1
|
Tong Q, Shen W, Zhang L, Cao Y, Zou X, Shi T, Zhuang RX, Liu S, Xi J. A "turn-on" fluorescence polyethyleneimine-based nanosensor chemosensor for sensing of l-lysine. Talanta 2025; 293:128045. [PMID: 40184936 DOI: 10.1016/j.talanta.2025.128045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
A novel polymeric nanosensor (named PEINAC) based on polyethyleneimine (PEI), was designed for the selective fluorescence detection of l-lysine (L-Lys) in aqueous solutions. The sensor was synthesized through a one-step, three-component reaction involving orthophthalaldehyde (OPA), PEI, and acetylcysteine. This reaction simultaneously facilitated the creation of an isoindole fluorophore, which was chemically attached to the PEI backbone. The structural properties, size, and morphology of PEINAC were thoroughly analyzed using various characterization techniques. When introduced into a buffered solution at pH 7.0, PEINAC demonstrated high specificity for L-Lys, inducing a marked fluorescence enhancement at 450 nm upon excitation at 367 nm. The fluorescence intensity exhibited a linear relationship with L-Lys concentration, ranging from 1 μM to 1000 μM, with a detection limit of 0.13 μM. Notably, the sensor exhibited excellent selectivity, showing no significant interference from other biomolecules and common transition metal ions and anions. This sensor was successfully applied for L-Lys quantification in blood and urine samples and for cellular L-Lys imaging, demonstrating its potential in various analytical and biomedical applications.
Collapse
Affiliation(s)
- Qiao Tong
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | - Weijie Shen
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | - Lu Zhang
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | - Yu Cao
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | - Xi Zou
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | - Tingting Shi
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China
| | | | - Shourong Liu
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China.
| | - Jianjun Xi
- Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, China.
| |
Collapse
|
2
|
Li HL, Liang JL, Li SX, Liu FJ, Luo JY, Huang ZJ, Zheng FY, Su LL, Zhuo YB. Confined active area and aggregation kinetic-based AuNPs@PVP nanosensors for simultaneous colorimetric detection of cysteine and homocysteine as homologues in human urine and serum. Mikrochim Acta 2025; 192:108. [PMID: 39873863 DOI: 10.1007/s00604-025-06962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.78 and -761.08 Hartree) between Cys and Hcy, and to cause a difference of aggregation kinetics, gold nanoparticles (AuNPs) are capped with hydrophilic and low-toxic polyvinylpyrrolidone (PVP) (named AuNPs@PVP) and some surface-active sites of AuNPs are masked, the active area for the binding between AuNPs and the detection object is confined, meanwhile, the stability of AuNPs is improved. A novel nanosensor based on confined active area and aggregation kinetics of AuNPs@PVP, is designed for the identification and determination of Cys and Hcy in 1 and 3 min, respectively, with sufficiently low detection limit (4.12 and 4.35 μM) and linear range (4.12-100 μM) for health evaluation. This single colorimetric sensor was applied successfully to the determination of urine and serum, evidencing high anti-interference ability.
Collapse
Affiliation(s)
| | | | - Shun-Xing Li
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 3630003, China.
| | - Feng-Jiao Liu
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 3630003, China
| | - Jia-Yi Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhao-Jing Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Feng-Ying Zheng
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 3630003, China
| | - Ling-Ling Su
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| | - You-Bin Zhuo
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
3
|
Tarnowicz‐Staniak N, Staniak M, Dudek M, Grzelczak M, Matczyszyn K. Thermoplasmonic Effect Enables Indirect ON-OFF Control over the Z-E Isomerization of Azobenzene-Based Photoswitch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404755. [PMID: 39225377 PMCID: PMC11579967 DOI: 10.1002/smll.202404755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Proper formulation of systems containing plasmonic and photochromic units, such as gold nanoparticles and azobenzene derivatives, yields materials and interfaces with synergic functionalities. Moreover, gold nanoparticles are known to accelerate the Z-E isomerization of azobenzene molecules in the dark. However, very little is known about the light-driven, plasmon-assisted Z-E isomerization of azobenzene compounds. Additionally, most of the azobenzene-gold hybrids are prepared with nanoparticles of small, isotropic shapes and azobenzene ligands covalently linked to the surface of nanostructures. Herein, a formulation of an innovative system combining azobenzene derivative, gold nanorods, and cellulose nanofibers is proposed. The system's structural integrity relies on electrostatic interactions among components instead of covalent linkage. Cellulose, a robust scaffold, maintains the material's functionality in water and enables monitoring of the material's plasmonic-photochromic properties upon irradiation and at elevated temperatures without gold nanorods aggregation. Experimental evidence supported by statistical analysis suggests that the optical properties of plasmonic nanometal enable indirect control over the Z-E isomerization of the photochromic component with near-infrared irradiation by triggering the thermoplasmonic effect. The proposed hybrid material's dual plasmonic-photochromic functionality, versatility, and ease of processing render a convenient starting point for further advanced azobenzene-related research and 3D printing of macroscopic light-responsive structures.
