1
|
P S A, Thadathil DA, George L, Varghese A. Food Additives and Evolved Methods of Detection: A Review. Crit Rev Anal Chem 2024:1-20. [PMID: 39015954 DOI: 10.1080/10408347.2024.2372501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.
Collapse
Affiliation(s)
- Aiswarya P S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
2
|
Čokrtová K, Mareš V, Křížek T. On-capillary fluorescent labeling of saccharides for capillary electrophoresis. Electrophoresis 2023; 44:35-43. [PMID: 35699059 DOI: 10.1002/elps.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
The feasibility of on-capillary derivatization of saccharides by aromatic amine-based fluorescent labeling agents was tested. To avoid the problematic evolution of gaseous hydrogen cyanide, the Schiff base reduction by sodium cyanoborohydride, as the second step of the standard reductive amination protocol, was omitted. Glucose was used as a model analyte and 7-amino-1,3-naphthalenedisulfonic acid as the labeling agent. Our experiments showed that the direct reaction of the saccharide with the labeling agent in 2.5-M acetic acid yields a labeled product that is sufficiently stable to be separated from the labeling agent in 20-mM phosphate buffer, pH 3.5, and detected using UV detection. The glucose and label zones were introduced separately into the capillary and mixed using a negative voltage. Mixing voltage, its duration, the concentration of acetic acid in the reaction zone, and the waiting time between mixing and separation were optimized. To show the applicability of the procedure to a broader range of analytes, a mixture of different types of saccharides, that is, xylose (pentose), fucose (hexose), glucose (hexose), N-acetylglucosamine (N-acetylaminosaccharide), and lactose (disaccharide), was subjected to derivatization and analysis under the optimal conditions. The linearity and repeatability of the process were evaluated as critical parameters for its analytical applications. Six-point calibration dependences in the 1-50 mM range showed excellent determination coefficients of 0.9992 or higher for all five saccharides tested. The repeatability of the labeled saccharide peak areas was between 2.2% and 4.3%.
Collapse
Affiliation(s)
- Kateřina Čokrtová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Mareš
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Tomnikova A, Kozlík P, Křížek T. Monosaccharide profiling of glycoproteins by capillary electrophoresis with contactless conductivity detection. Electrophoresis 2022; 43:1963-1970. [DOI: 10.1002/elps.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Alice Tomnikova
- Faculty of Science, Department of Analytical Chemistry Charles University Prague Czech Republic
| | - Petr Kozlík
- Faculty of Science, Department of Analytical Chemistry Charles University Prague Czech Republic
| | - Tomáš Křížek
- Faculty of Science, Department of Analytical Chemistry Charles University Prague Czech Republic
| |
Collapse
|
4
|
Crespo-Rosa JR, Foca G, Ulrici A, Pigani L, Zanfrognini B, Cubillana-Aguilera L, Palacios-Santander JM, Zanardi C. Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:4190. [PMID: 34207281 PMCID: PMC8234046 DOI: 10.3390/s21124190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Silica-based electrodes which permanently include a graphite/Au nanoparticles composite were tested for non-enzymatic detection of glucose and fructose. The composite material showed an effective electrocatalytic activity, to achieve the oxidation of the two analytes at quite low potential values and with good linearity. Reduced surface passivation was observed even in presence of organic species normally constituting real samples. Electrochemical responses were systematically recorded in cyclic voltammetry and differential pulse voltammetry by analysing 99 solutions containing glucose and fructose at different concentration values. The analysed samples consisted both in glucose and fructose aqueous solutions at pH 12 and in solutions of synthetic musts of red grapes, to test the feasibility of the approach in a real frame. Multivariate exploratory analyses of the electrochemical signals were performed using the Principal Component Analysis (PCA). This gave evidence of the effectiveness of the chemometric approach to study the electrochemical sensor responses. Thanks to PCA, it was possible to highlight the different contributions of glucose and fructose to the voltammetric signal, allowing their selective determination.
