1
|
Devi WS, Kaur R, Sharma A, Thakur S, Mehta SK, Raja V, Ataya FS. Non-enzymatic g-C 3N 4 supported CuO derived-biochar based electrochemical sensors for trace level detection of malathion. Biosens Bioelectron 2025; 267:116808. [PMID: 39326319 DOI: 10.1016/j.bios.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Malathion (MALA), a widely used insecticide, even at trace levels exhibits deleterious effects towards respiratory tracts, and nervous system, necessitating its detection. Herein, we have offered non-enzymatic trace level monitoring of MALA using g-C3N4 supported CuO-derived biochar. The present B-CuO/g-C3N4 based electrochemical sensor is synthesized using hydrothermal approach followed by calcination at high temperature. The result unveiled the strong interactions, high charge separation efficiency, significant porosity leading to excellent electrochemically active surface area 9.88 × 10-5 cm2 with least charge transfer resistance (RCT) value of 35.2 K Ω. The B-CuO/g-C3N4 based nanocomposite offered excellent complex formation ability with MALA and square wave anodic stripping voltametric method (SWASV) generates an enhanced electrochemical signal due to oxidation of MALA. Following all necessary optimizations, the sensor was capable to exhibit limit of detection (LOD) value of 1.2 pg mL-1 with R2 = 0.968. The modified biosensor offered its potential towards detection of MALA in apple and tomato samples with a recovery ranging from 87.64 to 120.59%. This novel B-CuO/g-C3N4 ternary nanocomposite provides non-enzymatic detection of MALA having excellent electrochemical properties and hence opens new pathways for exploring the use of biochar in other electrochemical applications.
Collapse
Affiliation(s)
- Waribam Stella Devi
- Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India
| | - Ranjeet Kaur
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Aashima Sharma
- Deparment of Chemistry, Panjab University, Sector-14, Chandigarh, India
| | - Sakshi Thakur
- Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India
| | - S K Mehta
- Deparment of Chemistry, Panjab University, Sector-14, Chandigarh, India.
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Li H, Lin Q, Zou R, Zhang M, Liu X, Ye H, Sun C, Yan X. A DNA tweezer-actuated nanozyme-enzyme hybrid nanoreactor for pesticide detection. Biosens Bioelectron 2024; 271:117064. [PMID: 39689579 DOI: 10.1016/j.bios.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The construction of a nanozyme-enzyme hybrid cascade system is an effective protocol to optimize the performance of biosensors. Yet, the integration has limitations due to the lack of harmonious collaboration between nanozyme and enzyme. Herein, we have constructed an efficient enzymatic cascade system by utilizing the base complementary pairing and the targeting capability of DNA tweezers to combine DNA-regulated copper nanoflowers (CuNFs) with acetylcholinesterase (AChE). The DNA tweezers were immobilized onto the CuNFs undergo regular base complementary pairing, and subsequently employed as aptamer to capture AChE gently, forming CuNFs-Apt-AChE cascade system. This system not only enhanced the spatial proximity of CuNFs and AChE to increase cascade catalytic activity, but also demonstrated excellent stability under harsh conditions. Harnessing the nanoarchitecture and characteristics, the CuNFs-Apt-AChE composites were embedded into the hydrogel to fabricate a sensitive biosensor for on-site detecting carbamate pesticides with a detection limit of 0.19 ng mL-1. The hydrogel sensor exhibited high specificity for carbamate pesticides and had been successfully applied in water and juice samples for pesticide detection with strong anti-interference ability. This method holds great potential for the on-site detection of pesticides, offering a new strategy for constructing nanozyme-enzyme cascade hybrid systems with accuracy and sensitivity.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Qiqi Lin
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Meng Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiqing Ye
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Berkal MA, Toulme JJ, Nardin C. Rapid and specific detection of thiabendazole: enzymatic digestion-enabled fluorescent aptasensor. Anal Bioanal Chem 2024; 416:3295-3303. [PMID: 38696128 DOI: 10.1007/s00216-024-05309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024]
Abstract
Thiabendazole, a widely used broad-spectrum fungicide in agriculture, poses risks to human health. To monitor its presence in water, we propose a fluorescent aptasensor utilizing Escherichia coli exonuclease I (Exo I). The findings demonstrate a linear correlation between thiabendazole concentrations and digestion percentage, with a detection limit (LOD) exceeding 1 µM and a determination coefficient (R2) of 0.959. This aptamer-based fluorescence spectroscopy detection system holds promise for a rapid, specific, and sensitive analysis of thiabendazole in environmental waters and food matrices.