Collapse
Affiliation(s)
- Nina Tarnowicz‐Staniak
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
| | - Mateusz Staniak
- Institute of MathematicsUniversity of Wrocławpl. Grunwaldzki 2/4Wrocław50‐384Poland
| | - Marta Dudek
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC‐UPV/EHU)Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal 5San Sebastian20018Spain
| | - Katarzyna Matczyszyn
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI‐SKCM2)Hiroshima UniversityHigashihiroshima739‐8526Japan
| |
Collapse
|
4
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Perk B, Tepeli Büyüksünetçi Y, Anik Ü. Copper based metal organic framework decorated with gold nanoparticles as a new electrochemical sensor material for the detection of L-Cysteine in milk samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:585-595. [PMID: 38327863 PMCID: PMC10844187 DOI: 10.1007/s13197-023-05866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 02/09/2024]
Abstract
A facile electrochemical sensor based on carbon felt electrode (CFE) modified with gold nanoparticles decorated copper based metal organic framework (AuNPs@Cu-MOF) was achieved for the electrochemical sensing of L-Cysteine (L-Cys). For this purpose, AuNPs@Cu-MOF was synthesized and characterized. The electrochemical behaviors of L-Cys at plain and modified CFEs were investigated via cyclic voltammetry (CV). According CV results, AuNPs@Cu-MOF structure showed a catalytic effect on the oxidation of L-Cys as well as increasing the active electrode surface area by 206% compared to bare CFE. In addition, the pH effect on electrochemical determination of L-Cys at AuNPs@Cu-MOF/CFE was widely examined, and it was determined that the best oxidation peak current of L-Cys was obtained in pH 5 acetate buffer. Moreover, a linear detection range of 30-400 µM for L-Cys with a limit of detection value of 2.21 µM (n = 3) was achieved with the proposed electrochemical sensor. The developed L-Cys sensor was also applied for L-Cys detection in various milk samples and acceptable recovery values were obtained ranging from 100.05 to 108.45%. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05866-1.
Collapse
Affiliation(s)
- Benay Perk
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| | - Yudum Tepeli Büyüksünetçi
- Research Laboratory Center, Mugla Sitki Kocman University Sensors, Biosensors and Nano-diagnostic Systems Laboratory, Kotekli-Mugla, Turkey
| | - Ülkü Anik
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
- Research Laboratory Center, Mugla Sitki Kocman University Sensors, Biosensors and Nano-diagnostic Systems Laboratory, Kotekli-Mugla, Turkey
| |
Collapse
|
6
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Li H, Chen D, Zhou W, Cheng D, Ge D, Chen X. Synergistically Enhanced Oxidase-like Property of Core-Shell MOF Nanozymes by Decorating Au and Ag/AgCl Nanoparticles for l-Cysteine Colorimetric Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16833-16842. [PMID: 37960839 DOI: 10.1021/acs.langmuir.3c02332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Monitoring l-cysteine (l-Cys) is of importance for human health and food safety. Herein, we designed a novel strategy for bimetallic Au and Ag/AgCl anchoring on Ni-doped ZIF-67 to form core-shell nanocubes (Ni-ZIF-67/AuAg/AgCl) using the galvanic replacement processes. The unique properties of ZIF-67 nanocubes were conducive to generating strong synergistic catalytic effects with Au and Ag/AgCl, particularly when Ni-ZIF-67/AuAg/AgCl composites were employed as oxidase mimics for catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The Ni-ZIF-67/AuAg/AgCl composites displayed strong affinity toward TMB, displaying a lower Michaelis constant Km value of 0.25 mM and a higher maximum initial rate Vmax of 9 × 10-8 M s-1. By virtue of the nanozyme, the colorimetric sensor was constructed for l-Cys detection with a relatively low detection limit of 0.051 μM. The superior catalytic performance of the as-prepared Ni-ZIF-67/AuAg/AgCl composites can be ascribed to the core-shell structure, large specific surface area, and strong synergistic catalytic effects, which are beneficial for exposing more active sites and enhancing the conductivity to further boost their catalytic activity.
Collapse
Affiliation(s)
- Haoran Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211800, P.R. China
| | - Daqing Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211800, P.R. China
| | - Wen Zhou
- Cooperation and Exchange, Suzhou Medical College, Soochow University, Suzhou215006, P.R. China
| | - Donghao Cheng
- China Academy of Civil Aviation Science and Technology, Beijing100028, P.R. China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211800, P.R. China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211800, P.R. China
| |
Collapse
|
8
|
A Review on the Modification of Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14153206. [PMID: 35956720 PMCID: PMC9371096 DOI: 10.3390/polym14153206] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
The latest advancements in cellulose and its derivatives are the subject of this study. We summarize the characteristics, modifications, applications, and properties of cellulose. Here, we discuss new breakthroughs in modified cellulose that allow for enhanced control. In addition to standard approaches, improvements in different techniques employed for cellulose and its derivatives are the subject of this review. The various strategies for synthetic polymers are also discussed. The recent advancements in polymer production allow for more precise control, and make it possible to make functional celluloses with better physical qualities. For sustainability and environmental preservation, the development of cellulose green processing is the most abundant renewable substance in nature. The discovery of cellulose disintegration opens up new possibilities for sustainable techniques. Based on the review of recent scientific literature, we believe that additional chemical units of cellulose solubility should be used. This evaluation will evaluate the sustainability of biomass and processing the greenness for the long term. It appears not only crucial to dissolution, but also to the greenness of any process.
Collapse
|
9
|
Ma Y, Mei H, Li Y, Zhou P, Mao G, Wang H, Wang X. A novel raiometric fluorescence probe based on silicon quantum dots and copper nanoclusters for visual assay of l-cysteine in milks. Food Chem 2022; 379:132155. [DOI: 10.1016/j.foodchem.2022.132155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
|
10
|
Das A, Das A, Banik BK. Tellurium-based chemical sensors. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The various tellurium-based chemical sensors are described. This article focuses on four types of Tellurium sensors such as CdTe quantum dots-based sensor, Te thin films-based sensor, Te nanostructures or nanoparticles-based sensor, and TeO2-based sensor.