Collapse
Affiliation(s)
- Joaquin Rafael Crespo-Rosa
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (J.R.C.-R.); (L.C.-A.); (J.M.P.-S.)
| | - Giorgia Foca
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (G.F.); (A.U.)
- Interdepartmental Research Centre, University of Modena and Reggio Emilia, BIOGEST-SITEIA, 42122 Reggio Emilia, Italy;
| | - Alessandro Ulrici
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (G.F.); (A.U.)
- Interdepartmental Research Centre, University of Modena and Reggio Emilia, BIOGEST-SITEIA, 42122 Reggio Emilia, Italy;
| | - Laura Pigani
- Interdepartmental Research Centre, University of Modena and Reggio Emilia, BIOGEST-SITEIA, 42122 Reggio Emilia, Italy;
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Barbara Zanfrognini
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (J.R.C.-R.); (L.C.-A.); (J.M.P.-S.)
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (J.R.C.-R.); (L.C.-A.); (J.M.P.-S.)
| | - Chiara Zanardi
- Interdepartmental Research Centre, University of Modena and Reggio Emilia, BIOGEST-SITEIA, 42122 Reggio Emilia, Italy;
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| |
Collapse
|
5
|
Maruška A, Drevinskas T, Stankevičius M, Bimbiraitė-Survilienė K, Kaškonienė V, Jonušauskas L, Gadonas R, Nilsson S, Kornyšova O. Single-chip based contactless conductivity detection system for multi-channel separations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:141-146. [PMID: 33320117 DOI: 10.1039/d0ay01882a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, the design and characterization of a multi-cell capacitively coupled contactless conductivity detection system are described. The operation and simultaneous acquisition from 3 detector cells are demonstrated, however, the system is capable of supplying 8 detection cells and can be easily upgraded to maintain 64 capacitively coupled contactless conductivity detection cells. On performing flow-injection analysis, the system recorded as low as 0.01 mM of acetic acid, phosphoric acid, NaH2PO4, and Na2B4O7 solutions in water. The instrument was also capable of recording and distinguishing different mixtures of organic solvents: (a) methanol-acetonitrile, (b) hexane-acetone. The designed detection system is expected to be used coupled with multi-channel separation devices for monitoring simultaneous processes.
Collapse
Affiliation(s)
- Audrius Maruška
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rana MS, Xu L, Cai J, Vedarethinam V, Tang Y, Guo Q, Huang H, Shen N, Di W, Ding H, Huang L, Qian K. Zirconia Hybrid Nanoshells for Nutrient and Toxin Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003902. [PMID: 33107195 DOI: 10.1002/smll.202003902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/03/2020] [Indexed: 05/07/2023]
Abstract
Monitoring milk quality is of fundamental importance in food industry, because of the nutritional value and resulting position of milk in daily diet. The detection of small nutrients and toxins in milk is challenging, considering high sample complexity and low analyte abundance. In addition, the slow analysis and tedious sample preparation hinder the large-scale application of conventional detection techniques. Herein, zirconia hybrid nanoshells are constructed to enhance the performance of laser desorption/ionization mass spectrometry (LDI MS). Zirconia nanoshells with the optimized structures and compositions are used as matrices in LDI MS and achieve direct analysis of small molecules from 5 nL of native milk in ≈1 min, without any purification or separation. Accurate quantitation of small nutrient is achieved by introducing isotope into the zirconia nanoshell-assisted LDI MS as the internal standard, offering good consistency to biochemical analysis (BCA) with R2 = 0.94. Further, trace toxin is enriched and identified with limit-of-detection (LOD) down to 4 pm, outperforming the current analytical methods. This work sheds light on the personalized design of material-based tool for real-case bioanalysis and opens up new opportunities for the simple, fast, and cost-effective detection of various small molecules in a broad field.
