1
|
Hu P, Wang D, Liu W, Wang D, Wang Y, Li Y, Zhang Y. High performance enrichment and analysis of fluoroquinolones residues in environmental water using cobalt ion mediated paper-based molecularly imprinted polymer chips. Anal Chim Acta 2024; 1320:342999. [PMID: 39142779 DOI: 10.1016/j.aca.2024.342999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Fluoroquinolones (FQs) are widely used for their excellent antimicrobial properties, yet their release into aquatic environments pose risks to ecosystems and public health. The accurate monitoring and analysis of FQs present challenges due to their low concentrations and the complex matrices found in actual environmental samples. To address the need for auto-pretreatment and on-line instrumental analysis, developing new microextraction materials and protocols is crucial. Such advancements will provide better analytical assurance for the effective extraction and determination of FQs at trace levels, which is of great significance to environmental protection and human health. RESULTS In this work, we presented a Co2+ mediated paper-based molecularly imprinted polymer chip (CMC@Co-MIP), combined with UPLC analysis, to develop an effective analytical method for identifying and quantifying trace amounts of ciprofloxacin (CIP) and enrofloxacin (ENR) in water samples. Notably, the addition of Co2+ in CMC@Co-MIP helped to capture the template molecule CIP through coordination before imprinting, which significantly improved the ordering of the imprinted cavities. CMC@Co-MIP exhibited a maximum adsorption capacity up to 500.20 mg g-1 with an imprinting factor of 4.12, surpassing previous reports by a significant margin. Furthermore, the enrichment mechanism was extensively analyzed by various characterization techniques. The developed method showed excellent repeatability and reproducibility (RSD < 13.0 %) with detection limits ranging from 0.15 to 0.21 μg L-1 and recoveries ranging from 64.9 % to 102.3 % in real spiked water samples. SIGNIFICANCE We developed a novel microextraction paper-based chip based on Co2+ mediation, which effectively improved the selectivity and convenience of extracting FQs. This breakthrough allowed the chip to have a high enrichment efficiency as well as provide a robust on-line instrumental program. It also confirms that the imprinting scheme based on metal ion coordination is a high-performance strategy.
Collapse
Affiliation(s)
- Peipei Hu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Donghui Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Dingnan Wang
- Institute of Zhejiang Aquatic Product Technology, Hangzhou 310000, China
| | - Yang Wang
- Institute of Zhejiang Aquatic Product Technology, Hangzhou 310000, China
| | - Yang Li
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiming Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Golmohammadpour M, Ayazi Z, Mohammad-Rezaei R. Fabrication of MXene/chitosan/polyurea nanocomposite decorated on a graphenized substrate for electro-enhanced solid-phase microextraction of diclofenac followed by its determination using differential pulse voltammetry. Mikrochim Acta 2024; 191:315. [PMID: 38720091 DOI: 10.1007/s00604-024-06379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
A novel solid-phase microextraction fiber based on MXene-chitosan-polyurea (MXene/CS/EPPU) nanocomposite decorated on a graphenized pencil lead fiber (MXene/CS/EPPU/GPLF) was prepared and utilized for electro-enhanced solid-phase microextraction (EE-SPME) of diclofenac (DCF) in biological samples. After extraction and desorption of DCF, it was determined by differential pulse voltammetry (DPV). For this purpose, the working electrode was prepared by deposition of the mentioned MXene/CS/EPPU nanocomposite onto the graphenized pencil lead. The synthesized SPME fiber was characterized using scanning electron microscopy and X-ray diffraction techniques. The effect of various parameters influencing the extraction and the desorption process were investigated, including applied voltage in the extraction and desorption steps, extraction and desorption times, and pH. The developed method exhibited a rather wide linearity in the range 2-1200 ng mL-1 (R2 = 0.985) for the determination of DCF in plasma samples. The limit of detection and the limit of quantification for plasma samples were estimated to be 0.58 and 1.9 ng mL-1 based on the 3Sb/m and 10Sb/m definitions, respectively. The method's accuracy and applicability have been evaluated by the analysis of plasma samples, leading to the relative recoveries in the range 87.0% and 98.0% with the relative standard deviations lower than 3.1%.