Collapse
Affiliation(s)
- Anjaly Das
- National Institute of Electronics & Information Technology , Calicut 673601 , Kerala , India
| | - Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Khalkho BR, Deb MK, Kurrey R, Sahu B, Saha A, Patle TK, Chauhan R, Shrivas K. Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120523. [PMID: 34715558 DOI: 10.1016/j.saa.2021.120523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This paper describes the sensing application of citrate functionalized gold nanoparticles (AuNPs) employing for the determination of L-cysteine in food and water samples. It is established with diffuse reflectance Fourier transform infrared (DRS-FTIR) spectroscopic analysis. The disappearance of the thiol (-SH) band in the FTIR spectra and the shift in the peaks of the amino group (NH3+) and carboxylate group (-COO-) indicated the Au-S interaction and the aggregation of the NPs. The signal intensity of L-cysteine was enhanced due to hot-spots formed by the aggregation of AuNPs producing the effective absorption of electromagnetic radiation in the IR region for molecular vibration. The relationship between AuNPs and L-cysteine was theoretically investigated by the Density Function Theory (DFT) based on LANL2DZ with the aid of the Gaussian 09 (C.01) software. Interaction between AuNPs and L-cysteine molecules resulted to a shift to higher wavelengths in the plasmon bands, further verified by transmission electron microscopes (TEM), which have indicated random aggregated particles. Further dynamic light scattering (DLS) measurements showed a relatively high degree of polydispersity confirming the aggregation of the particles. Under optimized conditions, the calibration curve showed a good linearity range from 20 to 150 μg mL-1 with a correlation coefficient (R2) 0.990. The limit of detection and quantification were 1.04 and 3.44 μg mL-1, respectively by DRS-FTIR. This modified AuNPs sample was used successfully in milk and water samples with adequate results to determine L-cysteine.
Collapse
Affiliation(s)
- Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; School of Studies in Environmental Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Bhuneshwari Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Anushree Saha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Tarun Kumar Patle
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ravishankar Chauhan
- National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
14
|
Ahmed B, Elgorban AM, Bahkali AH, Lee J, Syed A. SPR based gold nano-probe as optical sensor for cysteine detection via plasmonic enhancement in the presence of Cr 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120356. [PMID: 34536896 DOI: 10.1016/j.saa.2021.120356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A selective and sensitive detection of L-cysteine (Cys) is an important tool for various biological studies. Here, Au nanoparticles (NPs) were prepared by chemical reduction technique. The probe was developed to detect and quantify Cys in the presence of Cr3+ ions which acts as a cross linker. The citrate capped Au NPs probe was analyzed by UV-visible spectrophotometry, TEM, EDAX, FTIR, DLS, XPS and zetasize. The zeta potential and effective size of Au NPs were -41.22 mV and 12 nm, respectively. The Cys interaction with Au NPs showed drastic colour variation from red to purple and colourless with rapid response time of 1 min. The limit of detection (LOD) of Au NPs probe was as low as 0.012 nM. The TEM image of Au NPs after Cys interaction verified the aggregation that resulted in colour change. The XPS core level scans of Au 4f showed 0.3 eV red shift when Cyswas interacted. The Au NPs sensor is highly selective for Cys with excellent reproducibility. Acidic pH slightly favored Cys detection. Further, the probe was applied to estimate Cys quantity from milk, urine, blood and environmental augmented samples in the presence of other amino acids . The study suggests that the proposed Au NPs could detect Cys with high accuracy from various biological samples.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
15
|
Li B, Zhang Y, Ren X, Ma H, Wu D, Wei Q. No-wash point-of-care biosensing assay for rapid and sensitive detection of aflatoxin B1. Talanta 2021; 235:122772. [PMID: 34517631 DOI: 10.1016/j.talanta.2021.122772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022]
Abstract
In many cases of in-situ or point-of-care testing (POCT), the single pursuit of good detection performance cannot meet the testing requirements, and thus no-wash testing has become one of the most effective methods to develop sustainable biosensing assay, providing more convenient operation procedures and shorting the detection time. Herein, a disposable POC biosensing assay was prepared based on the RGB color detector software on the smartphone and the peroxide-like activity of gold nanoparticles (Au NPs) for aflatoxin B1 (AFB1) sensitive detection. Using syringe filters for a simple physical separation procedure can easily realize washing free detection, which is superior to most biosensing assays with cumbersome detection procedures. The syringe filters with 200 nm pore diameter could only pass through small Au NPs (30 nm) while the large-sized SiO2 nanoparticles (300 nm) was blocked on the membrane. In this work, Au NPs utilized their inherent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to ox-TMB under acidic conditions, which results in blue color in aqueous solution. The color change due to different antigen concentrations was quantitatively determined by measuring the color intensity with a smartphone and the RGB color detector. By measuring the color intensity, it was known that the linear concentration range of the biosensing assay was 100 fg mL-1 to 50 ng mL-1, and the detection limit of AFB1 was 33 fg mL-1 (S/N = 3). Additionally, the designed biosensing assay exhibited excellent selectivity, storage stability and reproducibility. More importantly, the innovation of detecting and analyzing technology is the outstanding advantage of the biosensing assay, providing a more flexible and convenient strategy for some other small molecule analysis.
Collapse
Affiliation(s)
- Bing Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
16
|
Peng H, Zheng J, Zhang B, Xu J, Zhang M. Fe doped MoS 2/polypyrrole microtubes towards efficient peroxidase mimicking and colorimetric sensing application. Dalton Trans 2021; 50:15380-15388. [PMID: 34643209 DOI: 10.1039/d1dt02757c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molybdenum disulfide (MoS2) nanosheets have been found to exhibit intrinsic peroxidase-like activity that could be applied in colorimetric sensing platforms. However, their poor conductivity and few exposed edge sites often lead to poor catalytic activity, impeding the application of MoS2 nanosheets in enzyme-like catalysis. Here, a novel strategy was developed to selectively deposit Fe-doped MoS2 nanosheets on polypyrrole microtubes to obtain Fe-MoS2@PPy microtubes to address these issues. In the synthesized Fe-MoS2@PPy microtubes, PPy microtubes can not only be used as a conductive support to promote the electron transfer, but also greatly alleviate the aggregations of MoS2 nanosheets, and thus improve the enzyme-like activity. Meanwhile, additional active sites, formed by Fe doping, also endow the catalyst with excellent activity in enzyme-like catalysis. Notably, in the process of sulfidation, the dissolution, redistribution and diffusion result in the disappearance of MoO3@FeOOH cores and the formation of Fe doped MoS2 nanosheets, which significantly facilitate the deposition of Fe-doped MoS2 nanosheets on PPy microtubes. On the basis of the high peroxidase-like catalytic efficiency of the Fe-MoS2@PPy microtubes, a simple and convenient colorimetric strategy for the rapid and sensitive detection of L-cysteine has been developed. This strategy introduces both the PPy layer and Fe doping to increase the conductivity and the density of active sites of MoS2 nanosheets, thus enhancing the catalytic activity and stability. More importantly, Fe-MoS2@PPy microtubes could be used as a good support for loading other materials such as Au and Ag nanoparticles (NPs), forming ternary Fe-MoS2/Ag, Au@PPy nanotubes. This work offers an opportunity to develop low-cost and highly active MoS2-based nanocomposites for promising potential applications in electrochemical energy conversion and medical diagnostics.