Collapse
Affiliation(s)
| | | | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
4
|
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang XX, Huo P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. ENVIRONMENTAL RESEARCH 2024; 247:118002. [PMID: 38151147 DOI: 10.1016/j.envres.2023.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The amalgamation of nanostructures with modern electrochemical and optical techniques gave rise to interesting devices, so-called biosensors. A biosensor is an analytical tool that incorporates various biomolecules with an appropriate physicochemical transducer. Over the past few years, metal oxide nanomaterials (MONMs) have significantly stimulated biosensing research due to their desired functionalities, versatile chemical stability, and low cost along with their unique optical, catalytic, electrical, and adsorption properties that provide an attractive platform for linking the biomolecules, for example, antibodies, nucleic acids, enzymes, and receptor proteins as sensing elements with the transducer for the detection of signals or signal amplifications. The signals to be measured are in direct proportionate to the concentration of the bioanalyte. Because of their simplicity, cost-effectiveness, portability, quick analysis, higher sensitivity, and selectivity against a broad range of biosamples, MONMs-based electrochemical and optical biosensing platforms are exhaustively explored as powerful early-diagnosis tools for point of care applications. Herein, we made a bibliometric analysis of past twenty years (2004-2023) on the application of MONMs as electrochemical and optical biosensing units using Web of Science database and the results of which clearly reveal the increasing number of publications since 2004. Geographical area distribution analysis of these publications shows that China tops the list followed by the United States of America and India. In this review, we first describe the electrochemical and optical properties of MONMs that are crucial for the creation of extremely stable, specific, and sensitive sensors with desirable characteristics. Then, the biomedical applications of MONMs-based bare and hybrid electrochemical and optical biosensing frameworks are highlighted in the light of recent literature. Finally, current limitations and future challenges in the field of biosensing technology are addressed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China; School of Pharmacy, University College Cork, T12 K8AF, Cork, Ireland
| | - Ramachandran Rajan
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Kapil Upadhyaya
- Chemical Physiology & Biochemistry Department, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gautam Behl
- Eirgen Pharma Ltd., Westside Business Park, Waterford, Ireland
| | - Xin-Xin Xiang
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| |
Collapse
|
5
|
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem 2023; 415:5899-5924. [PMID: 37668672 DOI: 10.1007/s00216-023-04911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.
Collapse
Affiliation(s)
| | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
6
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
7
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
8
|
Sradha S A, George L, P K, Varghese A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review. Crit Rev Toxicol 2022; 52:431-448. [PMID: 36178423 DOI: 10.1080/10408444.2022.2122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chlorpyrifos (CP) is one of the most popular organophosphorus pesticides that is commonly used in agricultural and nonagricultural environments to combat pests. However, several concerns regarding contamination due to the unmitigated use of chlorpyrifos have come up over recent years. This has popularized research on various techniques for chlorpyrifos detection. Since conventional methods do not enable smooth detection, the recent trends of chlorpyrifos detection have shifted toward electrochemical and optical sensing techniques that offer higher sensitivity and selectivity. The objective of this review is to provide a brief overview of some of the important and innovative contributions in the field of electrochemical and optical sensing of chlorpyrifos with a primary focus on the comparative advantages and shortcomings of these techniques. This review paper will help to offer better perspectives for research in organophosphorus pesticide detection in the future.