Collapse
Affiliation(s)
- Mahdi Golmohammadpour
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran
| | - Zahra Ayazi
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran.
| | - Rahim Mohammad-Rezaei
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran.
| |
Collapse
|
3
|
Nejabati F, Ebrahimzadeh H. A novel sorbent based on electrospun for electrically-assisted solid phase microextraction of six non-steroid anti-inflammatory drugs, followed by quantitation with HPLC-UV in human plasma samples. Anal Chim Acta 2024; 1287:341839. [PMID: 38182332 DOI: 10.1016/j.aca.2023.341839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Although NSAIDs possess notable therapeutic and pharmaceutical qualities, it's essential to acknowledge that excessive doses can result in toxicity within the human body. Moreover, the importance lies in identifying and measuring their trace amounts. Due to their existence within intricate matrices, the creation of novel electrospun nanofibers as sorbents for electrically-assisted solidphase microextraction (EA-SPME) becomes vital. This innovation caters to the requirement for the effective pre-treatment of NSAID samples, providing a strategic approach to managing the complexities associated with trace quantities found in various matrices. RESULTS First, polyvinylalcohol/casein/tannic acid/polyaniline/titanium dioxide nanoparticles (PVA/CAS/TA/PANI/TiO2 NPs) electrospun nanofibers were prepared for EA-SPME on pewter rode and then, trace amounts of six NSAIDs (Acetaminophen, Caffeine, Naproxen, Celecoxib, Ibuprofen and mefenamic acid) were adsorbed chemically on these nanofibers. In the next step, the desorption of six NSAIDs was electrochemically done from prepared electrospun nanofibers on a pewter rod which was as working electrode at three electrodes system. Finally, these drugs were quantified from different human plasma samples with HPLC-UV. The synthesis of electrospun nanofibers was confirmed through a series of analytical techniques including field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy with elemental mapping analysis (EDX-Mapping), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR). The optimal percentage of additive compounds to PVA/CAS for electrospinning, as well as the factors influencing adsorption and desorption processes, were determined through both of Design Expert software and MATLAB programming language. SIGNIFICANCE Under optimum conditions, the wide linear range was 27-8000 ng mL-1 with R2≥ 0.9897, low detection limits were ranged from 8 to 27.3 ng mL-1 based on S/N = 3 and significant enrichment factors were acquired. The intra-day and inter-day RSDs% were obtained within the 4.51% - 5.68% and 4.28%-5.45%, respectively. Finally, The effectiveness of the EA-SPME-HPLC-UV method was assessed for determining NSAIDs in plasma samples, demonstrating good recoveries ranging from 90.2% to 105.2%.
Collapse
Affiliation(s)
- Fatemeh Nejabati
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
Chen H, Wang J, Zhang W, Guo Y, Ding Q, Zhang L. In Situ Rapid Electrochemical Fabrication of Porphyrin-Based Covalent Organic Frameworks: Novel Fibers for Electro-Enhanced Solid-Phase Microextraction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12453-12461. [PMID: 36826831 DOI: 10.1021/acsami.3c00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electro-enhanced solid-phase microextraction (EE-SPME) is a bright separation and enrichment technique that integrates solid-phase microextraction with the electric field. It retains the excellent extraction performance of SPME technology while having the advantages of efficient driving of electric field and special interaction between the electric field and electrons in the molecules of material structure. Replacing conventional SPME fibers with highly efficient and highly conductive original EE-SPME fibers is critical for the practical applications of these technologies. Here, a novel fiber preparation strategy was proposed to obtain a highly conductive porphyrin-based covalent organic framework (POR-COF) by one-step electropolymerization. Benefiting from the excellent semiconducting properties of porphyrin groups, the POR-COF can be spontaneously polymerized on the fiber surface under an appropriate voltage within a few hours. Its performance was evaluated by the EE-SPME of phthalate esters (PAEs) from food and environmental samples, followed by gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS) technology. The results showed that the POR-COF fiber has been successfully used for the detection of trace PAEs in beverages, industrial wastewater, lake water, and oyster samples with high adsorption selectivity and satisfactory sensitivity. The remarkable extraction properties are mainly attributed to the synergistic effect from material characteristics and electrical parameters' control in the extraction process. The presented strategy for the controlled design and synthesis of highly conductive porphyrin-based covalent organic framework fibers offers prospects in developing EE-SPME technologies.