Collapse
Affiliation(s)
- Houji Peng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Baishun Zhang
- Anhui Institute of Public Security Education, 559 Wangjiang West Road, Hefei, Anhui 230088, PR China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
17
|
Yadav M, Das M, Bhatt S, Shah P, Jadeja R, Thakore S. Rapid selective optical detection of sulfur containing agrochemicals and amino acid by functionalized cyclodextrin polymer derived gold nanoprobes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Sadalage PS, Patil RV, Havaldar DV, Gavade SS, Santos AC, Pawar KD. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology 2021; 19:84. [PMID: 33766058 PMCID: PMC7992809 DOI: 10.1186/s12951-021-00836-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The development of nano delivery systems is rapidly emerging area of nanotechnology applications where nanomaterials (NMs) are employed to deliver therapeutic agents to specific site in a controlled manner. To accomplish this, green synthesis of NMs is widely explored as an eco-friendly method for the development of smart drug delivery system. In the recent times, use of green synthesized NMs, especially metallic NMs have fascinated the scientific community as they are excellent carriers for drugs. This work demonstrates optimized green, biogenic synthesis of gold nanoparticles (AuNPs) for functionalization with quercetin (QT) and camptothecin (CPT) to enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs. RESULTS Gold nanoparticles were optimally synthesized in 8 min of reaction at 90 °C, pH 6, using 4 mM of HAuCl4 and 4:1 ratio of extract: HAuCl4. Among different capping agents tested, capping of AuNPs with polyethylene glycol 9000 (PG9) was found best suited prior to functionalization. PG9 capped AuNPs were optimally functionalized with QT in 1 h reaction at 70 °C, pH 7, using 1200 ppm of QT and 1:4 ratio of AuNPs-PG9:QT whereas, CPT was best functionalized at RT in 1 h, pH 12, AuNPs-PG9:CPT ratio of 1:1, and 0.5 mM of CPT. QT functionalized AuNPs showed good anti-cancer activity (IC50 687.44 µg/mL) against MCF-7 cell line whereas test of anti-inflammatory activity also showed excellent activity (IC50 287.177 mg/L). The CAM based assessment of anti-angiogenic activity of CPT functionalized AuNPs demonstrated the inhibition of blood vessel branching confirming the anti-angiogenic effect. CONCLUSIONS Thus, present study demonstrates that optimally synthesized biogenic AuNPs are best suited for the functionalization with drugs such as QT and CPT. The functionalization of these drugs with biogenic AuNPs enhances the potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs, therefore can be used in biomedical application.
Collapse
Affiliation(s)
| | - Reshma V Patil
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Shruti S Gavade
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
19
|
Sahu S, Sharma S, Kant T, Shrivas K, Ghosh KK. Colorimetric determination of L-cysteine in milk samples with surface functionalized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118961. [PMID: 33010538 DOI: 10.1016/j.saa.2020.118961] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
A simple, selective and sensitive method is proposed for determination of cysteine (Cys) in milk samples using ionic liquid functionalized silver nanoparticles (ILs-AgNPs) as a colorimetric probe. ILs-AgNPs was synthesized by simple reduction method using silver nitrate as a precursor and sodium borohydride as a reducing agent and functionalized with ILs to prevent particles from self-aggregation. The sensing mechanism has been dependent on the color change of ILs-AgNPs and red shift of absorption band from 395 nm to 560 nm in the visible region, which is found proportional to the concentration of target analyte in sample. ILs-AgNPs was characterized in absence and presence of Cys by UV-vis, Fourier transform-infrared (FTIR) spectroscopy, transmission electron microscope (TEM) and dynamic light scattering (DLS). The linear range was acquired in the range of 0-100 ng mL-1, with correlation coefficient (R2) of 0.996 and limit of detection (LOD) of 4.0 nM. The binding mechanism and interactions between Cys and ILs-AgNPs was confirmed by calculating the binding constant and thermodynamic parameters such as enthalpy (∆H), entropy (∆S) and Gibb's free energy (∆G). The use of ILs-AgNPs exhibited high colorimetric selectivity for Cys in milk samples in presence of other amino acids. This proposed strategy possessed the advantages of simplicity and selectivity, hence is applied for analysis of Cys in milk samples.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Tushar Kant
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, C.G., India.
| |
Collapse
|
20
|
Zafer M, Keskin CS, Özdemir A. Highly sensitive determination of Co(II) ions in solutions by using modified silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118487. [PMID: 32485604 DOI: 10.1016/j.saa.2020.118487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this manuscript, we report the development of a rapid and facile optic sensor for highly sensitive and selective detection of cobalt ions (Co(II)). The detection strategy was based on the specific silver nanoparticle-glutathione interaction and later on secondary interaction of this structure with cysteine and Co(II) ion. The interaction of these structures creates a new absorption band in the UV region. The intensity change of this band can be correlated by Co(II) ion concentration. The addition of cysteine decreases the Surface Plasmon Resonance (SPR) of silver nanoparticles but does not provide quantitative information. The proposed method offers the advantage of improved sensitivity for detection of Co(II) ions in a very short time period. Co(II) ions create a unique absorption peak during the complex formation and this peak provides sensitive determination of this metal ion in existence of other metal ions. The peak is visible only after taking the first derivative of absorption spectra. Under the optimized conditions, the detection limit of the method is around 0.68 μM. In addition, the synthesized silver nanoparticles (AgNPs) were characterized by atomic force microscopy (AFM). The proposed metal ion sensor provides a very facile and convenient way to determine the concentration of Co(II) ions in aqueous system.