Collapse
Affiliation(s)
- Md Sohel Rana
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lin Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, P. R. China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jingyi Cai
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuanjia Tang
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Qiang Guo
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Hongtao Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Nan Shen
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, P. R. China
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huihua Ding
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
7
|
Křížek T, Müllerová R. Sucrose hydrolysis during the preparation of “dandelion honey”. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02636-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Carbohydrate determination in honey samples by ion chromatography-mass spectrometry (HPAEC-MS). Anal Bioanal Chem 2020; 412:5217-5227. [PMID: 32488387 DOI: 10.1007/s00216-020-02732-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Honey is a complex mixture of carbohydrates, in which the monosaccharides glucose and fructose are the most abundant compounds. Currently, more than 20 oligosaccharides have been identified in different varieties of honey normally at quite low concentration. A method was developed and validated using high-performance anion-exchange chromatography coupled to a mass spectrometry detector to investigate the composition of carbohydrates in honey samples. The method was tested for linearity range, trueness, instrumental and method detection and quantification limits, repeatability, and reproducibility. It was applied to determine seven monosaccharides, eight disaccharides, four trisaccharides, and one tetrasaccharide in various honey samples. The present work describes the composition of sugars in unifloral, multifloral, and some honeydew honey, which were produced and collected by beekeepers in the Trentino Alto-Adige region. Statistical techniques have been used to establish a relationship based on levels of carbohydrates among different Italian honey. The results emphasize that mono- and oligosaccharide profiles can be useful to discriminate different honeys according to their floral characteristics and inter-annual variability.
Collapse
|
9
|
Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow. Talanta 2020; 217:121094. [PMID: 32498904 DOI: 10.1016/j.talanta.2020.121094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Capillary electrophoretic separation of ketamine, norketamine, hydroxynorketamine, and dehydronorketamine was performed in the counter-current regime under the influence of oppositely-directed electroosmotic flow. For this purpose, the fused silica capillaries were covalently coated with the poly(acrylamide-co-3-acrylamidopropyl trimethylammonium chloride) copolymer (PAMAPTAC). The content of the cationic monomer APTAC in the polymerization mixture varied in the range 0-6 mol. % and the generated electroosmotic flow increased continuously in the 0-20 · 10-9 m2V-1s-1 interval. Importantly, it resulted in improved electrophoretic resolution of ketamine/norketamine, which increased from 0.8 for neutral PAM coating (i.e. 0% PAMAPTAC) to 3.0 for 6% PAMAPTAC. The determination of ketamine and its derivates in rat serum was performed in a 4% PAMAPTAC capillary with an inner diameter of 25 μm. The separation was performed in a 500 mM aqueous solution of acetic acid (pH 2.3). The clinical sample was deproteinized by the addition of acetonitrile to the serum and a large volume of the treated sample was injected directly into the capillary. The achieved limit of detection ranged from 2.2 ng/mL for dehydronorketamine to 4.1 ng/mL for hydroxynorketamine; the intra-day repeatability was 1.0-1.5% for the migration time and 2.8-3.3% for the peak area. The developed methodology was employed for time monitoring of ketamines in rat serum after intra venous administration of low doses of anaesthetic at a level of 2 μg per g of body weight.
Collapse
|
10
|
Tůma P, Sommerová B, Daněček V. On-line coupling of capillary electrophoresis with microdialysis for determining saccharides in dairy products and honey. Food Chem 2020; 316:126362. [PMID: 32050115 DOI: 10.1016/j.foodchem.2020.126362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Free sucrose, lactose, galactose, glucose and fructose were determined in yoghurts, milk and honey using on-line coupling of capillary electrophoresis with microdialysis. The dairy products were diluted 50-fold with 10 mmol/L NaOH and sampled using laboratory-made microdialysis probes. The microdialysate was brought to the entrance of the electrophoretic capillary and the coupling consisted in a polydimethylsiloxane (PDMS) cross connector working in the flow-gating interface regime. The electrophoretic analysis was performed in 50 mmol/L NaOH (pH 12.6) background electrolyte, where baseline separation of the five saccharides was achieved in 3.5 min. The LOQs varied in the range 2.3-7.3 mg/L, the number of separation plates varied between 176,000 plates/m for glucose to 326,000 plates/m for galactose and the relative standard deviation (RSD) for ten consecutive analyses of fruit yoghurt was 0.2% for the migration time and 4.4-7.6% for the peak area.