Collapse
Affiliation(s)
- Hui Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian 350108, China
| | - Yuheng Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
5
|
Jyoti, Rybakiewicz-Sekita R, Żołek T, Maciejewska D, Gilant E, Buś-Kwaśnik K, Kutner A, Noworyta KR, Kutner W. Cilostazol-imprinted polymer film-coated electrode as an electrochemical chemosensor for selective determination of cilostazol and its active primary metabolite. J Mater Chem B 2022; 10:6707-6715. [PMID: 34927660 DOI: 10.1039/d1tb02186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An electrochemical chemosensor for cilostazol (CIL) determination was devised, engineered, and tested. For that, a unique conducting film of the functionalized thiophene-appended carbazole-based polymer, molecularly imprinted with cilostazol (MIP-CIL), was potentiodynamically deposited on a Pt disk electrode by oxidative electropolymerization. Thanks to electro-oxidation potentials lower than that of CIL, the carbazole monomers outperformed pyrrole, thiophene, and phenol monomers, in this electropolymerization. The pre-polymerization complexes quantum-mechanical and molecular dynamics analysis allowed selecting the most appropriate monomer from the three thiophene-appended carbazoles examined. The electrode was then used as a selective CIL chemosensor in the linear dynamic concentration range of 50 to 924 nM with a high apparent imprinting factor, IF = 10.6. The MIP-CIL responded similarly to CIL and CIL's pharmacologically active primary metabolite, 3,4-dehydrocilostazol (dhCIL), thus proving suitable for their determination together. Simulated models of the MIP cavities binding of the CIL, dhCIL, and interferences' molecules allowed predicting chemosensor selectivity. The MIP film sorption of CIL and dhCIL was examined using DPV by peak current data fitting with the Langmuir (L), Freundlich (F), and Langmuir-Freundlich (LF) isotherms. The LF isotherm best described this sorption with the sorption equilibrium constant (KLF) for CIL and dhCIL of 12.75 × 10-6 and 0.23 × 10-6 M, respectively. Moreover, the chemosensor cross-reactivity to common interferences study resulted in the selectivity to cholesterol and dehydroaripiprazole of 1.52 and 8.0, respectively. The chemosensor proved helpful in determining CIL and dhCIL in spiked human plasma with appreciable recovery (99.3-134.1%) and limit of detection (15 nM).
Collapse
Affiliation(s)
- Jyoti
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Renata Rybakiewicz-Sekita
- Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.,Laboratory of Organic Electronics, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Edyta Gilant
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Katarzyna Buś-Kwaśnik
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
6
|
Rebolledo-Perales L, Ibarra I, Guzman MF, Guerrero GI, Álvarez Romero GA. A novel ion-imprinted polymer based on pyrrole as functional monomer for the voltammetric determination of Hg(II) in water samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hu Y, Zhu Q, Wang Y, Liao C, Jiang G. A short review of human exposure to antibiotics based on urinary biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154775. [PMID: 35339554 DOI: 10.1016/j.scitotenv.2022.154775] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics play a role in preventing and treating infectious diseases and also contribute to other health risks for humans. With the overuse of antibiotics, they are widely distributed in the environment. Long-term exposure to multiple antibiotics may occur in humans through medication and dietary intake. Therefore, it is critical to estimate daily intake and health risk of antibiotics based on urinary biomonitoring. This review compares the strengths and weaknesses of current analytical methods to determine antibiotics in urine samples, discusses the urinary concentration profiles and hazard quotients of individual antibiotics, and overviews correlations of antibiotic exposure with the risk of diseases. Liquid chromatography-tandem mass spectrometry is most applied to simultaneously determine multiple types of antibiotics at trace levels. Solid-phase extraction with a hydrophilic-lipophilic balance adsorbent is commonly used to extract antibiotics in urine samples. Fifteen major antibiotics with relatively higher detection frequencies and concentrations include sulfaclozine, trimethoprim, erythromycin, azithromycin, penicillin V, amoxicillin, oxytetracycline, chlortetracycline, tetracycline, doxycycline, ofloxacin, enrofloxacin, ciprofloxacin, norfloxacin, and florfenicol. Humans can be easily at microbiological effect-based risk induced by florfenicol, ciprofloxacin, azithromycin, and amoxicillin. Positive associations were observed between specific antibiotic exposure and obesity, allergic diseases, and mental disorders. Overall, the accessible, automated, and environmentally friendly methods are prospected for simultaneous determinations of antibiotics at trace level in urine. To estimate human exposure to antibiotics more accurately, knowledge gaps need to be filled up, including the transformation between parent and metabolic antibiotics, urinary excretion proportions of antibiotics at low-dose exposure and pharmacokinetic data of antibiotics in humans, and the repeated sampling over a long period in future research is needed. Longitudinal studies about antibiotic exposure and the risk of diseases in different developmental windows as well as in-depth research on the pathogenic mechanism of long-term, low-dose, and joint antibiotic exposure are warranted.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jafari M, Ghalehsefidi MJ, Habibi S. Application of numerical simulation to solid phase-microextraction for decreasing of extraction time of Pyrene and Phthalate esters on solid coatings. J Chromatogr A 2022; 1673:463113. [DOI: 10.1016/j.chroma.2022.463113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