Collapse
Affiliation(s)
- Merve Zafer
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54050 Serdivan, Sakarya, Turkey
| | - Can Serkan Keskin
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54050 Serdivan, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54050 Serdivan, Sakarya, Turkey.
| |
Collapse
|
21
|
De Acha N, Elía V, Delgado-Camón A, Arregui FJ, Elosúa C. Straightforward nano patterning on optical fiber for sensors development. OPTICS LETTERS 2020; 45:3877-3880. [PMID: 32667308 DOI: 10.1364/ol.397817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A simple method to prepare a nano pattern along the surface of an optical fiber is applied in this Letter to develop a pH sensor. The template is made of a block copolymer that defines specific locations where gold nano particles are adsorbed on forming clusters. The average diameter of the resulting agglomerates is 121 nm, and the mean distance between the centers is 182 nm. The morphology of the gold cluster array produces localized surface plasmon resonance. The absorbance spectrum is affected by pH variations, and the ratio between the absorption at two different wavelengths is used to characterize the response, which is repetitive and reversible. This Letter highlights the potentiality of this type of chemical nano patterning for the development of optical fiber sensors.
Collapse
|
22
|
Isachenko AI, Apyari VV, Volkov PA, Dmitrienko SG, Zolotov YA. Determination of Cysteine by Diffuse Reflectance Spectroscopy by Its Influence on the Formation of Gold Nanocomposites Based on Polyurethane Foam. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Mathaweesansurn A, Choengchan N, Khongkaew P, Phechkrajang CM. Low-Cost Synthesis of Gold Nanoparticles from Reused Traditional Gold Leaf and its Application for Sensitive and Selective Colorimetric Sensing of Creatinine in Urine. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181010130631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Gold nanoparticles (Au NPs) are normally prepared using standard gold
(III) trichloride which is much expensive and irritant. This work is aimed at demonstrating simple
and low-cost synthesis of Au NPs from the reused traditional gold leaf which is cost-free and less
toxic.
Methods:
The reused gold leaf was donated by the local temple. It was digested and used as the precursor
for the preparation of the Au NPs by Turkevich method. Poly (vinyl alcohol) (PVA) was employed
as a stabilizer. The as-prepared Au NPs were applied for the colorimetric determination of
creatinine in urine without any sample pretreatment.
Results:
Long-term stability of the gold colloids was achieved for at least 3 months. Morphology and
purity of the as-prepared Au NPs were the same as the ones prepared from standard gold (III) salt
and standard gold foil. Colorimetric response of the Au NPs was linear to the standard creatinine up
to 200 mg L-1. The limit of detection (0.16 mg L-1 or 1.41 μM) was enough sensitive for urinary creatinine
detection in patients with kidney disease. Good recoveries (97-108%) and fast analysis time
(3 min) were achieved. The developed method was successfully validated against the HPLC method.
Conclusion:
Facile and cost-effective synthesis of the Au NPs from the reused traditional gold leaf,
was accomplished. The as-prepared Au NPs were successfully applied for the determination of urinary
creatinine with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Arjnarong Mathaweesansurn
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, 10520, Thailand
| | - Nathawut Choengchan
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, 10520, Thailand
| | - Putthiporn Khongkaew
- Faculty of Pharmaceutical Science, Burapha University, Longhaad Bangsaen Road, Muang, Chonburi, 20131, Thailand
| | - Chutima M. Phechkrajang
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, 10520, Thailand
| |
Collapse
|
24
|
Deilamy-Rad G, Asghari K, Tavallali H. Development of a Reversible Indicator Displacement Assay Based on the 1-(2-Pyridylazo)-2-naphthol for Colorimetric Determination of Cysteine in Biological Samples and Its Application to Constructing the Paper Test Strips and a Molecular-Scale Set/Reset Memorized Device. Appl Biochem Biotechnol 2020; 192:85-102. [DOI: 10.1007/s12010-019-03165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2023]
|
25
|
Zhou N, Shi Y, Sun C, Zhang X, Zhao W. Carbon quantum dot-AgOH colloid fluorescent probe for selective detection of biothiols based on the inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117847. [PMID: 31818643 DOI: 10.1016/j.saa.2019.117847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Here, we present a selective and sensitive fluorescent probe for the detection and distinction of biothiols, such as glutathione (GSH) and cysteine (Cys). The adsorbance of Cys onto the surface of AgOH colloid could result in enhanced absorbance from 250 to 400 nm in the UV-vis absorption spectrum, while the addition of GSH could dissolve the AgOH colloid resulting in no change in the UV-vis absorption spectrum. Utilizing these different phenomena, two fluorescent probes were established based on the inner filter effect (IFE). The first probe, the "CDs-AgOH colloid" fluorescent probe, was used to quantitatively analyze Cys over a linear concentration range from 33 to 317 μM and a detection limit of 7.2 μM. The second probe, the "CDs-AgOH colloid-Cys" fluorescent probe, was used to quantitatively analyze GSH, with a detection limit down to 3.6 μM, and a linear range of detection of approximately 16.7 to 100 μM. The fluorescent probes were successfully applied for the detection of GSH in a fetal bovine serum (FBS) sample. Based on these results, IFE is considered to be an effective way to distinguish GSH and Cys.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China
| | - Yanping Shi
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China
| | - Chao Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China
| | - Xingwei Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China
| | - Wei Zhao
- Department of Physiology, Hei Longjiang University of Chinese Medicine, Harbin 150040, Hei Longjiang Province, China.
| |
Collapse
|
26
|
Balasurya S, Syed A, Thomas AM, Bahkali AH, Elgorban AM, Raju LL, Khan SS. Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Rajamanikandan R, Lakshmi AD, Ilanchelian M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by β-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj02152k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we have attempted the synthesis of β-CD functionalized AuNPs and then applied them as a colorimetric assay for the quantification of Cys over other different essential amino acids.