Collapse
Affiliation(s)
- Petr Tůma
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Blanka Sommerová
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, 100 00 Prague 10, Czech Republic
| | - Václav Daněček
- Charles University, Third Faculty of Medicine, Department of Biophysics, Ruská 87, 100 00 Prague 10, Czech Republic
| |
Collapse
|
11
|
Tůma P. The Control of Glucose and Lactate Levels in Nutrient Medium After Cell Incubation and in Microdialysates of Human Adipose Tissue by Capillary Electrophoresis with Contactless Conductivity Detection. Methods Mol Biol 2019; 1972:95-108. [PMID: 30847786 DOI: 10.1007/978-1-4939-9213-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Two methods of capillary electrophoresis with contactless conductivity detection have been developed for monitoring the levels of glucose and lactate in clinical samples. The separations are performed in uncoated fused silica capillaries with inner diameter 10 or 20 μm, total length 31.5 cm, length to detector 18 cm, using an Agilent electrophoretic instrument with an integrated contactless conductivity detector. Glucose is determined in optimized background electrolyte, 50 mM NaOH with pH 12.6 and 2-deoxyglucose is used as an internal standard; the determination of lactate is performed in 40 mM CHES/NaOH with pH 9.4 and lithium cations as an internal standard. Both substances are determined in minimal volumes of (1) nutrient media after cell incubation, and (2) microdialysates of human adipose tissue; after dilution and filtration as the only treatment of the sample. The migration time of glucose is 2.5 min and that of lactate is 1.5 min with detection limits at the micromolar concentration level. The developed techniques are suitable for sequential monitoring of glucose and lactate over time during metabolic experiments.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
12
|
Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-to-volume ratio multi-lumen capillary. Anal Chim Acta 2019; 1051:41-48. [DOI: 10.1016/j.aca.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
13
|
Sasaki Y, Zhang Z, Minami T. A Saccharide Chemosensor Array Developed Based on an Indicator Displacement Assay Using a Combination of Commercially Available Reagents. Front Chem 2019; 7:49. [PMID: 30859095 PMCID: PMC6397832 DOI: 10.3389/fchem.2019.00049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 11/25/2022] Open
Abstract
Herein, a very simple colorimetric chemosensor array is reported for saccharides (D-glucose, D-fructose, D-xylose, D-galactose, D-mannose, L-rhamnose, and N-acetyl-D-gluosamine). While various types of chemosensors for saccharides have been investigated extensively to-this-date, tremendous additional efforts are still required on a regular basis for the syntheses of new chemosensors. Complicated syntheses would be a bottleneck, given that artificial receptor-based chemosensing systems are not so popular in comparison to biomaterial-based (e.g., enzyme-based) sensing systems. Toward this end, chemosensor array systems using molecular self-assembled materials can avoid the abovementioned synthetic efforts and achieve simultaneous qualitative and quantitative detection of a number of guest saccharides. Using a practical approach, we focus on an indicator displacement assay (IDA) to fabricate a chemosensor array for colorimetric saccharide sensing. On this basis, 3-nitrophenylboronic acid (3-NPBA) spontaneously reacts with catechol dyes such as alizarin red S (ARS), bromopyrogallol red (BPR), pyrogallol red (PR), and pyrocatechol violet (PV), and yields boronate ester derivatives with color changes. The addition of saccharides into the aqueous solution of the boronate esters induces color recovery owing to the higher binding affinity of 3-NPBA for saccharides, thus resulting in the release of dyes. By employing this system, we have succeeded in discriminating saccharides qualitatively and quantitatively with a classification success rate of 100%. Most importantly, our chemosensor array has been fabricated by only mixing low cost commercially available reagents in situ, which means that complicated synthetic processes are avoided for saccharide sensing. We believe this simple colorimetric assay that uses only commercially available reagents can create new, user-friendly supramolecular sensing pathways for saccharides.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Duarte-Junior GF, Lobo-Júnior EO, Medeiros Junior Í, da Silva JAF, do Lago CL, Coltro WKT. Separation of carbohydrates on electrophoresis microchips with controlled electrolysis. Electrophoresis 2019; 40:693-698. [DOI: 10.1002/elps.201800354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Íris Medeiros Junior