|
9
|
Wei L, Wang D, Sun J, Wang X, Shen Y, Di H. Determination of Ten Long-Chain Fatty Acids in Poppy-Seed Oil Using Electro-Enhanced Solid-Phase Microextraction-GC/MS. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02301-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Fritz PA, Boom RM, Schroën C. Electrochemically driven adsorptive separation techniques: From ions to proteins and cells in liquid streams. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. J Pharm Biomed Anal 2021; 208:114447. [PMID: 34740088 DOI: 10.1016/j.jpba.2021.114447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
In recent years, fluoroquinolones have been found present in important water resources and food sources which compromises the food quality and availability, thereby, causing risks to the consumer. Despite the recent advancement in the development of analytical instrumentation for routine monitoring of fluoroquinolones in water, food, and biological samples, sample pre-treatment is still a major bottleneck of the analytical methods. Therefore, fast, selective, sensitive, and cost-effective sample preparation methods prior to instrumental analysis for fluoroquinolones residues in environmental, food and biological samples are increasingly important. Solid-phase extraction using different adsorbents is one of the most widely used pre-concentration/clean-up techniques for analysis of fluoroquinolones. Molecularly imprinted polymers (MIPs) serve as excellent effective adsorbent materials for selective extraction, separation, clean-up and preconcentration of various pollutants in different complex matrices. Therefore, synthesis of MIPs remains crucial for their applications in sample preparation as this offers much-needed selectivity in the extraction of compounds in complex samples. In this study, the progress made in the synthesis of MIPs for fluoroquinolones and their applications in water, food and biological samples were reviewed. The present review discusses the selection of all the elements of molecular imprinting for fluoroquinolones, polymerization processes and molecular recognition mechanisms. In conclusion, the related challenges and gaps are given to offer ideas for future research focussing on MIPs for fluoroquinolones.
Collapse
|
12
|
Derivation of carbonaceous nanoparticles from glucose-modified nickel-titanium oxide nanoparticles grown on Nitinol fiber for solid phase microextraction of several polycyclic aromatic hydrocarbons in water samples. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2020.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Pang YH, Huang YY, Shen XF, Wang YY. Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal Chim Acta 2021; 1142:99-107. [PMID: 33280708 DOI: 10.1016/j.aca.2020.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
In this work, electro-enhanced solid-phase microextraction (EE-SPME) and covalent organic framework (COF) were adopted to improve the extraction efficiency. A conductive COF synthesized of 2,6-diaminoanthraquinone (DQ) and 1,3,5-triformylphloroglucinol (TP) was in situ bonded to the stainless steel wire via facile solution-phase approach and used as the EE-SPME fiber coating to preconcentrate a typical endocrine disruptor bisphenol A (BPA). Compared with conventional SPME, the DQTP bonded fiber coupled with EE-SPME device exhibited higher extraction efficiency and achieved extraction equilibrium within 10 min. The proposed approach based on EE-SPME and gas chromatography coupled with flame ionization detector gave a linear range of 0.05-10 μg mL-1 and detection limit of 3 μg L-1 (S/N = 3) with good precision (<6.7%) and reproducibility (<7.1%) spiked with 0.1, 0.5, 1.0 μg mL-1 BPA. Quantitative determination of BPA in extracts of food packagings (mineral water bottles, milk boxes and milk tea cups) was achieved with recoveries from 88.6 to 118.0%.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Turiel Trujillo E, Díaz-Álvarez M. Preparation of Monolithic Fibers in Fused Silica Capillary Molds for Molecularly Imprinted Solid-Phase Microextraction. Methods Mol Biol 2021; 2359:153-162. [PMID: 34410667 DOI: 10.1007/978-1-0716-1629-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the last three decades, the use of molecularly imprinted polymers (MIPs) in sample preparation has continuously increased due to the high selectivity that they provide to this critical step. Of particular interest is the combination of molecular imprinting polymers and solid-phase microextraction (SPME) that allows the development of rapid and environmental friendly analytical methods, with high sensitivity and selectivity. The protocol herein presented describes a very simple strategy for the direct preparation of monolithic MIPs using silica capillaries as molds by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate in the presence of propazine as template. The main factors affecting the polymer synthesis (e.g., porogen, monomer, cross-linker, polymerization mixture proportions, polymerization time, and fiber thickness) are described in detail. The proposed strategy is easy to perform in any laboratory without special equipment and allows precise control of the fiber thickness, overcoming this very common drawback in MIP-based fiber preparation.
