1
|
Chen M, Li B, Wei W, Zhang Z, Zhang L, Li C, Huang Q. Ultrafast protein digestion using an immobilized enzyme reactor following high-resolution mass spectrometry analysis for rapid identification of abrin toxin. Analyst 2024; 149:3783-3792. [PMID: 38845587 DOI: 10.1039/d4an00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Abrin toxin, highly dangerous with an estimated human lethal dose of 0.1-1 μg per kg body weight, has attracted much attention regarding criminal and terroristic misuse over the past decade. Therefore, developing a rapid detection method for abrin toxin is of great significance in the field of biosecurity. In this study, based on the specific dissociation method of an immobilized enzyme reactor, the trypsin immobilized reactor Fe3O4@CTS-GA-Try was prepared to replace free trypsin, and the immobilized enzyme digestion process was systematically investigated and optimized by using bovine serum albumin as the simulant of abrin. After 5 min one-step denaturation and reduction, a satisfactory peptide number and coverage were yielded with only 15 s assisted by an ultrasound probe to identify model proteins. Subsequently, abrin was rapidly digested using the established method, resulting in a stable and highly reproducible characteristic peptide number of 39, which can be analyzed by nanoelectrospray ionization coupled with high-resolution mass spectrometry. With the acquisition mode of full MS scan coupled with PRM, not only MS spectroscopy of total abrin peptides but also the corresponding MS/MS spectroscopy of specific abrin peptides can achieve the characteristic detection of abrin toxin and its different isoforms in less than 10 minutes, with high repeatability. This assay provides a universal platform and has great potential for the development of on-site detection and rapid mass spectrometric analysis techniques for macromolecular protein toxins and can further be applied to the integrated detection of chemical and biological agents.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Baoqiang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wenlu Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhongyao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Cuiping Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qibin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Wang D, Zhang Z, Baudys J, Haynes C, Osman SH, Zhou B, Barr JR, Gumbart JC. Enhanced Surface Accessibility of SARS-CoV-2 Omicron Spike Protein Due to an Altered Glycosylation Profile. ACS Infect Dis 2024; 10:2032-2046. [PMID: 38728322 PMCID: PMC11184558 DOI: 10.1021/acsinfecdis.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.
Collapse
Affiliation(s)
- Dongxia Wang
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Zijian Zhang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Jakub Baudys
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Christopher Haynes
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Sarah H. Osman
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Bin Zhou
- National
Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - John R. Barr
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| |
Collapse
|
3
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Naplekov D, Jadeja S, Fučíková AM, Švec F, Sklenářová H, Lenčo J. Easy, Robust, and Repeatable Online Acid Cleavage of Proteins in Mobile Phase for Fast Quantitative LC-MS Bottom-Up Protein Analysis─Application for Ricin Detection. Anal Chem 2023; 95:12339-12348. [PMID: 37565982 PMCID: PMC10448442 DOI: 10.1021/acs.analchem.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.
Collapse
Affiliation(s)
- Denis
K. Naplekov
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Alena Myslivcová Fučíková
- Department
of Biology, Faculty of Science, University
of Hradec Králové, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Rainer T, Egger AS, Zeindl R, Tollinger M, Kwiatkowski M, Müller T. 3D-Printed High-Pressure-Resistant Immobilized Enzyme Microreactor (μIMER) for Protein Analysis. Anal Chem 2022; 94:8580-8587. [PMID: 35678765 PMCID: PMC9218953 DOI: 10.1021/acs.analchem.1c05232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Additive manufacturing
(3D printing) has greatly revolutionized
the way researchers approach certain technical challenges. Despite
its outstanding print quality and resolution, stereolithography (SLA)
printing is cost-effective and relatively accessible. However, applications
involving mass spectrometry (MS) are few due to residual oligomers
and additives leaching from SLA-printed devices that interfere with
MS analyses. We identified the crosslinking agent urethane dimethacrylate
as the main contaminant derived from SLA prints. A stringent washing
and post-curing protocol mitigated sample contamination and rendered
SLA prints suitable for MS hyphenation. Thereafter, SLA printing was
used to produce 360 μm I.D. microcolumn chips with excellent
structural properties. By packing the column with polystyrene microspheres
and covalently immobilizing pepsin, an exceptionally effective microscale
immobilized enzyme reactor (μIMER) was created. Implemented
in an online liquid chromatography-MS/MS setup, the protease microcolumn
enabled reproducible protein digestion and peptide mapping with 100%
sequence coverage obtained for three different recombinant proteins.
Additionally, when assessing the μIMER digestion efficiency
for complex proteome samples, it delivered a 144-fold faster and significantly
more efficient protein digestion compared to 24 h for bulk digestion.
The 3D-printed μIMER withstands remarkably high pressures above
130 bar and retains its activity for several weeks. This versatile
platform will enable researchers to produce tailored polymer-based
enzyme reactors for various applications in analytical chemistry and
beyond.
Collapse
Affiliation(s)
- Tobias Rainer
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Trahan C, Oeffinger M. Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae. Methods Mol Biol 2022; 2477:195-223. [PMID: 35524119 DOI: 10.1007/978-1-0716-2257-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to get a comprehensive picture of cellular behavior and to understand biological systems. In the past two decades, affinity purification coupled to mass spectrometry has become a powerful tool to comprehensively study interaction networks and their assemblies. To overcome initial limitations of the approach, in particular, the effect of protein and RNA degradation, loss of transient interactors, and poor overall yield of intact complexes from cell lysates, various modifications to affinity purification protocols have been devised over the years. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol as described here has been optimized for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Christian Trahan
- RNP Biochemistry Laboratory, Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- RNP Biochemistry Laboratory, Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal, Montréal, QC, Canada.