- Petróleo Brasileiro S.A.; Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES); Rio de Janeiro/RJ Brasil
| | | | | | | |
Collapse
|
15
|
Tůma P, Sommerová B, Šiklová M. Monitoring of adipose tissue metabolism using microdialysis and capillary electrophoresis with contactless conductivity detection. Talanta 2019; 192:380-386. [DOI: 10.1016/j.talanta.2018.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/02/2023]
|
16
|
Ferreira Santos MS, Cordeiro TG, Noell AC, Garcia CD, Mora MF. Analysis of inorganic cations and amino acids in high salinity samples by capillary electrophoresis and conductivity detection: Implications for in‐situ exploration of ocean worlds. Electrophoresis 2018; 39:2890-2897. [DOI: 10.1002/elps.201800266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Thiago Gomes Cordeiro
- Department of ChemistryClemson University Clemson SC USA
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Sao Paulo Brazil
| | - Aaron C. Noell
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | | | - Maria F. Mora
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
17
|
Wang Y, Kong J, Chen Z, Luo D, Ye J, Chu Q. Determination of Major Sialic Acids in Dairy Products by Electrophoretic Stacking Technology with Contactless Conductivity Detection. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2017; 39:179-189. [DOI: 10.1002/elps.201700290] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Veronica Mantovani
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
19
|
Pavlíček V, Tůma P. The use of capillary electrophoresis with contactless conductivity detection for sensitive determination of stevioside and rebaudioside A in foods and beverages. Food Chem 2017; 219:193-198. [DOI: 10.1016/j.foodchem.2016.09.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 08/02/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
|
20
|
Elbashir AA, Schmitz OJ, Aboul-Enein HY. Application of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4
D): An update. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/20/2017] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Abdalla A. Elbashir
- Faculty of Science, Chemistry Department; University of Khartoum; Khartoum Sudan
- Applied Analytical Chemistry, Faculty of Chemistry; University of Duisburg-Essen; Essen Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, Faculty of Chemistry; University of Duisburg-Essen; Essen Germany
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre; Giza Egypt
| |
Collapse
|
21
|
Francisco KJM, do Lago CL. A capillary electrophoresis system with dual capacitively coupled contactless conductivity detection and electrospray ionization tandem mass spectrometry. Electrophoresis 2016; 37:1718-24. [DOI: 10.1002/elps.201600005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
| | - Claudimir Lucio do Lago
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; São Paulo - SP CEP Brazil
| |
Collapse
|
22
|
Ibáñez C, Acunha T, Valdés A, García-Cañas V, Cifuentes A, Simó C. Capillary Electrophoresis in Food and Foodomics. Methods Mol Biol 2016; 1483:471-507. [PMID: 27645749 DOI: 10.1007/978-1-4939-6403-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quality and safety assessment as well as the evaluation of other nutritional and functional properties of foods imply the use of robust, efficient, sensitive, and cost-effective analytical methodologies. Among analytical technologies used in the fields of food analysis and foodomics, capillary electrophoresis (CE) has generated great interest for the analyses of a large number of compounds due to its high separation efficiency, extremely small sample and reagent requirements, and rapid analysis. The introductory section of this chapter provides an overview of the recent applications of capillary electrophoresis (CE) in food analysis and foodomics. Relevant reviews and research articles on these topics are tabulated including papers published in the period 2011-2014. In addition, to illustrate the great capabilities of CE in foodomics the chapter describes the main experimental points to be taken into consideration for a metabolomic study of the antiproliferative effect of carnosic acid (a natural diterpene found in rosemary) against HT-29 human colon cancer cells.