Collapse
Affiliation(s)
- Athira Sradha S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Keerthana P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
9
|
Smartphone-assisted bioenzyme-nanozyme-chromogen all-in-one test strip with enhanced cascade signal amplification for convenient paraoxon sensing. Biosens Bioelectron 2022; 215:114583. [DOI: 10.1016/j.bios.2022.114583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
|
10
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Khoshsafar H, Karimian N, Nguyen TA, Fakhri H, Khanmohammadi A, Hajian A, Bagheri H. Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. CHEMOSPHERE 2022; 292:133440. [PMID: 34973245 DOI: 10.1016/j.chemosphere.2021.133440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work is to fabricate a sensitive and novel enzymeless electrochemical sensor for the simultaneous determination of parathion and paraoxon using the Nd-UiO-66@MWCNT nanocomposite. For this purpose, Neodymium (Nd) was introduced into a Universitetet i Oslo (UiO-66) structure to construct Nd-UiO-66 and then, adding multi-walled carbon nanotubes to the Nd-UiO-66 to increase the electrocatalytic activity and surface area of the obtained composite. The Nd-UiO-66@MWCNT has numerous advantages like excellent conductivity, tunable texture, and large surface area and can be used as a distinctive structure for the construction of modified glassy carbon electrode (GCE) to enhance the charge-transfer and the efficiency of electrochemical sensors. This modified electrode showed sensitive and selective determination of paraoxon and parathion over the linear ranges of 0.7-100 and 1-120 nM, with detection limits of 0.04 and 0.07 nM, respectively. The proposed Nd-UiO-66@MWCNT/GCE sensor in this study can be applied in environmental and toxicological laboratories and field tests to detect parathion and paraoxon levels.
Collapse
Affiliation(s)
- Hosein Khoshsafar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Nashmil Karimian
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Tien Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Ha Noi, Viet Nam
| | - Hanieh Fakhri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Akbar Khanmohammadi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Enhanced Nitrite Detection by a Carbon Screen Printed Electrode Modified with Photochemically-Made AuNPs. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Excessive nitrite amounts harm the environment and put public health at high risk. Therefore, accurate and sensitive detection of nitrite in surface and groundwater is mandatory for mitigating its adverse effects. Herein, a highly sensitive electrochemical sensor based on carbon screen-printed electrodes (CSPE) surface-modified with photochemically-made gold nanoparticles (AuNPs, ~12 nm) is proposed for nitrite detection. Scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy show that AuNPs uniformly coat the CSPE, increase its surface area, and contribute to oxidizing nitrite to much lower potential (+0.5 V vs. Ag/AgCl) and faster rate. Under optimized differential pulse voltammetry conditions, the CSPE/AuNPs-PEI electrode responds linearly (R2 > 0.99) to nitrite within a wide concentration range (0.01–4.0 µM), showing a sensitivity of 0.85 µA·µM−1·cm−2 and limit of detection as low as 2.5 nM. The CSPE/AuNPs-PEI electrode successfully detects nitrite in tap water and canned water of olives, showing no influence of those matrices. In addition, the electrode’s response is highly reproducible since a relative standard deviation lower than 10% is observed when the same electrode is operated in five consecutive measurements or when electrodes of different fabrication batches are evaluated.
Collapse
|
14
|
Gohain SB, Boruah PK, Das MR, Thakur AJ. Gold-coated iron oxide core–shell nanostructures for the oxidation of indoles and the synthesis of uracil-derived spirooxindoles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of isatins and uracil-based spirooxindoles catalysed by Au/Fe3O4 core–shell nanoparticles under mild conditions and low reaction times.