- Département de biochimie et médicine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Burdman I, Burckhardt BB. Human prorenin determination by hybrid immunocapture liquid chromatography/mass spectrometry: A mixed-solvent-triggered digestion utilizing D-optimal design. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8932. [PMID: 32845569 DOI: 10.1002/rcm.8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Human prorenin, representing the precursor of mature renin, has been discussed as a potential biomarker, e.g. in diagnosing primary hyperaldosteronism or diabetes-induced nephropathy. Currently, only immunoassays are available for prorenin quantification. As the similarity of prorenin to active renin impedes its accurate determination by immunoassay, mass spectrometry appears as an accurate alternative for differentiation of that protein. METHODS Immunoaffinity purification plus a mixed-solvent-triggered digestion was combined with liquid chromatography/mass spectrometry (LC/MS) to enable a fast, sensitive, and less laboratory-intensive approach to the quantification of prorenin. Statistical experimental planning, which is known as Design of Experiments (DOE), was used to identify the optimal conditions for the generation of the signature peptides within a manageable number of experiments. The efficiency of the mixed-solvent-triggered digestion by trypsin was investigated using four different organic solvents: acetonitrile, acetone, tetrahydrofuran and methanol. RESULTS By utilizing a D-optimal design, we found that the optimal mixed-solvent type for the generation of both signature peptides was acetonitrile at a concentration of 84% and an incubation temperature of 16°C. Using the mixed-solvent-triggered digestion, the procedure time allowed a fast analysis of active renin and prorenin with a short digestion time of 98 min. This optimized mixed-solvent-triggered digestion procedure was applied to detect renin and prorenin successfully in human plasma by the newly developed hybrid approach. CONCLUSIONS The identification of unique surrogates for human prorenin enabled the mass spectrometric differentiation between the two similar proteins. The novel hybrid approach successfully proved its ability to purify, detect and distinguish between prorenin and active renin in human plasma.
Collapse
Affiliation(s)
- Ilja Burdman
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| |
Collapse
|
8
|
Hung YLW, Chen X, Wong YLE, Wu R, Chan TWD. Development of an All-in-One Protein Digestion Platform Using Sorbent-Attached Membrane Funnel-Based Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2218-2225. [PMID: 32924471 DOI: 10.1021/jasms.0c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, the sorbent-attached microfunnels used in funnel-based spray ionization mass spectrometry were evaluated for the all-in-one digestion of proteins. Sorbent materials, including C18 and TiO2 powders, were used as substrates to support in-funnel digestion and subsequent solid-phase extraction and purification of the digested products. In-funnel digestion protocols with and without reductive alkylation were developed for the analysis of proteins with and without disulfide linkages. Compared with in-solution digestion of the same loadings, the sequence coverage of in-funnel digestion of ovalbumin (with one disulfide bond) and ovocystatin (with two disulfide bonds) increased from 36% to 65% and from 21% to 81%, respectively. Loading 100 fmol of ovalbumin was sufficient to generate detectable tryptic fragments on C18-attached funnels. Notably, some phosphorylated digestion fragments were solely detected on C18-attached funnels and some nonphosphorylated digestion fragments were detected only on TiO2-attached funnels. Complex biological protein mixtures (i.e., bovine milk) and mouse liver protein extract could also be digested on C18- and TiO2-attached funnels. Using this platform, 30 samples were digested at the same time with enhanced digestion efficiency and were analyzed by funnel-based spray ionization mass spectrometry. This approach is potentially useful for sensitive and high-throughput bottom-up proteomic studies of complex biological samples.
Collapse
Affiliation(s)
- Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, 250014 Jinan, P. R. China
| | - Y L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
| |
Collapse
|
9
|
Optimization of antihypertensive and antioxidant hydrolysate extraction from rice bran proteins using ultrasound assisted enzymatic hydrolysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00504-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Ultrasonic-Based Filter Aided Sample Preparation as the General Method to Sample Preparation in Proteomics. Anal Chem 2020; 92:9164-9171. [PMID: 32484334 DOI: 10.1021/acs.analchem.0c01470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We propose a new high-throughput ultrafast method for large-scale proteomics approaches by speeding up the classic filter aided sample preparation protocol, FASP, from overnight to 2.5 h. Thirty-six samples can be treated in 2.5 h, and the method is scalable to 96-well plate-based pipelines. After a modification of the FASP-tube, the steps of protein reduction, protein alkylation, and protein digestion of complex proteomes are done in just 5.25 min, each one under the effects of an ultrasonic field (7 cycles: 30 s on and 15 s off). The new method was compared to the standard overnight digestion FASP protocol, and no statistical differences were found for more than 92.4%, 92%, and 93.3% of the proteins identified by studying the proteome of E. coli, mouse brain, and mouse liver tissue samples, respectively. Furthermore, the successful relative label-free quantification of four spiked proteins in E. coli samples, BSA, β-lactoglobulin, α-casein, and α-lactalbumin, was achieved, using either the ultrasonic-based FASP protocol or the classic overnight one. The new US-FASP method matches the analytical minimalism rules as time, cost, sample requirement, reagent consumption, energy requirements, and production of waste products are reduced to a minimum while maintaining high sample throughput in a robust manner as all of the advantages of the filter aided sample preparation protocol are maintained.
Collapse
|
11
|
Robinson MR, Vasicek LA, Hoppmann C, Li M, Jokhadze G, Spellman DS. Improving the throughput of immunoaffinity purification and enzymatic digestion of therapeutic proteins using membrane-immobilized reagent technology. Analyst 2020; 145:3148-3156. [PMID: 32191233 DOI: 10.1039/d0an00190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continued interest in protein therapeutics has motivated the development of improved bioanalytical tools to support development programs. LC-MS offers specificity, sensitivity, and multiplexing capabilities without the need for target-specific reagents, making it a valuable alternative to ligand binding assays. Immunoaffinity purification (IP) and enzymatic digestion are critical, yet extensive and time-consuming components of the "gold standard" bottom-up approach to LC-MS-based protein quantitation. In the present work, commercially available technology, based on membrane-immobilized reagents in spin column and plate format, is applied to reduce IP and digestion times from hours to minutes. For a standard monoclonal antibody, the lower limit of quantitation was 0.1 ng μL-1 compared to 0.05 ng μL-1 for the standard method. A pharmacokinetics (PK) study dosing Herceptin in rat was analyzed by both the membrane and the standard method with a total sample processing time of 4 h and 20 h, respectively. The calculated concentrations at each time point agreed within 8% between both methods, and PK values including area under the curve (AUC), half-life (T1/2), mean residence time (MRT), clearance (CL), and volume of distribution (Vdss) agreed within 6% underscoring the utility of the membrane methodology for quantitative bioanalysis workflows.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., West Point, PA, USA.