Collapse
Affiliation(s)
- Clara Ibáñez
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Tanize Acunha
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70.040-020, Brazil
| | - Alberto Valdés
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Virginia García-Cañas
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Carolina Simó
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
23
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
24
|
Tůma P, Gojda J. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015; 36:1969-75. [DOI: 10.1002/elps.201400585] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Petr Tůma
- Institute of Biochemistry; Cell and Molecular Biology; Third Faculty of Medicine; Charles University in Prague; Prague Czech Republic
| | - Jan Gojda
- 2nd Internal Department of Third Faculty of Medicine and Faculty Hospital Královské Vinohrady; Centre for Research on Diabetes, Metabolism and Nutrition; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
25
|
Sensitive determination of four β2-agonists in pig feed by capillary electrophoresis using on-line sample preconcentration with contactless conductivity detection. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 973C:29-32. [DOI: 10.1016/j.jchromb.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/26/2023]
|
26
|
Fluorescent boronic acid terminated polymer grafted silica particles synthesized via click chemistry for affinity separation of saccharides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:228-34. [DOI: 10.1016/j.msec.2014.03.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 03/17/2014] [Indexed: 12/11/2022]
|
27
|
Elbashir AA, Aboul-Enein HY. Recent applications and developments of capacitively coupled contactless conductivity detection (CE-C4D) in capillary electrophoresis. Biomed Chromatogr 2014; 28:1502-6. [DOI: 10.1002/bmc.3230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Abdalla A. Elbashir
- Faculty of Science, Chemistry Department; University of Khartoum; PO Box 321 Khartoum 11115 Sudan
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre; Dokki Cairo 12311 Egypt
| |
Collapse
|
28
|
Xu Z, Uddin KM, Kamra T, Schnadt J, Ye L. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1406-14. [PMID: 24444898 PMCID: PMC3963438 DOI: 10.1021/am405531n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/20/2014] [Indexed: 05/06/2023]
Abstract
Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins.
Collapse
Affiliation(s)
- Zhifeng Xu
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
- Key Laboratory of
Functional Organometallic Materials, College
of Hunan Province, Hengyang, Hunan 421008, China
| | | | - Tripta Kamra
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
| |
Collapse
|
29
|
Understanding and improving direct UV detection of monosaccharides and disaccharides in free solution capillary electrophoresis. Anal Chim Acta 2014; 809:183-93. [DOI: 10.1016/j.aca.2013.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022]
|
30
|
García-Cañas V, Simó C, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2013; 35:147-69. [DOI: 10.1002/elps.201300315] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/25/2022]
|
31
|
Tůma P, Šustková-Fišerová M, Opekar F, Pavlíček V, Málková K. Large-volume sample stacking for in vivo monitoring of trace levels of γ-aminobutyric acid, glycine and glutamate in microdialysates of periaqueductal gray matter by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 2013; 1303:94-9. [PMID: 23866123 DOI: 10.1016/j.chroma.2013.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/27/2022]
Abstract
A new variant of large-volume sample stacking injection (LVSS) was used in the capillary electrophoresis with capacitively coupled contactless conductivity detection (CE/C(4)D) determination of the neurotransmitters γ-aminobutyric acid (GABA), glycine (Gly) and glutamate (Glu) in microdialysates of periaqueductal gray matter (PAG). The separation capillary was filled to 98% from the injection side with a sample of microdialysate in acetonitrile. Simultaneously with turning on the separation voltage, the sample zone was forced out by the background electrolyte by increasing the pressure in the terminal capillary outlet vessel. As a consequence of the stacking effect, the analyte was concentrated from the large sample volume into a narrow zone at the sample/background electrolyte boundary close to the injection end of the capillary. Under these conditions, LOD values of 9, 10 and 15nM were determined in the model samples for GABA, Gly and Glu, respectively; RSD equalled 0.5% for the migration times and 1.0-1.9% for the peak areas, respectively. In analysis of microdialysates of PAG, LOD values of 29, 29 and 37nM were determined for GABA, Gly and Glu, respectively; RSD equalled 0.5-0.7% for the migration times and 2.6-8.2% for the peak areas, respectively. The determined basal levels of the neurotransmitters in PAG microdialysates are 0.08, 4.7 and 0.8μM for GABA, Gly and Glu, respectively. Carrageenan-induced hyperalgesia increases the Gly and Glu levels and reduces GABA in PAG microdialysate. Peroral administration of paracetamol in hyperalgesia effectively reduces the Gly value and has no effect on Glu and GABA.