Collapse
Affiliation(s)
| | - Purna Kanta Boruah
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Manash Ranjan Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
15
|
Sun Q, Du J, Tian L, Wu J, Zhang X. Detection of organophosphorus pesticides: exploring oxime as a probe with improved sensitivity by CeO 2-modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4634-4641. [PMID: 34542114 DOI: 10.1039/d1ay01235e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, the catalytic activity of CeO2 NPs toward oxime oxidation was adopted for the first time to develop an electrochemical sensor with improved sensitivity toward the direct detection of organophosphorus pesticides (OPs) without electrochemical redox activity. To enhance the conductivity of the sensor, CeO2 NPs together with multi-walled carbon nanotubes (MWCNTs) were deposited onto a bare glassy carbon electrode (GCE) by the simple method of drop-casting. The electrochemical properties of the as-prepared sensor were evaluated in K3[Fe(CN)6] solution and the oxidation behavior of pralidoxime (PAM) chloride on the electrodes was characterized by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results show that the modification of CeO2 onto the electrode not only increases the electroactive area of the electrode but also significantly increases the peak current of PAM chloride oxidation, which confirms that CeO2 has an electrocatalytic effect toward oxime oxidation. To evaluate the sensitivity of the as-fabricated sensor, the inhibition rate of PAM chloride peak current was tested in PAM chloride solution containing different concentrations of chlorpyrifos, which shows a very small detection limit of 2.5 × 10-9 M. In addition, the sensor successfully achieved a convenient and sensitive determination of OPs in vegetable extracts.
Collapse
Affiliation(s)
- Qiu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jiyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Li Tian
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xuelin Zhang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
16
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
17
|
Singh AP, Balayan S, Gupta S, Jain U, Sarin R, Chauhan N. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Bakytkarim Y, Tursynbolat S, Huang J, Wang L. Free‐enzymatic Indirect Detection of Malathion by SiC@CuO‐NPs Composite Nanomaterial Modified Glassy Carbon Electrode. ChemistrySelect 2021. [DOI: 10.1002/slct.202100904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yrysgul Bakytkarim
- JCS«A.B.Bekturov Institute of chemical sciences» Almaty Republic of Kazakhstan
| | - Satar Tursynbolat
- School of Chemistry and Chemical Engineering South China University of Technology Guangdong Province P.R. China
| | - Jianzhi Huang
- School of Environment and Civil Engineering Dongguan University of Technology Dongguan Guangdong 523808 P.R.China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangdong Province P.R. China
| |
Collapse
|
20
|
Alnadari F, Xue Y, Almakas A, Mohedein A, Samie A, Abdel-Shafi M, Abdin M. Large batch production of Galactooligosaccharides using β-glucosidase immobilized on chitosan-functionalized magnetic nanoparticle. J Food Biochem 2020; 45:e13589. [PMID: 33368567 DOI: 10.1111/jfbc.13589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
β-glucosidase (BglA) immobilization from Thermotoga maritima on magnetic nanoparticles (MNPs) functionalized with chitosan (Cs) were efficiently investigated to improve lactose conversion and galactooligosaccharides (GOS) production. We used a batch method in order to improve the conversion of lactose to GOS. The efficiency and yield of immobilization were 79% and immobilized BglA was effectively recycled via a magnetic separation procedure through a batch-wise GOS with no activity lessening. Furthermore, analyses were done through screening kinetics of enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). Proposed methodology of immobilization shows a potential application as it is stable which was proved through many methods including pH, temperature, heat treatment, storage, and kinetics of the enzyme. GOS and residual enzyme activity showed to be 28.76 and 40.44%, respectively. However, free enzyme synthesis of GOS yield was just 24% after 12 hr. This study proposed applying magnet in the immobilization process of BglA on Cs-MNPs to produce GOS as new method for immobilizing enzyme in a biostable and cost-efficient way. PRACTICAL APPLICATIONS: This paper focus on immobilization of BglA from T. maritima onto MNPs functionalized with CS to investigate their further possibility improving lactose conversion and GOS production. Interestingly, a successful immobilization of Tm-BglA on the substrates were achieved in Cs-MNPs. The obtained results from enzyme activity, SDS-PAGE, FT-IR, and TEM showed that the high binding capacity of BglA to Cs-MNPs was successfully obtained. Furthermore, the binding efficiency calculation indicated that the immobilized BglA-Cs-MNPs conserved 40.44% of its native activity at the end of its 6th repeated use. In addition, magnetic separation technique was successfully employed for reuse of the immobilized BglA for repetitive batch-wise GOS without significant loss of activity.