| | - Lisa A Vasicek
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., West Point, PA, USA.
| | | | - Mandy Li
- Takara Bio USA, Inc., Mountain View, CA, USA
| | | | - Daniel S Spellman
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., West Point, PA, USA.
| |
Collapse
|
12
|
Burdette MK, Jenkins R, Bandera YP, Jones H, Foulger IK, Dickey A, Nieminen AL, Foulger SH. Click-Engineered, Bioresponsive, and Versatile Particle-Protein-Dye System. ACS APPLIED BIO MATERIALS 2019; 2:3183-3193. [PMID: 31844845 PMCID: PMC6913539 DOI: 10.1021/acsabm.9b00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a multifunctional polymer based nanoparticle platform for personalized nanotheranostic applications, which include photodynamic therapy and active targeting. In this system, poly(propargyl acrylate) (PA) particles were surface-modified with organic ligands and fluorophores (the payload) through an environmentally-sensitive linker. An azide modified bovine serum albumin (azBSA) was employed as the linker. This system prevents opsonization and, upon digestion, releases the payload. Attachment of the emitting payload to the particle through azide-modified bovine serum albumin (BSA) quenches emission, which can be again activated with digestion of the azBSA. The emission "turn-on" at a specific location will increase the signal-to-noise ratio. By utilizing human head and neck squamous carcinoma cells (UMSCC22A), photodynamic therapy studies with these particles gave promising reductions in cell growth. Additionally, the particle-protein-dye system is versatile as different fluorophores (such as silicon phthalocyanine or cyanine 3) can be attached to the protein and the same activation/deactivation behavior is observed. Active targeting can be employed to enhance the concentration of the payload in the designated tumor. Human lung carcinoma cells (A549) were utilized in toxicity studies where PA-azBSA particles were modified with a Survivin targeting ligand and indicated an enhanced cell death with the modified particles relative to the "free" Survivin targeting ligand.
Collapse
Affiliation(s)
- Mary K. Burdette
- Department of Materials Science and Engineering, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
| | - Ragini Jenkins
- Department of Materials Science and Engineering, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
| | - Yuriy P. Bandera
- Department of Materials Science and Engineering, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
| | - Haley Jones
- Department of Materials Science and Engineering, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
| | - Isabell K. Foulger
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashley Dickey
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Department of Chemistry, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
| | - Anna-Liisa Nieminen
- Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stephen H. Foulger
- Department of Materials Science and Engineering, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Center for Optical Materials Science and Engineering Technologies, Advanced Materials Research Laboratories, Clemson University, Anderson, South Carolina 29625, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
13
|
Heissel S, Frederiksen SJ, Bunkenborg J, Højrup P. Enhanced trypsin on a budget: Stabilization, purification and high-temperature application of inexpensive commercial trypsin for proteomics applications. PLoS One 2019; 14:e0218374. [PMID: 31246970 PMCID: PMC6597055 DOI: 10.1371/journal.pone.0218374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/02/2019] [Indexed: 01/22/2023] Open
Abstract
Trypsin is by far the most commonly used protease in proteomics. Even though the amount of protease used in each experiment is very small, digestion of large amounts of protein prior to enrichment can be rather costly. The price of commercial trypsin is highly dependent on the quality of the enzyme, which is determined by its purity, activity, and chemical modifications. In this study we evaluated several strategies for improving the quality of crude trypsin by reductive methylation and affinity purification. We present a protocol applicable to most proteomics laboratories for obtaining a highly stable and pure trypsin preparation using reductive methylation and purification by benzamidine-sepharose. The entire workflow can be performed within a day and yields ~4 mg per batch but is completely scalable. The methylated product was benchmarked against sequencing grade trypsin from Promega and they were found to be comparable for one hour digestions at elevated temperatures, where residual chymotryptic activity was found to be negligible.
Collapse
Affiliation(s)
- Søren Heissel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Sigurd J. Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
14
|
Morsa D, Baiwir D, La Rocca R, Zimmerman TA, Hanozin E, Grifnée E, Longuespée R, Meuwis MA, Smargiasso N, Pauw ED, Mazzucchelli G. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for Proteomics? J Proteome Res 2019; 18:2501-2513. [DOI: 10.1021/acs.jproteome.9b00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Tyler A. Zimmerman
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Elodie Grifnée
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Rémi Longuespée
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Marie-Alice Meuwis
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU, Liege 4000, Belgium
- Laboratory of Translational Gastroenterology, GIGA, Liege 4000, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| |
Collapse
|
15
|
Label-free protein quantification after ultrafast digestion of complex proteomes using ultrasonic energy and immobilized-trypsin magnetic nanoparticles. Talanta 2019; 196:262-270. [DOI: 10.1016/j.talanta.2018.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
|
16
|
Casas MP, Conde E, Domínguez H, Moure A. Ecofriendly extraction of bioactive fractions from Sargassum muticum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Acetonitrile-assisted enzymatic digestion can facilitate the bottom-up identification of proteins of cancer origin. Anal Biochem 2019; 570:1-4. [DOI: 10.1016/j.ab.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
|
18
|
Liu W, Pang Y, Tan HY, Patel N, Jokhadze G, Guthals A, Bruening ML. Enzyme-containing spin membranes for rapid digestion and characterization of single proteins. Analyst 2018; 143:3907-3917. [PMID: 30039812 DOI: 10.1039/c8an00969d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteolytic digestion is an important step in characterizing protein sequences and post-translational modifications (PTMs) using mass spectrometry (MS). This study uses pepsin- or trypsin-containing spin membranes for rapid digestion of single proteins or simple protein mixtures prior to ultrahigh-resolution Orbitrap MS analysis. Centrifugation of 100 μL of pretreated protein solutions through the functionalized membranes requires less than 1 min and conveniently digests proteins into large peptides that aid in confirming specific protein sequence variations and PTMs. Peptic and tryptic peptides from spin digestion of apomyoglobin and four commercial monoclonal antibodies (mAbs) typically cover 100% of the protein sequences in direct infusion MS analysis. Increasing the spin rate leads to a higher fraction of large peptic peptides for apomyoglobin, and MS analysis of peptic and tryptic peptides reveals mAb PTMs such as N-terminal pyroglutamate formation, C-terminal lysine clipping and glycosylation. Relative to overnight in-solution digestion of mAbs, spin digestion yields higher sequence coverages. Spin-membrane digestion followed by infusion MS readily differentiates a mAb to the Ebola virus from a related antibody that differs by addition of a single amino acid.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Jesus JR, Santos HM, López-Fernández H, Lodeiro C, Arruda MAZ, Capelo J. Ultrasonic-based membrane aided sample preparation of urine proteomes. Talanta 2018; 178:864-869. [DOI: 10.1016/j.talanta.2017.09.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/03/2023]