Collapse
|
28
|
Jiménez-López J, Llorent-Martínez EJ, Ortega-Barrales P, Ruiz-Medina A. Selective luminescence determination of cysteine by using terbium-modified silver nanoparticles or terbium-modified graphene quantum dots. Mikrochim Acta 2019; 186:781. [PMID: 31729601 DOI: 10.1007/s00604-019-3920-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/11/2019] [Indexed: 02/01/2023]
Abstract
Two methods for the luminescence determination of cysteine (Cys) are presented. They make use of either silver nanoparticles (Ag NPs) or graphene quantum dots (GQDs), both doped with terbium(III). The methods are based on the finding that Cys quenches the green luminescence of Tb(III)-Ag NPs and Tb(III)-GQDs. The excitation/emission maxima are at 306/545 and 257/545 nm, for both nanoprobes, respectively. Response is linear in the 0.28-5.0 μg mL-1 Cys concentration range for the Tb(III)-Ag NP system, and from 0.05-3.0 μg mL-1 for the Tb(III)-GQD system. The respective limits of detection are 0.09 and 0.015 μg mL-1. The probes were applied to the time-resolved luminometric determination of Cys in (spiked) food supplements and gave satisfactory results. Graphical abstractSchematic representation of the quenching by cysteine (Cys) of the time-resolved luminescence (TSL) of terbium-graphene quantum dots [Tb(III)-GQD] and of terbium-silver nanoparticles [Tb(III)-Ag NP].
Collapse
Affiliation(s)
- Julia Jiménez-López
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain
| | - Pilar Ortega-Barrales
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain
| | - Antonio Ruiz-Medina
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain.
| |
Collapse
|
29
|
Tavallali H, Deilamy-Rad G, Karimi MA, Rahimy E. A novel dye-based colorimetric chemosensors for sequential detection of Cu2+ and cysteine in aqueous solution. Anal Biochem 2019; 583:113376. [DOI: 10.1016/j.ab.2019.113376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
|
30
|
Antioxidant flavone functionalized fluorescent and biocompatible metal nanoparticles: Exploring their efficacy as cell imaging agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Liu J, Wang Y, Liu X, Yuan Q, Zhang Y, Li Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta 2019; 199:573-580. [PMID: 30952300 DOI: 10.1016/j.talanta.2019.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/16/2019] [Accepted: 03/02/2019] [Indexed: 12/27/2022]
Abstract
Multiplex electrochemical sensors for amperometric detection of glutathione disulfide (GSSG), glutathione (GSH), cysteine (Cys), cystine (Cyss), β-nicotinamide adenine dinucleotide phosphate (NADP+) and coenzyme II reduced tetrasodium salt (NADPH) were developed, in which analysis of Cyss, NADP+ and NADPH are the first report using this sensing system. Specificity of these sensors were ensured by a layer of molecularly imprinted polymer (MIP) which was electropolymerized in situ with the analytes as template. All the sensors were tested with standard buffers and mouse blood samples, showing satisfactory performance towards the corresponding analytes. Dynamic concentration for the six analytes was in the range of 10-11-10-8 mol/L with the detection limit down to 20 pmol/L. In addition, artificially synthesized MIP film on the electrodes allowed for good selectivity and stability. Real blood sample measurement proved that the sensors owned decent accuracy with recovery value ranging from 92%~112%. More importantly, blood samples from lung cancer patients and healthy donors were assayed by using the proposed sensors. Redox potentials (Ehc) were calculated based on the contents of these endogenic substances, which were utilized to reflect the health status of human body and help diagnose lung cancer. The levels of GSH, NADPH and the absolute value of Ehc(GSH/GSSG) in patients with lung cancer are significantly lower (P < 0.01) than those in healthy people, while the contents of GSSG (P < 0.01) are higher. The blood test results suggested that the content of GSH, NADPH, NADP+ and Ehc(GSH/GSSG) might serve as biomarkers for lung cancer prediagnosis. These novel sensors for liquid biospy of cancer have cost-benefit and scalability advantage over current techniques, potentially enabling broader clinical access and efficient population screening.
Collapse
Affiliation(s)
- Jie Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yuli Wang
- The first affiliated hospital of the medical college of Shihezi University, Shihezi 832000, China
| | - Xiaoxue Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qunhui Yuan
- College of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
32
|
Jeyasekaran E, Venkatachalam S. Colorimetric detection of cysteine based on dispersion–aggregation mechanism of chitosan stabilized gold nanoparticles. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple and selective colorimetric method for detection of cysteine using chitosan stabilized gold nanoparticles has been developed. L-cysteine is a sulfur containing amino acid. Cysteine binds with the gold nanoparticles through a sulfur group and induces aggregation of the nanoparticles, which leads to a visible colour change from pale red to blue. A good linearity was observed from 0.1 to 30 μmol/L (R = 0.9958) cysteine, and the limit of detection was found to be 0.1 μmol/L. The gold nanoparticles showed a high selectivity towards the detection of cysteine even in the presence of 10 000 fold higher concentration of common interferences such as glutathione, methionine, and homocysteine. A plausible mechanism for the selective detection of cysteine in presence of interferences based on a dispersion–aggregation mechanism has been proposed.