Collapse
Affiliation(s)
- Fawze Alnadari
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P.R. China.,Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China.,Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Yemin Xue
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P.R. China
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Amani Mohedein
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Abdel Samie
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, Arish City, Egypt
| | - Mohamed Abdel-Shafi
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, Arish City, Egypt
| | - Mohamed Abdin
- Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China.,Agriculture Research Center, Food Technology Research Institute, Giza, Egypt
| |
Collapse
|
21
|
Hu H, Yang L. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:168-180. [PMID: 33284686 DOI: 10.1080/03601234.2020.1853460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The enzymatic electrochemical biosensor has the advantages of simple operation, speed, and integration in the detection of organophosphorus pesticide (OPs) residues. It has the potential to become the best alternative to the traditional OP detection technology. This article introduces the OP identification principle of different enzymes, the OP detection mechanism of several common sensors, and the enzyme assembly method. In addition, the article discusses application of nanomaterials in sensor preparation and sensor performance parameters in the past decade. The related content of early sensors is outside the scope of this article.
Collapse
Affiliation(s)
- Huaying Hu
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Lianqiao Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105522] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int J Biol Macromol 2020; 164:3943-3952. [DOI: 10.1016/j.ijbiomac.2020.08.215] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
|
24
|
Facile and Low-Cost SPE Modification Towards Ultra-Sensitive Organophosphorus and Carbamate Pesticide Detection in Olive Oil. Molecules 2020; 25:molecules25214988. [PMID: 33126549 PMCID: PMC7672650 DOI: 10.3390/molecules25214988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs’ surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor’s performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10−9 to 2.3 × 10−8 mol/L, with a limit of detection equal to 0.6 × 10−9 mol/L and chlorpyrifos in a linear range from 0.7 × 10−9 up to 1.4 × 10−8 mol/L and a limit of detection 0.4 × 10−9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.
Collapse
|
25
|
Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase. Food Chem 2020; 324:126889. [DOI: 10.1016/j.foodchem.2020.126889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
|
26
|
Jain U, Gupta S, Soni S, Khurana MP, Chauhan N. Triple-nanostructuring-based noninvasive electro-immune sensing of CagA toxin for Helicobacter pylori detection. Helicobacter 2020; 25:e12706. [PMID: 32468682 DOI: 10.1111/hel.12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Helicobacter pylori (H pylori) is gram-negative, spiral, and microaerophilic bacteria which can survive in ~2%-10% oxygen level. It was reported to populate in human gastric mucosa and leads to gastric cancer without any age or gender difference. MATERIALS AND METHODS In this study, we are targeting label-free electrochemical immunosensor development for rapid H pylori detection after covalently immobilizing the antibody (CagA) over the nanomaterials modified Au electrode. Titanium oxide nanoparticles (TiO2 NPs), carboxylated multi-walled carbon nanotubes (c-MWCNT), and conducting polymer polyindole carboxylic acid (Pin5COOH) composites (TiO2 NPs/c-MWCNT/Pin5COOH) were synthesized and further utilized in immunosensor development as an electrochemical interface onto Au electrode. The stepwise modifications of CagAantibody/TiO2 NPs/c-MWNCT/Pin5COOH/Au electrode were electrochemically studied. RESULTS Possessing the unique features of advanced materials, the proposed immunosensor reported low sensing limit of 0.1 ng/mL in dynamic linear range of 0.1-8.0 ng/mL with higher stability and reproducibility. Furthermore, developed sensor-based determination of H pylori in five human stool specimens has shown good results with suitable accuracy. CONCLUSIONS This work lays strong foundation toward developing nanotechnology-enabled electrochemical sensor for ultrasensitive and early detection of H pylori in noninvasively collected clinical samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Shaivya Gupta
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Shringika Soni
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Manish Punit Khurana
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
27
|