|
20
|
Jorge S, Araújo J, Pimentel-Santos F, Branco JC, Santos HM, Lodeiro C, Capelo J. Unparalleled sample treatment throughput for proteomics workflows relying on ultrasonic energy. Talanta 2018; 178:1067-1076. [DOI: 10.1016/j.talanta.2017.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
21
|
Carrera M, Cañas B, Lopez-Ferrer D. Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO 2-SCX-LC-MS/MS. Anal Chem 2017; 89:8853-8862. [PMID: 28787133 DOI: 10.1021/acs.analchem.7b01321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a new workflow for fast phosphoproteome profiling. The workflow is based on the use of accelerated in-solution trypsin digestion under an ultrasonic field provided by high-intensity focused ultrasound (HIFU) combined with an inverse strategy based on TiO2 selective phosphopeptide enrichment, fractionation by strong cation exchange chromatography (SCX) and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a high-resolution mass spectrometer. The performance of the method was established for the global phosphoproteome analysis of unstimulated human Jurkat leukemia T cells (E6.1). Using this accelerated workflow, 15367 phosphorylation sites from 13029 different phosphopeptides belonging to 3163 different phosphoproteins were efficiently identified with high-throughput and reproducibility in less than 15 h. The functional analysis revealed significant phosphorylation-based networks that are implicated in immune function and tumor development pathways. The present strategy, HIFU-TiO2-SCX-LC-MS/MS, is the fastest analytical method reported to date for generating large-scale phosphoproteomics data sets (<15 h).
Collapse
Affiliation(s)
- Mónica Carrera
- Spanish National Research Council (CSIC), 36208, Vigo, Spain
| | - Benito Cañas
- Complutense University of Madrid (UCM) , 28040, Madrid, Spain
| | | |
Collapse
|
22
|
Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis. Talanta 2017; 167:143-157. [DOI: 10.1016/j.talanta.2017.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 01/04/2023]
|
23
|
Rosting C, Gjelstad A, Halvorsen TG. Expanding the knowledge on dried blood spots and LC-MS-based protein analysis: two different sampling materials and six protein targets. Anal Bioanal Chem 2017; 409:3383-3392. [PMID: 28299418 DOI: 10.1007/s00216-017-0280-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The combination of dried blood spots (DBS) and bottom-up LC-MS-based protein analysis was investigated in the present paper using six model proteins (1 mg/mL of each protein) with different physicochemical properties. Two different materials for DBS were examined: a water-soluble DBS material (carboxymethyl cellulose, (CMC)) and a commercially available (non-soluble) material (DMPK-C). The sample preparation was optimised regarding the water-soluble material and achieving acceptable repeatability of the signal was emphasised. Five microlitres of whole blood were deposited and dried on either CMC or DMPK-C. The samples were dissolved (CMC) or extracted (DMPK-C) prior to tryptic digest and matrix precipitation. The optimization of the sample preparation showed that an increased buffer concentration (100 mM ammonium bicarbonate) for dissolving the DBS samples gave better repeatability combined with a decrease in analyte signal. CMC seemed to add extra variability (RSD 8-60%) into the analysis compared to sample prepared without CMC (RSD 6-36%), although equal performance compared to DMPK-C material (RSD 13-60%) was demonstrated. The stability of the analytes was examined for different storage periods (1 and 4 weeks) and different storage temperatures (-25, 25, and 40 °C). The stability on both CMC (> 70% compared to reference) and DMPK-C (> 50% compared to reference) was acceptable for most of the peptides. This paper shows that both DBS materials can be used in targeted LC-MS-based protein analysis of proteins with different physicochemical properties. Graphical Abstract Overview of the experimental set-up for expanding the knowledge of dried blood spots in LC-MS-based protein anaysis.
Collapse
Affiliation(s)
- Cecilie Rosting
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Astrid Gjelstad
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Trine Grønhaug Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
24
|
Wouters B, Dapic I, Valkenburg TS, Wouters S, Niezen L, Eeltink S, Corthals GL, Schoenmakers PJ. A cyclic-olefin-copolymer microfluidic immobilized-enzyme reactor for rapid digestion of proteins from dried blood spots. J Chromatogr A 2017; 1491:36-42. [DOI: 10.1016/j.chroma.2017.01.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 11/27/2022]
|
25
|
Taverna D, Mignogna C, Gabriele C, Santise G, Donato G, Cuda G, Gaspari M. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem 2017; 409:2919-2930. [PMID: 28190108 DOI: 10.1007/s00216-017-0237-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
An optimized workflow for multiplexed and spatially localized on-tissue quantitative protein analysis is here presented. The method is based on the use of an enzyme delivery platform, a polymeric hydrogel disc, allowing for a localized digestion directly onto the tissue surface coupled with an isobaric mass tag strategy for peptide labeling and relative quantification. The digestion occurs within such hydrogels, followed by peptide solvent extraction and identification by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Since this is a histology-directed on-tissue analysis, multiple hydrogels were placed onto morphologically and spatially different regions of interest (ROIs) within the tissue surface, e.g., cardiac myxoma tumor vascularized region and the adjacent hypocellular area. After a microwave digestion step (2 min), enzymatically cleaved peptides were labeled using TMT reagents with isobaric mass tags, enabling analysis of multiple samples per experiment. Thus, N = 8 hydrogel-digested samples from cardiac myxoma serial tissue sections (N = 4 from the vascularized ROIs and N = 4 from the adjacent hypocellular areas) were processed and then combined before a single LC-MS/MS analysis. Regulated proteins from both cardiac myxoma regions were assayed in a single experiment. Graphical abstract The workflow for histology-guided on-tissue localized protein digestion followed by isobaric mass tagging and LC-MS/MS analysis for proteins quantification is here summarized.