Collapse
Affiliation(s)
- Petr Tůma
- Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | | | | | | | | |
Collapse
|
32
|
Majtan J, Bohova J, Horniackova M, Klaudiny J, Majtan V. Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytother Res 2013; 28:69-75. [PMID: 23494861 DOI: 10.1002/ptr.4957] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/04/2013] [Indexed: 01/21/2023]
Abstract
Biofilm growth and its persistence within wounds have recently been suggested as contributing factors to impaired healing. The goal of this study was to investigate the anti-biofilm effects of several honey samples of different botanical origin, including manuka honey against Proteus mirabilis and Enterobacter cloacae wound isolates. Quantification of biofilm formation was carried out using a microtiter plate assay. All honeys at a sub-inhibitory concentration of 10% (w/v) significantly reduced the biofilm development of both isolates. Similarly, at a concentration of 50% (w/v), each of the honeys caused significant partial detachment of Pr. mirabilis biofilm after 24 h. On the other hand, no honey was able to significantly detach Ent. cloacae biofilm. In addition, treatment of Ent. cloacae and Pr. mirabilis biofilms with all honeys resulted in a significant decrease in colony-forming units per well values in a range of 0.35-1.16 and 1.2-7.5 log units, respectively. Of the tested honeys, manuka honey possessed the most potent anti-biofilm properties. Furthermore, methylglyoxal, an antibacterial compound of manuka honey, was shown to be responsible for killing biofilm-embedded wound bacteria. These findings suggest that manuka honey could be used as a potential therapy for the treatment of wounds containing Pr. mirabilis or Ent. cloacae.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06, Bratislava, Slovakia; Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
33
|
Tůma P, Opekar F, Samcová E, Štulík K. The use of a multichannel capillary for electrophoretic separations of mixtures of clinically important substances with contactless conductivity and UV photometric detection. Electrophoresis 2013; 34:2058-64. [DOI: 10.1002/elps.201200498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Petr Tůma
- Institute of Biochemistry; Cell and Molecular Biology, Third Faculty of Medicine; Charles University in Prague; Prague; Czech Republic
| | - František Opekar
- Department of Analytical Chemistry, Faculty of Science; Charles University in Prague; Prague; Czech Republic
| | - Eva Samcová
- Institute of Biochemistry; Cell and Molecular Biology, Third Faculty of Medicine; Charles University in Prague; Prague; Czech Republic
| | - Karel Štulík
- Department of Analytical Chemistry, Faculty of Science; Charles University in Prague; Prague; Czech Republic
| |
Collapse
|
34
|
Offline and online capillary electrophoresis enzyme assays of β-N-acetylhexosaminidase. Anal Bioanal Chem 2013; 405:2425-34. [DOI: 10.1007/s00216-012-6607-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/02/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
35
|
Xu Z, Kuang D, Zhang F, Tang S, Deng P, Li J. Fluorogenic molecularly imprinted polymers with double recognition abilities synthesized via click chemistry. J Mater Chem B 2013; 1:1852-1859. [DOI: 10.1039/c3tb00584d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. Electrophoresis 2012; 34:55-69. [DOI: 10.1002/elps.201200358] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel; Switzerland
| |
Collapse
|
37
|
El-Attug MN, Adams E, Van Schepdael A. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C4D) for the analysis of amikacin and its related substances. Electrophoresis 2012; 33:2777-82. [DOI: 10.1002/elps.201100688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Erwin Adams
- Laboratory for Pharmaceutical Analysis; Faculteit Farmaceutische Wetenschappen; Katholieke Universiteit Leuven; Leuven; Belgium
| | - Ann Van Schepdael
- Laboratory for Pharmaceutical Analysis; Faculteit Farmaceutische Wetenschappen; Katholieke Universiteit Leuven; Leuven; Belgium
| |
Collapse
|
38
|