Hu H, Wang B, Li Y, Wang P, Yang L. Acetylcholinesterase Sensor with Patterned Structure for Detecting Organophosphorus Pesticides Based on Titanium Dioxide Sol‐gel Carrier. ELECTROANAL 2020. [DOI: 10.1002/elan.202060027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huaying Hu
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Bo Wang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Yiru Li
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Pengchang Wang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Lianqiao Yang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| |
Collapse
|
28
|
Affiliation(s)
- Mesut Işık
- Department of Pharmacy ServicesVocational School of Health ServicesHarran University Şanlıurfa 63300 Turkey
| |
Collapse
|
29
|
Dhull V. A Nafion/AChE-cSWCNT/MWCNT/Au-based amperometric biosensor for the determination of organophosphorous compounds. ENVIRONMENTAL TECHNOLOGY 2020; 41:566-576. [PMID: 30052145 DOI: 10.1080/09593330.2018.1505964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a biosensor was developed for the detection of organophosphorous compounds. Core electrode of a working electrode was obtained by depositing the paste of Gold nanoparticles and Multi-walled Carbon Nanotubes on a gold wire. The acetylcholinesterase enzyme was immobilized on carboxylated Single-walled Carbon Nanotubes and pasted onto a core of electrode followed by coating with a nafion layer to prevent enzyme leaching from the electrode. This electrode was further used as a working electrode in the sensor. This sensor worked on the AChE inhibition mechanism where the signal is inversely proportional to the amount of organophosphorous compounds. The electrocatalytic activity of this sensor was observed at a potential of +0.360 mV. The standardized conditions for this sensor were pH at 7.0, temperature at 30°C and response time at less than 10s. The linear working range of this biosensor was 0.1-130 µM with the lowest detection limit (LOD) of 1.9, 2.3, 2.2 and 2.5 nM for Methyl Parathion, Monocrotophos, Chlorpyrifos and Endosulfan, respectively. The biosensor showed excellent reusability (upto 55 times) and can be stored stably for 2 months.
Collapse
Affiliation(s)
- Vikas Dhull
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
30
|
Synergistic electrocatalytic activity of In2O3@FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form. Talanta 2020; 208:120362. [DOI: 10.1016/j.talanta.2019.120362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/25/2019] [Accepted: 09/14/2019] [Indexed: 11/22/2022]
|
31
|
Kulandaiswamy AJ, Sharma N, Nesakumar N, Kailasam K, Rayappan JBB. S,N‐GQDs Enzyme Mimicked Electrochemical Sensor to Detect the Hazardous Level of Monocrotophos in Water. ELECTROANAL 2019. [DOI: 10.1002/elan.201900447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Nidhi Sharma
- Institute of Nano Science and Technology Habitat Center, Phase 10 Mohali 160 062 India
| | - Noel Nesakumar
- Centre for Nano Technology and Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401, Tamil Nadu India
| | - Kamalakannan Kailasam
- Institute of Nano Science and Technology Habitat Center, Phase 10 Mohali 160 062 India
| | - John Bosco Balaguru Rayappan
- School of Electrical and Electronics Engineering SASTRA Deemed University Thanjavur 613 401, Tamil Nadu India
- Centre for Nano Technology and Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401, Tamil Nadu India
| |
Collapse
|
32
|
Li J, Zheng H, He Y, Chen B, Liu L, Ouyang Y, Zhu C, Zhou Y, Sun J, Hu Z, Wang B. Ultrasensitive Electrochemical Immunosensor Reveals the Existence of Silk Products on the Maritime Silk Road. ACS Sens 2019; 4:3203-3209. [PMID: 31773952 DOI: 10.1021/acssensors.9b01638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Maritime Silk Road was the major trade route between eastern and western civilizations in the Middle Ages. However, hardly any silk products have been found along the transoceanic trade route. Thus, the extrasensitive detection of silk relic traces has tremendous importance in research regarding the Maritime Silk Road. In this study, an electrochemical immunosensor based on a tailored monoclonal antibody and gold nanoparticles using the layer-by-layer self-assembly method was devised. The fabricated immunosensor demonstrated preeminent performance in the analysis of silk fibroin, with a linear detection range of 0.01-100 ng mL-1 and a detection limit of 3.8 pg mL-1. In particular, the performance of the immunosensor was excellent in the analysis of ancient silk samples, especially in the qualitative and quantitative detection of soil samples extracted from Nanhai No. 1 shipwreck archeological sites. The proposed electrochemical immunosensor proves the existence of silk products on the Maritime Silk Road and demonstrates enormous potential for studying the formation and development of the ancient transoceanic trading route.