Collapse
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Chiara Mignogna
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Gabriele
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Gianluca Santise
- Cardiothoracic Surgery Unit, Sant'Anna Hospital, Via Pio X, 111, 88100, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
26
|
Shah V, Lassman ME, Chen Y, Zhou H, Laterza OF. Achieving efficient digestion faster with Flash Digest: potential alternative to multi-step detergent assisted in-solution digestion in quantitative proteomics experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:193-199. [PMID: 27794205 DOI: 10.1002/rcm.7778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 05/21/2023]
Abstract
RATIONALE In quantitative analysis of protein biomarkers and therapeutic proteins by liquid chromatography/mass spectrometry (LC/MS), it is a preferred and well-established approach to digest with proteolytic enzymes to produce smaller peptide fragments which are more suitable for LC/MS analysis than the intact protein. In-solution digestion is one widely used method for protein digestion. Proteolytically resistant proteins often require digestion times that extend beyond normal working hours and prohibit same day analysis. We evaluated the performance of an immobilized enzyme reactor (IMER) to determine if this technology could reduce method development time, digestion time and increase throughput. METHODS We digested human plasma samples using a commercially available IMER, Flash Digest, and compared it to an in-solution digestion method for analysis of three different apolipoprotein biomarkers APOE, APOC2, and APOC3. The plasma digests were analyzed via LC/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM). Value assigned calibrators were selected over a relevant physiological concentration range for each protein of interest. Quality control samples (QCs) and 'unknown' human plasma samples were analyzed with both methods. RESULTS Flash Digest significantly reduced digestion time for APOC3, the most proteolytically resistant of the three proteins, to 30 min compared with overnight used with in-solution digestion. The Flash Digest achieved comparable digestion efficiency with minimal method development and reduced sample preparation time. Both methods showed linearity over a physiologically relevant concentration range. Precision was evaluated and a percentage coefficient of variance (% CV) less than 8% was obtained during intra-day reproducibility evaluation for all three apolipoproteins with Flash Digest. Concentrations observed for QCs and unknown samples using Flash Digest were comparable to the in-solution method. CONCLUSIONS An IMER such as Flash Digest may be a potential alternative to in-solution digestion to accelerate digestion of proteolytically resistant proteins in a quantitative proteomics experiments, reduce method development time and increase throughput. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vinit Shah
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Michael E Lassman
- Translational Molecular Biomarkers, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Ying Chen
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Haihong Zhou
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Omar F Laterza
- Translational Molecular Biomarkers, Merck Research Laboratories, Kenilworth, NJ, USA
| |
Collapse
|
27
|
Moore S, Hess S, Jorgenson J. Characterization of an immobilized enzyme reactor for on-line protein digestion. J Chromatogr A 2016; 1476:1-8. [PMID: 27876348 PMCID: PMC5136339 DOI: 10.1016/j.chroma.2016.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/29/2016] [Accepted: 11/13/2016] [Indexed: 01/05/2023]
Abstract
Despite the developments for faster liquid chromatographic and mass spectral detection techniques, the standard in-solution protein digestion for proteomic analyses has remained relatively unchanged. The typical in-solution trypsin protein digestion is usually the slowest part of the workflow, albeit one of the most important. The development of a highly efficient immobilized enzyme reactor (IMER) with rapid performance for on-line protein digestion would greatly decrease the analysis time involved in a proteomic workflow. Presented here is the development of a silica based IMER for on-line protein digestion, which produced rapid digestions in the presence of organic mobile phase for both model proteins and a complex sample consisting of the insoluble portion of a yeast cell lysate. Protein sequence coverage and identifications evaluated between the IMER and in-solution digestions were comparable. Overall, for a yeast cell lysate with only a 10s volumetric residence time on-column, the IMER identified 507 proteins while the in-solution digestion identified 490. There were no significant differences observed based on identified protein's molecular weight or isoelectric point between the two digestion methods. Implementation of the IMER into the proteomic workflow provided similar protein identification results, automation for sample analysis, and reduced the analysis time by 15h.
Collapse
Affiliation(s)
- Stephanie Moore
- Chemistry Department, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Stephanie Hess
- Chemistry Department, University of North Carolina at Chapel Hill, NC 27599, United States
| | - James Jorgenson
- Chemistry Department, University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
28
|
Devi S, Wu BH, Chu PY, Liu YP, Wu HL, Ho YP. Studying the effect of microwave heating on the digestion process and identification of proteins. Electrophoresis 2016; 38:429-440. [PMID: 27770443 DOI: 10.1002/elps.201600392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 11/07/2022]
Abstract
The impact of microwave irradiation on the in-solution digestion processes and the detection limit of proteins are systematically studied. Kinetic processes of many peptides produced through the trypsin digestion of various proteins under microwave heating at 50°C were investigated with MALDI-MS. This study also examines the detection limits and digestion completeness of individual proteins under microwave heating at 50°C and at different time intervals (1, 5 and 30 min) using LC-MS. We conclude that if the peptides without missed cleavage dictate the detection limit, conventional digestion will lead to a better detection limit. The detection limit may not differ between the microwave and conventional heating if the peptides with missed cleavage sites and strong intensity are formed at the very early stage (i.e., less than 1 min) and are not further digested throughout the entire digestion process. The digestion of Escherichia coli lysate was compared under conventional and short time (microwave) conditions. The number of proteins identified under conventional heating exceeded that obtained from microwave heating over heating periods less than 5 min. The overall results show that the microwave-assisted digestion is not complete. Although the sequence coverage might be better, the detection limit might be worse than that under conventional heating.