Collapse
Affiliation(s)
- Esther Jeyasekaran
- PG and Research Department of Chemistry, Lady Doak College, Madurai 625 002, Tamilnadu, India
- PG and Research Department of Chemistry, Lady Doak College, Madurai 625 002, Tamilnadu, India
| | - Sridevi Venkatachalam
- PG and Research Department of Chemistry, Lady Doak College, Madurai 625 002, Tamilnadu, India
- PG and Research Department of Chemistry, Lady Doak College, Madurai 625 002, Tamilnadu, India
| |
Collapse
|
33
|
de Melo FM, Fante AS, Zamarion VDM, Toma HE. SERS-active carboxymethyl cellulose-based gold nanoparticles: high-stability in hypersaline solution and selective response in the Hofmeister series. NEW J CHEM 2019. [DOI: 10.1039/c9nj01552c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles were synthesized with carboxymethyl cellulose by a simple one-pot procedure, exhibiting surprising SERS-active performance towards thiol ligands.
Collapse
Affiliation(s)
| | - Allef Soares Fante
- School of Pharmaceutical Sciences
- University of São Paulo
- Av. Professor Lineu Prestes
- Brazil
| | - Vitor de M. Zamarion
- Department of Fundamental Chemistry
- University of São Paulo
- Av. Professor Lineu Prestes
- Brazil
| | - Henrique Eisi Toma
- Department of Fundamental Chemistry
- University of São Paulo
- Av. Professor Lineu Prestes
- Brazil
| |
Collapse
|
34
|
Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu 2+-Cysteine Using a Metal Ion Displacement and Cu 2+-Arginine Through the Host-Guest Interaction. Appl Biochem Biotechnol 2018; 187:913-937. [PMID: 30105545 DOI: 10.1007/s12010-018-2796-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), L-arginine (Arg), and L-cysteine (Cys) in the H2O (10.0 mmol L-1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L-1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output. Graphical Abstract.
Collapse
|
36
|
Zhang M, Qiao J, Zhao Z, Zhang S, Qi L. Fabrication of polymer-modified magnetic nanoparticle based adsorbents for the capture and release of quinolones by manipulating the metal-coordination interaction. J Sep Sci 2018; 41:2976-2982. [PMID: 29799163 DOI: 10.1002/jssc.201800307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Functional polymers with a metal-coordination interaction have been fabricated for sample pretreatment. Poly(N-4-vinyl-benzyl iminodiacetic acid-co-methacrylic acid-co-styrene)-modified magnetic nanoparticles were prepared and used as solid-phase extraction adsorbents for the analysis of quinolones by tuning the metal-coordination interaction. In the construction of the polymer-based adsorbents, functional monomer (N-(4-vinyl)-benzyl iminodiacetic acid) and comonomers (methacrylic acid and styrene) were fabricated onto the magnetic nanoparticles by free radical polymerization. Factors affecting the performance of the adsorbents were investigated, and the results revealed that Fe3+ played a vital role in the formation of metal-coordination adsorbents. Compared with other compounds, the resultant adsorbents displayed good selectivity to quinolones due to the metal-coordination complex (N-4-vinyl-benzyl iminodiacetic acid-Fe3+ -quinolones). Interestingly, the captured quinolones could be rapidly released by manipulating the metal-coordination interaction with Cu2+ . The linearity range for analysis of the test quinolones was 0.025-2.0 μg/mL (R2 > 0.999), and the recovery varied from 80.0 to 100.7%. Further, the proposed adsorbents were combined with high-performance liquid chromatography for the analysis of quinolones in real urine samples. The results demonstrated that the prepared adsorbents have good selectivity and sensitivity for quinolones, showing great potential for drug analysis in real samples.
Collapse
Affiliation(s)
- Mingming Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.,College of Chemistry, Tianjin Normal University, Tianjin, P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, School of Chemistry and Chemical Engineering, Beijing, P. R. China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, School of Chemistry and Chemical Engineering, Beijing, P. R. China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, School of Chemistry and Chemical Engineering, Beijing, P. R. China
| |
Collapse
|
37
|
Kappi FA, Tsogas GZ, Routsi AM, Christodouleas DC, Giokas DL. Paper-based devices for biothiols sensing using the photochemical reduction of silver halides. Anal Chim Acta 2018; 1036:89-96. [PMID: 30253841 DOI: 10.1016/j.aca.2018.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
This study describes the development of paper-based devices for the determination of biothiols. The devices are inexpensive (composed of paper and silver halide particles), and the analytical protocol is easily executable with minimum technical expertise and without the need of specialized equipment; the user has to add a test sample, illuminate the device with a UV lamp, and read the color change of the sensing area using a simple imaging device (i.e., cell-phone camera) or a bare eye. The detection mechanism of the assay is based on the biothiols-mediated photoreduction of nanometer-sized silver chloride particles deposited on the surface of paper; photoreduced silver chloride particles have a grayish coloration that depends on the concentration of biothiols in the tested solution. This is the first time that the UV-mediated photoreduction of solid silver halides particles is used for analytical purposes. The performance of the devices has been tested on the detection of total biothiols content of artificial body fluids and protein-free human blood plasma samples, and the results were satisfactory in terms of sensitivity, selectivity, recoveries and reproducibility.