Collapse
Affiliation(s)
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | | | | | | | | | | | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Jian Sun
- Conservation Center of Underwater Cultural Heritage, National Cultural Heritage Administration, Beijing 100192, China
| | | | | |
Collapse
|
33
|
Luo D, Chen H, Zhou P, Tao H, Wu Y. Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes. Anal Bioanal Chem 2019; 411:7857-7868. [PMID: 31705220 DOI: 10.1007/s00216-019-02185-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023]
Abstract
A novel colorimetric sensing platform based on the peroxidase activity of hemin regulated by oligonucleotide and pesticide was reported for the ultrasensitive and selective detection of isocarbophos. Oligonucleotides can accumulate on the surface of hemin in acid condition and temporarily inhibit its catalytic activity, which results in the loss of one electron of TMB molecule and produce the blue products. With the addition of isocarbophos, the pesticide molecules can interact with oligonucleotides to form some complexes, which relieve the inhibition of ssDNA to hemin and further enhance its catalytic activity. Thus, the TMB molecules are further oxidized to lose another electron and produce the yellow product in a few minutes, which has the characteristic absorption peak at 450 nm. The color change of the sensing system is related to the amount of isocarbophos, so this method can quickly discriminate whether the target pesticide exceeds the maximal residue limit just by naked eyes. To improve the performance of sensing platform, some important parameters like buffer condition and ssDNA have been investigated, and the peroxidase activity of hemin was further studied to verify the catalytic mechanism. The proposed sensing platform has a detection limit as low as 0.6 μg/L and displays good selectivity against other competitive pesticides. Moreover, the developed sensing platform also exhibits favorable accuracy and stability, indicating that it has potential applications in the detection of pesticide residues in agricultural products. Graphical abstract A novel colorimetric sensing platform based on oligonucleotides and pesticide regulation; the peroxidase catalytic activity of hemin was firstly reported for the ultrasensitive and selective detection of isocarbophos pesticide.
Collapse
Affiliation(s)
- Danqiu Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Huayun Chen
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Tao
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China. .,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Cuiping District, Yibin, 644007, Sichuan, China.
| |
Collapse
|
34
|
Acetylcholinesterase biosensors based on ionic liquid functionalized carbon nanotubes and horseradish peroxidase for monocrotophos determination. Bioprocess Biosyst Eng 2019; 43:293-301. [PMID: 31602490 DOI: 10.1007/s00449-019-02226-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 02/04/2023]
Abstract
Long-term and excessive use of monocrotophos (MPs) pesticide leads to an accumulation of MPs residues in agricultural products. Electrochemical biosensor technology was developed as a simple and efficient method for detecting MPs. However, commercial acetylcholinesterase (AChE) sensors are not applied in practical MPs detection due to poor stability and reliability. In this study, the advantages of functionalized carbon nanotubes (Cl/MWCNTs) and a bi-enzyme system (horseradish peroxidase (HRP)/AChE) were combined, a novel bi-enzyme electrode (Cl/MWCNTs/HRP/AChE/GCE) was constructed. Under optimal conditions, the bi-enzyme sensor had a wide detection range of 1.0 × 10-11 to 1.0 × 10-7 mol/L and low detection limit of 4.5 × 10-12 mol/L. The proposed AChE biosensor exhibited excellent stability and sensitivity for MPs determination and presented a promising tool for monitoring food safety.
Collapse
|
35
|
Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry. Int J Biol Macromol 2019; 137:895-903. [DOI: 10.1016/j.ijbiomac.2019.06.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
|
36
|
Rahman MM, Alam M, Alamry KA. Sensitive and selective m-tolyl hydrazine chemical sensor development based on CdO nanomaterial decorated multi-walled carbon nanotubes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
38
|
Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 2019; 200:218-227. [DOI: 10.1016/j.talanta.2019.03.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 01/12/2023]
|
39
|
What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review. Molecules 2019; 24:molecules24142659. [PMID: 31340442 PMCID: PMC6680408 DOI: 10.3390/molecules24142659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose—which is to efficiently determine pesticides—cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.
