) are at the forefront of scientific attention, as they provide new consumer products and advance the scientific development of novel analytical tools in medicine and in the physical sciences. This chapter will briefly survey some aspects of nanoparticle biology focusing on the following: (1) the role of olfactory nanoparticle transport into the central nervous system (CNS), both as a potential route for effective drug delivery and as a route for the passage of noxious substances into the brain proper; (2) nanoparticles as sensors of cell function and toxicity; and (3) some adverse effects of nanoparticles on the dysregulation of brain redox status.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Pediatrics, Pharmacology and The Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
35
|
Bi N, Sun Y, Tian Y, Song D, Wang L, Wang J, Zhang H. Analysis of immunoreaction with localized surface plasmon resonance biosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1163-1167. [PMID: 20079682 DOI: 10.1016/j.saa.2009.12.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 12/16/2009] [Accepted: 12/31/2009] [Indexed: 05/28/2023]
Abstract
The localized surface plasmon resonance (LSPR)-based optical biosensor was used as a potential tool for label-free detection of immunoreaction. The glass substrate covered with the self-assembled monolayer (SAM) of gold colloids was used widely in the sensors. Here, the glass substrate was modified by chemical hydroxylation first, and then gold colloids were immobilized on the substrate by electrostatic adsorption. The LSPR spectra were obtained on UV-vis absorption spectrometer. The specificity was examined by extensive nonspecific binding tests. The resonance condition on the local dielectric environment enables a simple form of molecular sensing. The binding of analyte to the biosensor surface causes a change in the absorbance which was responsive to the concentration of human IgG. So, the LSPR sensing yields similar results to the SPR technique, yet with much simpler instrument.
Collapse
Affiliation(s)
- Ning Bi
- College of Chemistry, Jilin University, Changchun, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Saitakis M, Tsortos A, Gizeli E. Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 2010; 25:1688-93. [DOI: 10.1016/j.bios.2009.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/20/2009] [Accepted: 12/07/2009] [Indexed: 01/17/2023]
|
37
|
Hiep HM, Saito M, Nakamura Y, Tamiya E. RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen-antibody reactions. Anal Bioanal Chem 2010; 396:2575-81. [PMID: 20155492 DOI: 10.1007/s00216-010-3488-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/22/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
Abstract
Developments of optical protein sensors with nanostructure based on the noble metals have currently received great attention for their high efficiency and simultaneous analysis of various important biomolecules from proteomics to genetics. In this study, we exploited the absorbance spectra of gold-capped nanoparticles substrate for label-free detections of antigen-antibody reactions using a specific thiolated RNA aptamer. These synthesized RNA aptamers have been optimized to bind to the Fc portion of the human IgG1 subclass, due to their ability to orient antibodies direction on the gold surface. After attaching the anti-fibrinogen antibodies on the surface via these linkers, our thiolated RNA aptamer-based nanostructured sensors were easily applicable to specific detections of fibrinogen with a limit of detection of 0.1 ng/mL. These nanostructured sensor-based models will open a way to display numerous immunosensors as well as to develop other functionally similar sensors which could then be expanded into multi-arrays assay systems.
Collapse
Affiliation(s)
- Ha Minh Hiep
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
38
|
Fabrication of core-shell structured nanoparticle layer substrate for excitation of localized surface plasmon resonance and its optical response for DNA in aqueous conditions. Anal Chim Acta 2010; 661:200-5. [DOI: 10.1016/j.aca.2009.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/20/2022]
|
39
|
Yoo SY, Kim DK, Park TJ, Kim EK, Tamiya E, Lee SY. Detection of the Most Common Corneal Dystrophies Caused by BIGH3 Gene Point Mutations Using a Multispot Gold-Capped Nanoparticle Array Chip. Anal Chem 2010; 82:1349-57. [DOI: 10.1021/ac902410z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- So Young Yoo
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| | - Do-Kyun Kim
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| | - Tae Jung Park
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| | - Eung Kweon Kim
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| | - Eiichi Tamiya
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| | - Sang Yup Lee
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, Departments of Chemical & Biomolecular Engineering (BK21 program), of Bio & Brain Engineering, and of Biological Sciences, and Bioinformatics Research Center, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea, Corneal Dystrophy Research Institute, Department of Ophthalmology, Severance Hospital, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of
| |
Collapse
|
40
|
Study Progress on Biosensing Core/shell Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Sannomiya T, Sahoo PK, Mahcicek DI, Solak HH, Hafner C, Grieshaber D, Vörös J. Biosensing by densely packed and optically coupled plasmonic particle arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1889-1896. [PMID: 19384877 DOI: 10.1002/smll.200900284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Densely packed plasmonic particle arrays are investigated for biosensing applications. Such particle arrays exhibit interparticle optical coupling creating a strong field between the particles, which is useful for sensing purposes. The sensor properties, such as bulk sensitivity, layer sensitivity, and the depth of sensitivity are investigated with the aid of a multiple multipole program. Sensitivity to the analyte with low concentration is also examined by a dynamic adsorption processes. The detectable concentration limit of streptavidin within 3000 s in the detection system is expected from the signal-to-noise to be less than 150 pM.
Collapse
Affiliation(s)
- Takumi Sannomiya
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|