Collapse
Affiliation(s)
- Shobha Devi
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Bo-Hung Wu
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Pei-Yu Chu
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Yue-Pei Liu
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Lin Wu
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
29
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
30
|
Deng J, Lazar IM. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:686-698. [PMID: 26883530 DOI: 10.1007/s13361-015-1332-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/20/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jingren Deng
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
31
|
Montowska M, Pospiech E. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion. Food Technol Biotechnol 2016; 54:482-488. [PMID: 28115907 DOI: 10.17113/ftb.54.04.16.4540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey) and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages). Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed after 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.
Collapse
Affiliation(s)
- Magdalena Montowska
- Institute of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31,
PL-60-624 Poznan, Poland
| | - Edward Pospiech
- Institute of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31,
PL-60-624 Poznan, Poland
| |
Collapse
|
32
|
Trahan C, Aguilar LC, Oeffinger M. Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae. Methods Mol Biol 2016; 1361:265-287. [PMID: 26483027 DOI: 10.1007/978-1-4939-3079-1_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to getting a comprehensive picture of cellular behavior and to understanding biological systems. In the last decade, affinity purification coupled to mass spectrometry has emerged as a powerful tool to comprehensively study interaction networks and their assemblies. However, the study of these interactomes has been hampered by severe methodological limitations. In particular, the affinity purification of intact complexes from cell lysates suffers from protein and RNA degradation, loss of transient interactors, and poor overall yields. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol described here has been optimized for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Christian Trahan
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, Canada, H2W 1R7
- Département de biochimie et médicine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada, H3T 1J4
| | - Lisbeth-Carolina Aguilar
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, Canada, H2W 1R7
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, Canada, H2W 1R7.
- Département de biochimie et médicine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada, H3T 1J4.
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada, H3A 1A3.
| |
Collapse
|
33
|
Unraveling Mesenchymal Stem Cells' Dynamic Secretome Through Nontargeted Proteomics Profiling. Methods Mol Biol 2016; 1416:521-49. [PMID: 27236694 DOI: 10.1007/978-1-4939-3584-0_32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The modulatory and regenerative potential shown by the use of MSC secretomes has emphasized the importance of their proteomics profiling. Proteomic analysis, initially focused on the targeted analysis of some candidate proteins or the identification of the secreted proteins, has been changing to an untargeted profiling also based on the quantitative evaluation of the secreted proteins.The study of the secretome can be accomplished through several different proteomics-based approaches; however this analysis must overcome one key challenge of secretome analysis: the low amount of secreted proteins and usually their high dilution.In this chapter, a general workflow for the untargeted proteomic profile of MSC's secretome is presented, in combination with a comprehensive description of the major techniques/procedures that can be used. Special focus is given to the main procedures to obtain the secreted proteins, from secretome concentration by ultrafiltration to protein precipitation. Lastly, different proteomics-based approaches are presented, emphasizing alternative digestion techniques and available mass spectrometry-based quantitative methods.
Collapse
|
34
|
Couchman L, Jones DJL, Moniz CF. The use of turbulent flow chromatography for rapid, on-line analysis of tryptic digests. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2140-2146. [PMID: 26467226 DOI: 10.1002/rcm.7371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Following digestion of proteins with trypsin, digests are typically subjected to further 'clean-up' prior to liquid chromatography/mass spectometry (LC/MS) analysis, in order to reduce the complexity of the digested matrix, as well as helping to remove residual denaturants and reduction/alkylation reagents prior to injection onto the analytical HPLC column. Often, this is carried out using off-line techniques, and is not ideally suited to high-throughput workloads, for example in clinical laboratories. METHODS Bovine serum albumin (BSA) was used as a model protein. Following denaturation with urea, reduction/alkylation, and digestion with trypsin, the analytical recovery of a selection of proteotypic BSA peptides was assessed using a two-dimensional, turbulent flow chromatography method. Peptides were identified using a Q Exactive™ mass spectometer operating in full-scan mode. RESULTS Total analysis time (including the on-line sample clean-up) was 15 min per injection. Aside from the most hydrophilic peptide selected, ATEEQLK, recovery using the turbulent flow chromatography systems was greater than 30% for all remaining peptides (N = 17), and exceeded 50% for 12 of the 18 peptides studied. There was a broad correlation between the hydrophobicity factor and the observed recovery. CONCLUSIONS This study suggests that turbulent flow chromatography offers a rapid, on-line alternative to solid-phase extraction for the analysis of peptide digests by LC/MS. A wide range of column chemistries are available, and the technique can be further optimised for analyses which are targetted to specific peptides. As with turbulent flow chromatography for small-molecule workflows, this approach may be ideally suited to high-throughput applications, such as those which are emerging from within clinical laboratories.