Collapse
Affiliation(s)
- Foteini A Kappi
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - George Z Tsogas
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Anna-Maria Routsi
- Department of Chemistry, University of Massachusetts-Lowell, Lowell MA 01854, United States
| | | | | |
Collapse
|
38
|
Zhang M, Qiao J, Zhang S, Qi L. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Talanta 2018; 182:595-599. [DOI: 10.1016/j.talanta.2018.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
|
39
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Zor E. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta 2018; 184:149-155. [PMID: 29674026 DOI: 10.1016/j.talanta.2018.02.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 11/26/2022]
Abstract
Paper-based sensors open new avenue to produce simple, rapid, inexpensive and single-use analytical devices for a wide application fields involving medical diagnosis, food analysis and environmental monitoring. In this study, a new optical sensing platform for enantioselective recognition of chiral analytes was introduced by using in-situ synthesized silver nanoparticles-embedded transparent nanopaper. To this aim, nanopaper was obtained by environment-friendly approach using bacterial cellulose made of nanofibers and silver nanoparticles were embedded within nanopaper by an in-situ generation method. The chiral recognition capability of AgNPs was operated in both solution phase and nanopaper for the tested enantiomers. AgNPs showed a discriminative sensing response toward D-cysteine with a LOD value of 4.88 µM. The principle of optical sensing is the selective interaction of the inherently chiral AgNPs with enantiomers causing to aggregation of AgNPs to display a significant colour change from yellow to purple-brown in both aqueous phase and nanopaper. As for practical use, the obtained plasmonic nanopaper was punched into circular pieces and put on wax-printed PET film to produce disposable two-dimensional cuvette which could be inserted in an ordinary spectrophotometer. The enantiomeric percentage of D-cysteine was successfully determined by the fabricated nanopaper-based cuvettes.
Collapse
Affiliation(s)
- Erhan Zor
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University, Konya 42090, Turkey.
| |
Collapse
|
41
|
A facile and selective approach for enrichment of l-cysteine in human plasma sample based on zinc organic polymer: Optimization by response surface methodology. J Pharm Biomed Anal 2018; 149:166-171. [DOI: 10.1016/j.jpba.2017.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022]
|
42
|
Sanskriti I, Upadhyay KK. Facile Designing of a Colorimetric Plasmonic Gold Nanosensor for Selective Detection of Cysteine over Other Biothiols. ChemistrySelect 2017. [DOI: 10.1002/slct.201702288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Isha Sanskriti
- Department of Chemistry, Centre of Advanced Study, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| | - Kaushal K. Upadhyay
- Department of Chemistry, Centre of Advanced Study, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| |
Collapse
|
43
|
Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL. Recent Advances in Nanomaterial Probes for Optical Biothiol Sensing: A Review. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1329833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- George Z. Tsogas
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Foteini A. Kappi
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
44
|
Wang L, Wang G, Shang C, Kang R, Fang Y. Naphthalimide-Based Fluorophore for Soft Anionic Interface Monitoring. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35419-35426. [PMID: 28925686 DOI: 10.1021/acsami.7b10565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A naphthalimide-based low-molecular-mass fluorophore (NA) was designed and synthesized by introducing an azetidine unit onto the aromatic ring of the compound as an electron-donating structure, and a hydrophilic (2-(2-aminoethyl-amino)ethanol) moiety into the "N-imide site" of the core structure. UV-vis absorption and fluorescence measurements revealed that the fluorophore is soluble in water and shows a fluorescent quantum yield of ∼20% and lifetime of ∼3.7 ns in the solvent within a wide pH range. Moreover, the fluorescence emission and anisotropy of the fluorophore as produced are both dependent upon the viscosity and polarity of the medium. Further studies demonstrated that NA can be used as a selective probe to monitor the aggregation of anionic surfactants owing to its accumulation onto the anionic surfaces of the aggregates as formed. Inspired by the discovery, NA was successfully applied for detection of cell membranes and E. coli via monitoring of their negatively charged surfaces, which is important for fast checking of biological contamination of water. Importantly, all the tests could be performed in a visualized manner. We believe that the new, low-molecular-mass fluorophore as created may find applications in chemical and biochemical sensing and imaging.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Rui Kang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| |
Collapse
|
45
|
Liu L, Wang X, Yang J, Bai Y. Colorimetric sensing of selenocystine using gold nanoparticles. Anal Biochem 2017; 535:19-24. [DOI: 10.1016/j.ab.2017.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
|
46
|
Gangapuram BR, Bandi R, Dadigala R, Kotu GM, Guttena V. Facile Green Synthesis of Gold Nanoparticles with Carboxymethyl Gum Karaya, Selective and Sensitive Colorimetric Detection of Copper (II) Ions. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1264-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Van Rie J, Thielemans W. Cellulose-gold nanoparticle hybrid materials. NANOSCALE 2017; 9:8525-8554. [PMID: 28613299 DOI: 10.1039/c7nr00400a] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cellulose and gold nanoparticles have exciting characteristics and new combinations of both materials may lead to promising functional nanocomposites with unique properties. We have reviewed current research on cellulose-gold nanoparticle composite materials, and we present an overview of the preparation methods of cellulose-gold composite materials and discuss their applications. We start with the nanocomposite fabrication methods, covering in situ gold reduction, blending, and dip-coating methods to prepare gold-cellulose nanocomposite hybrids. We then move on to a discussion of the ensuing properties where the combination of gold nanoparticles with cellulose results in functional materials with specific catalytic, antimicrobial, sensing, antioxidant and Surface Enhanced Raman Scattering (SERS) performance. Studies have also been carried out on orientationally ordered composite materials and on the chiral nematic phase behaviour of these nanocomposites. To exert even more control over the structure formation and the resultant properties of these functional materials, fundamental studies on the physico-chemical interactions of cellulose and gold are necessary to understand better the driving forces and limitations towards structuring of gold-cellulose hybrid materials.
Collapse
Affiliation(s)
- Jonas Van Rie
- Renewable Materials and Nanotechnology Group, Department of Chemical Engineering, KU Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | | |
Collapse
|
48
|
Hashemi M, Nazari Z, Bigdelifam D. A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of L-cysteine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2236-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Fu X, Gu D, Zhao S, Zhou N, Zhang H. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots–Au Nanoparticles System. J Fluoresc 2017; 27:1597-1605. [DOI: 10.1007/s10895-017-2095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
50
|
Cadmium determination based on silver nanoparticles modified with 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1087-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|