Collapse
|
40
|
Jia D, Ma D, Du X, An L. Highly Sensitive Detection of Malathion Based on FRET between Au/Fe
3
O
4
and Rhodamine B. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Di Jia
- College of Science, College of Chemical Engineering and Materials ScienceTianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Dongqing Ma
- College of Science, College of Chemical Engineering and Materials ScienceTianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Xiaodong Du
- College of Science, College of Chemical Engineering and Materials ScienceTianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Lijuan An
- College of Science, College of Chemical Engineering and Materials ScienceTianjin University of Science and Technology Tianjin 300457 P. R. China
| |
Collapse
|
41
|
Palanivelu J, Chidambaram R. Acetylcholinesterase with mesoporous silica: Covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J Cell Biochem 2019; 120:10777-10786. [DOI: 10.1002/jcb.28369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jeyanthi Palanivelu
- Department of Industrial Biotechnology School of Bio‐Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Ramalingam Chidambaram
- Department of Industrial Biotechnology School of Bio‐Sciences and Technology, Vellore Institute of Technology Vellore India
| |
Collapse
|
42
|
Bakytkarim Y, Tursynbolat S, Zeng Q, Huang J, Wang L. A Highly Sensitive Determination of Parathion Pesticide by Solid-Phase Extraction on a Silicon Carbide Nanoparticles Modified Electrode. ChemistrySelect 2018. [DOI: 10.1002/slct.201802161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yrysgul Bakytkarim
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangdong Province; P.R. China
| | - Satar Tursynbolat
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangdong Province; P.R. China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangdong Province; P.R. China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangdong Province; P.R. China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangdong Province; P.R. China
| |
Collapse
|
43
|
Zhou N, Yang L, Hu B, Song Y, He L, Chen W, Zhang Z, Liu Z, Lu S. Core–Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments. Anal Chem 2018; 90:13624-13631. [DOI: 10.1021/acs.analchem.8b03850] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University,No. 1, Jianshe East Road, Zhengzhou 450052, People’s Republic of China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Weizhe Chen
- The Center of Quality Supervision and Inspection of Xuchang, Xuchang 461000, People’s Republic of China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
44
|
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018; 116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
|
45
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
46
|
Soto D, Alzate M, Gallego J, Orozco J. Electroanalysis of an Iron@Graphene-Carbon Nanotube Hybrid Material. ELECTROANAL 2018. [DOI: 10.1002/elan.201800115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dayana Soto
- Max Planck Tandem Group in Nanobioengieneering; Universidad de Antioquia, Complejo Ruta N; Calle 67 N° 52-20 Medellín 050010 Colombia
| | - Manuela Alzate
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química; Universidad de Antioquia; Calle 70 N° 52-21 Medellin Colombia
| | - Jaime Gallego
- Química de Recursos Energéticos y Medio Ambiente, Instituto de Química; Universidad de Antioquia; Calle 70 N° 52-21 Medellin Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengieneering; Universidad de Antioquia, Complejo Ruta N; Calle 67 N° 52-20 Medellín 050010 Colombia
| |
Collapse
|
47
|
Xie Y, Yu Y, Lu L, Ma X, Gong L, Huang X, Liu G, Yu Y. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. BIOSENSORS-BASEL 2018; 8:bios8010016. [PMID: 29438301 PMCID: PMC5872064 DOI: 10.3390/bios8010016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L−1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L−1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L−1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit.
Collapse
|
49
|
Baião V, Tomé LI, Brett CM. Iron Oxide Nanoparticle and Multiwalled Carbon Nanotube Modified Glassy Carbon Electrodes. Application to Levodopa Detection. ELECTROANAL 2018. [DOI: 10.1002/elan.201700854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Vanessa Baião
- Department of Chemistry, Faculty of Sciences and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Luciana I.N. Tomé
- Department of Chemistry, Faculty of Sciences and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Christopher M.A. Brett
- Department of Chemistry, Faculty of Sciences and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| |
Collapse
|
50
|
Samsidar A, Siddiquee S, Shaarani SM. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|