Xu Z, Uddin KMA, Ye L. Boronic Acid Terminated Thermo-Responsive and Fluorogenic Polymer: Controlling Polymer Architecture for Chemical Sensing and Affinity Separation. Macromolecules 2012. [DOI: 10.1021/ma301213f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhifeng Xu
- Division of Pure and Applied
Biochemistry, Lund University, Box 124,
221 00 Lund, Sweden
- Department
of Chemistry and
Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
- Key Laboratory of Functional
Organometallic Materials, College of Hunan Province, Hengyang, Hunan 421008, China
| | | | - Lei Ye
- Division of Pure and Applied
Biochemistry, Lund University, Box 124,
221 00 Lund, Sweden
| |
Collapse
|
39
|
Vochyánová B, Opekar F, Tůma P, Štulík K. Rapid determinations of saccharides in high-energy drinks by short-capillary electrophoresis with contactless conductivity detection. Anal Bioanal Chem 2012; 404:1549-54. [DOI: 10.1007/s00216-012-6242-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/06/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
|
40
|
Mark JJP, Scholz R, Matysik FM. Electrochemical methods in conjunction with capillary and microchip electrophoresis. J Chromatogr A 2012; 1267:45-64. [PMID: 22824222 DOI: 10.1016/j.chroma.2012.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023]
Abstract
Electromigrative techniques such as capillary and microchip electrophoresis (CE and MCE) are inherently associated with various electrochemical phenomena. The electrolytic processes occurring in the buffer reservoirs have to be considered for a proper design of miniaturized electrophoretic systems and a suitable selection of buffer composition. In addition, the control of the electroosmotic flow plays a crucial role for the optimization of CE/MCE separations. Electroanalytical methods have significant importance in the field of detection in conjunction with CE/MCE. At present, amperometric detection and contactless conductivity detection are the predominating electrochemical detection methods for CE/MCE. This paper reviews the most recent trends in the field of electrochemical detection coupled to CE/MCE. The emphasis is on methodical developments and new applications that have been published over the past five years. A rather new way for the implementation of electrochemical methods into CE systems is the concept of electrochemically assisted injection which involves the electrochemical conversions of analytes during the injection step. This approach is particularly attractive in hyphenation to mass spectrometry (MS) as it widens the range of CE-MS applications. An overview of recent developments of electrochemically assisted injection coupled to CE is presented.
Collapse
Affiliation(s)
- Jonas J P Mark
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
41
|
Terol A, Paredes E, Maestre SE, Prats S, Todolí JL. Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection. J Sep Sci 2012; 35:929-36. [DOI: 10.1002/jssc.201101072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amanda Terol
- Department of Analytical Chemistry; Nutrition and Food Science; University of Alicante; Alicante Spain
| | | | | | | | | |
Collapse
|
42
|
Elbashir AA, Aboul-Enein HY. Recent advances in applications of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C⁴D): an update. Biomed Chromatogr 2012; 26:990-1000. [PMID: 22430262 DOI: 10.1002/bmc.2729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/12/2012] [Indexed: 11/06/2022]
Abstract
Capillary electrophoresis with a capacitively contactless conductivity detector (CE-C⁴D) is becoming a significant useful technique for the analysis of analytes in various fields such as pharmaceutical, biomedical, food and environmental. This review is an update describing the recent developments in the application of CE with a C⁴D detector.
Collapse
|
43
|
Park JH, Choi IH, Park SJ, Lee MH, Song KS. A Correction Method for the Peak Tailing Backgrounds for Accurate Isotope Ratio Measurements of Uranium in Ultra Trace Levels using Thermal Ionization Mass Spectrometry. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.12.4327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|