Collapse
Affiliation(s)
- L Couchman
- Viapath Analytics, Department of Clinical Biochemistry, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, LE2 7LX, UK
| | - D J L Jones
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, LE2 7LX, UK
| | - C F Moniz
- Department of Clinical Biochemistry, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
35
|
Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Shao S, Guo T, Koh CC, Gillessen S, Joerger M, Jochum W, Aebersold R. Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT-SWATH mass spectrometry. Proteomics 2015; 15:3711-21. [DOI: 10.1002/pmic.201500161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital; Huazhong University of Science & Technology; Wuhan P. R. China
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Chiek Ching Koh
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Silke Gillessen
- Department of Oncology/Hematology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Markus Joerger
- Department of Oncology/Hematology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Wolfram Jochum
- Institute of Pathology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
- Faculty of Science; University of Zurich; Zurich Switzerland
| |
Collapse
|
37
|
Jiang S, Zhang Z, Li L. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. J Chromatogr A 2015; 1412:75-81. [PMID: 26300481 DOI: 10.1016/j.chroma.2015.07.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/25/2015] [Accepted: 07/31/2015] [Indexed: 01/02/2023]
Abstract
Mass spectrometry (MS) coupled to sample preparation and separation techniques has become a primary tool for proteomics studies. However, due to sample complexity, it is often challenging to achieve fast and efficient sample preparation prior to MS analysis. In recent decades, monolithic materials have been developed not only as chromatographic media, but also as efficient solid supports for immobilizing multiple types of affinity reagents. Herein, the N-acryloxysuccinimide-co-acrylamide-co-N,N'-methylenebisacrylamide (NAS-AAm-Bis) monolith was fabricated within silanized 200 μm i.d. fused-silica capillaries and was used as an immobilized enzyme reactor (IMER). The column was conjugated with trypsin/Lys-C and Lys-N enzymes to allow enzymatic digestions to occur while protein mixture was loaded onto the IMER column followed by MS-based proteomics analysis. Similar MS signal and protein sequence coverage were observed using protein standard bovine serum albumin (BSA) compared to in-solution digestion. Furthermore, mouse serum, yeast, and human cell lysate samples were also subjected to enzymatic digestion by both IMER (in seconds to minutes) and conventional in solution digestion (overnight) for comparison in large-scale proteomics studies. Comparable protein identification results obtained by the two methods highlighted the potential of employing NAS-based IMER column for fast and highly efficient sample preparation for MS analysis in proteomics studies.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Zichuan Zhang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
38
|
Wohlgemuth I, Lenz C, Urlaub H. Studying macromolecular complex stoichiometries by peptide-based mass spectrometry. Proteomics 2015; 15:862-79. [PMID: 25546807 PMCID: PMC5024058 DOI: 10.1002/pmic.201400466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Abstract
A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide‐based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide‐based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
39
|
Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem 2014; 87:670-6. [PMID: 25427280 PMCID: PMC4287167 DOI: 10.1021/ac503479a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
This study presents on-tissue proteolytic
digestion using a microwave
irradiation and peptide extraction method for in situ analysis of proteins from spatially defined regions of a tissue
section. The methodology utilizes hydrogel discs (1 mm diameter) embedded
with trypsin solution. The enzyme-laced hydrogel discs are applied
to a tissue section, directing enzymatic digestion to a spatially
confined area of the tissue. By applying microwave radiation, protein
digestion is performed in 2 min on-tissue, and the extracted peptides
are then analyzed by matrix assisted laser desorption/ionization mass
spectrometry (MALDI MS) and liquid chromatography tandem mass spectrometry
(LC-MS/MS). The reliability and reproducibility of the microwave assisted
hydrogel mediated on-tissue digestion is demonstrated by the comparison
with other on-tissue digestion strategies, including comparisons with
conventional heating and in-solution digestion. LC-MS/MS data were
evaluated considering the number of identified proteins as well as
the number of protein groups and distinct peptides. The results of
this study demonstrate that rapid and reliable protein digestion can
be performed on a single thin tissue section while preserving the
relationship between the molecular information obtained and the tissue
architecture, and the resulting peptides can be extracted in sufficient
abundance to permit analysis using LC-MS/MS. This approach will be
most useful for samples that have limited availability but are needed
for multiple analyses, especially for the correlation of proteomics
data with histology and immunohistochemistry.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Chemistry and Technological Chemistry, University of Calabria , Arcavacata di Rende, Cosenza 87036, Italy
| | | | | |
Collapse
|
40
|
Safdar M, Sproß J, Jänis J. Microscale immobilized enzyme reactors in proteomics: Latest developments. J Chromatogr A 2014; 1324:1-10. [DOI: 10.1016/j.chroma.2013.11.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 01/10/2023]
|
41
|
Nunes-Miranda JD, Núñez C, Santos HM, Vale G, Reboiro-Jato M, Fdez-Riverola F, Lodeiro C, Miró M, Capelo JL. A mesofluidic platform integrating on-chip probe ultrasonication for multiple sample pretreatment involving denaturation, reduction, and digestion in protein identification assays by mass spectrometry. Analyst 2014; 139:992-5. [DOI: 10.1039/c3an02178e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mesofluidic platform integrating on-chip probe ultrasonication for automated high-throughput shotgun proteomic assays.
Collapse
Affiliation(s)
- J. D. Nunes-Miranda
- Department of Genetics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
| | - Cristina Núñez
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Hugo M. Santos
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- REQUIMTE
| | - G. Vale
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Miguel Reboiro-Jato
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Florentino Fdez-Riverola
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Carlos Lodeiro
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Manuel Miró
- FI-TRACE Group
- Department of Chemistry
- University of the Balearic Islands
- Palma de Mallorca, Spain
| | - J. L. Capelo
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| |
Collapse
|
42
|
Stencel LM, Leadbeater NE. Application of a new interface for rapid optimisation of bio-catalysed processes: proteolytic digestion and an enzyme-catalysed transesterification as examples. NEW J CHEM 2014. [DOI: 10.1039/c3nj00784g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ceglarek U, Dittrich J, Becker S, Baumann F, Kortz L, Thiery J. Quantification of seven apolipoproteins in human plasma by proteotypic peptides using fast LC-MS/MS. Proteomics Clin Appl 2013; 7:794-801. [DOI: 10.1002/prca.201300034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
- LIFE-Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
- LIFE-Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
- LIFE-Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig Germany
| | - Frank Baumann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
| | - Linda Kortz
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
- LIFE-Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics; University Hospital Leipzig; Leipzig Germany
- LIFE-Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig Germany
| |
Collapse
|
44
|
Lim C, Chan S. Single laboratory method validation comparing MS3 with FI/MS fingerprinting, and quantitation strategies for the accurate determination of ochratoxins in beer. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current mycotoxin safety concerns demand the availability of reliable and selective control systems to measure the content of mycotoxins present in daily food. To address this, we report a prospective analytical tool involving the application of a flow injection mass spectrometry (FI/MS) tandem artificial neural network (ANN) strategy to predict the amount of ochratoxin A and B (OTA and OTB) in beer. Triple stage mass spectrometry (MS3) aided by chromatographic separation was applied as a reference method for comparison. 0.1% formic acid and methanol were used to convert ochratoxins into their respective ions under negative MS polarity. For experiments involving MS3, ochratoxins were separated by reversed-phase liquid chromatography in a 6 min run, ionised using electrospray ionisation, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge ratios were used to perform quantitation in MS3 mode. For experiments involving FI/MS, no chromatographic separation was performed. Approximately 2% of the mass spectra was used for model construction. ANN models representing each ochratoxin were individually trained and validated using three sets of matrix-matched and matrix-free calibration curves at nine concentration levels of 2.5, 10, 25, 50, 100, 200, 300, 400 and 500 μg/l. Quintuplicate analyses were made in FI/ MS mode providing a total of 270 spectra for both OTA and OTB. Single measurement was made for each sample in MS3 mode. A root-mean-square error value of <1% was reported for both ochratoxin models in beer. Limits of quantitation were determined to be 0.2 μg/kg for both MS3 and FI/MS mode. Recovery assessment was performed over two days using beer blanks (n=6) spiked at three concentration levels of 5, 100 and 200 μg/kg. Extraction using acetonitrile provided excellent recovery ranges of 88 to 102% for both MS techniques. Relative standard deviations of 10% or better were achieved for interday spike recovery experiments. The successful utilisation of FI/MS without performing chromatographic separation implies the availability of a new analytical tool relevant to the field of mycotoxin analysis, possibly offering analyte specificity exceeding the capability of MS3 through chemometry.
Collapse
Affiliation(s)
- C.W. Lim
- Food Safety Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| | - S.H. Chan
- Food Safety Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| |
Collapse
|
45
|
Jetty R, Bandera YP, Daniele MA, Hanor D, Hung HI, Ramshesh V, Duperreault MF, Nieminen AL, Lemasters JJ, Foulger SH. Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging. J Mater Chem B 2013; 1:4542-4554. [PMID: 32261197 DOI: 10.1039/c3tb20681e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sub-100 nm colloidal particles which are surface-functionalized with multiple environmentally-sensitive moieties have the potential to combine imaging, early detection, and the treatment of cancer with a single type of long-circulating "nanodevice". Deep tissue imaging is achievable through the development of particles which are surface-modified with fluorophores that operate in the near-infrared (NIR) spectrum and where the fluorophore's signal can be maximized by "turning-on" the fluorescence only in the targeted tissue. We present a general approach for the synthesis of NIR emitting nanoparticles that exhibit a protein triggered activation/deactivation of the emission. Dispersing the particles into an aqueous solution, such as phosphate buffered saline (PBS), resulted in an aggregation of the hydrophobic fluorophores and a cessation of emission. The emission can be reinstated, or activated, by the conversion of the surface-attached fluorophores from an aggregate to a monomeric species with the addition of an albumin. This activated probe can be deactivated and returned to a quenched state by a simple tryptic digestion of the albumin. The methodology for emission switching offers a path to maximize the signal from the typically weak quantum yield inherent in NIR fluorophores.
Collapse
Affiliation(s)
- Ragini Jetty
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634-0971, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kalli A, Smith GT, Sweredoski MJ, Hess S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 2013; 12:3071-86. [PMID: 23642296 DOI: 10.1021/pr3011588] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass-spectrometry-based proteomics has evolved as the preferred method for the analysis of complex proteomes. Undoubtedly, recent advances in mass spectrometry instrumentation have greatly enhanced proteomic analysis. A popular instrument platform in proteomics research is the LTQ-Orbitrap mass analyzer. In this tutorial, we discuss the significance of evaluating and optimizing mass spectrometric settings on the LTQ-Orbitrap during CID data-dependent acquisition (DDA) mode to improve protein and peptide identification rates. We focus on those MS and MS/MS parameters that have been systematically examined and evaluated by several researchers and are commonly used during DDA. More specifically, we discuss the effect of mass resolving power, preview mode for FTMS scan, monoisotopic precursor selection, signal threshold for triggering MS/MS events, number of microscans per MS/MS scan, number of MS/MS events, automatic gain control target value (ion population) for MS and MS/MS, maximum ion injection time for MS/MS, rapid and normal scan rate, and prediction of ion injection time. We furthermore present data from the latest generation LTQ-Orbitrap system, the Orbitrap Elite, along with recommended MS and MS/MS parameters. The Orbitrap Elite outperforms the Orbitrap Classic in terms of scan speed, sensitivity, dynamic range, and resolving power and results in higher identification rates. Several of the optimized MS parameters determined on the LTQ-Orbitrap Classic and XL were easily transferable to the Orbitrap Elite, whereas others needed to be reevaluated. Finally, the Q Exactive and HCD are briefly discussed, as well as sample preparation, LC-optimization, and bioinformatics analysis. We hope this tutorial will serve as guidance for researchers new to the field of proteomics and assist in achieving optimal results.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
47
|
Santos HM, Kouvonen P, Capelo JL, Corthals GL. On-target ultrasonic digestion of proteins. Proteomics 2013; 13:1423-7. [DOI: 10.1002/pmic.201200241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hugo M. Santos
- Departamento de Química; Centro de Química Fina e Biotecnologia; (CQFB); REQUIMTE; Faculdade de Ciências e Tecnologia, (FCT); Universidade Nova de Lisboa, (UNL); Caparica Portugal
| | - Petri Kouvonen
- Turku Centre for Biotechnology; University of Turku and Åbo Akademi University; Turku Finland
- Department of Biology; Institute of Molecular Systems Biology; ETH; Zurich Switzerland
| | - Jose-Luis Capelo
- Departamento de Química; Centro de Química Fina e Biotecnologia; (CQFB); REQUIMTE; Faculdade de Ciências e Tecnologia, (FCT); Universidade Nova de Lisboa, (UNL); Caparica Portugal
| | - Garry L. Corthals
- Turku Centre for Biotechnology; University of Turku and Åbo Akademi University; Turku Finland
| |
Collapse
|
48
|
Fernández-Costa C, Ruiz-Romero C, Blanco F, Santos H, Capelo J. An assessment of the indirect high intensity ultrasonic assisted cleavage of complex proteomes with immobilized trypsin. Talanta 2013; 106:163-8. [DOI: 10.1016/j.talanta.2012.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/11/2012] [Indexed: 01/24/2023]
|
49
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
50
|
|