Collapse
Affiliation(s)
- Esther Turiel Trujillo
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Myriam Díaz-Álvarez
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
15
|
Klongklaew P, Kanatharana P, Bunkoed O. Development of doubly porous composite adsorbent for the extraction of fluoroquinolones from food samples. Food Chem 2020; 309:125685. [DOI: 10.1016/j.foodchem.2019.125685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/01/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
|
16
|
Xiang X, Wang Y, Zhang X, Huang M, Li X, Pan S. Multifiber solid‐phase microextraction using different molecularly imprinted coatings for simultaneous selective extraction and sensitive determination of organophosphorus pesticides. J Sep Sci 2020; 43:756-765. [DOI: 10.1002/jssc.201900994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaozhe Xiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Yulong Wang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Xiaowei Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Mingquan Huang
- China Light Industry Key Laboratory of Liquor Quality and SafetyBeijing Technology and Business University Beijing P. R. China
| | - Xiujuan Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| |
Collapse
|
17
|
Ren S, Wang Y, Cui Y, Wang Y, Wang X, Chen J, Tan F. Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113394. [PMID: 31662246 DOI: 10.1016/j.envpol.2019.113394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10-6 s-1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- Anshan Normal College, Department of Chemistry & Life Science, Anshan 114005, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal Chim Acta 2019; 1080:84-94. [DOI: 10.1016/j.aca.2019.06.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022]
|
19
|
|
20
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
21
|
Heidari N, Ghiasvand A. A review on magnetic field-assisted solid-phase microextraction techniques. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1668804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nahid Heidari
- Department of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Lorestan University, Khorramabad, Iran
- School of Natural Sciences, Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Hobart, Australia
| |
Collapse
|
22
|
Turiel E, Martín-Esteban A. Molecularly imprinted polymers-based microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Yu H, Wang Z, Wu R, Chen X, Chan TWD. Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J Chromatogr A 2019; 1601:27-34. [DOI: 10.1016/j.chroma.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
|
24
|
Yu H, Jia Y, Wu R, Chen X, Chan TWD. Determination of fluoroquinolones in food samples by magnetic solid-phase extraction based on a magnetic molecular sieve nanocomposite prior to high-performance liquid chromatography and tandem mass spectrometry. Anal Bioanal Chem 2019; 411:2817-2826. [PMID: 30941481 DOI: 10.1007/s00216-019-01726-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/27/2023]
Abstract
In this study, a magnetic molecular sieve material (Fe3O4@MCM-48) was synthesized by a combination of solvothermal and self-assembly methods. The physicochemical properties of the magnetic molecular sieve material were characterized by scanning electron microscopy, energy-dispersive spectroscopy, magnetic hysteresis loop measurements, transmission electron microscopy, powder X-ray diffraction, N2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The as-synthesized nanocomposite showed various advantages, including easy magnetic-assisted separation, high specific surface area, and a highly interwoven and branched mesoporous structure. The Fe3O4@MCM-48 nanocomposite was then used as an effective adsorbent material for magnetic solid-phase extraction of fluoroquinolones (FQs) from water samples. The FQs in the extract were determined via liquid chromatography-tandem mass spectrometry. Adsorption and desorption factors that affected the extraction performance were systematically optimized using spiked purified water samples. Good linearity (with R2 > 0.99) was shown by this FQ detection system for FQ concentrations from 5 to 1000 ng L-1. Moreover, low detection limits (0.7-6.0 ng L-1) and quantitation limits (2.5-20.0 ng L-1) and satisfactory repeatability (relative standard deviation < 10%, n = 6) were achieved for water samples. The developed method was also validated for the analysis of FQs in meat and milk samples. Finally, FQs in food and drinking water samples were successfully determined using the developed method. Graphical abstract.
Collapse
Affiliation(s)
- Hao Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Yuqian Jia
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, HKSAR, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China. .,Department of Chemistry, The Chinese University of Hong Kong, New Territories, HKSAR, China.
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, HKSAR, China.
| |
Collapse
|
25
|
Lu W, Liu J, Li J, Wang X, Lv M, Cui R, Chen L. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019; 144:1292-1302. [DOI: 10.1039/c8an02133c] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dual-template molecularly imprinted polymers were synthesized using norfloxacin and enrofloxacin as templates by precipitation polymerization with a multi-template imprinting strategy.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Light Industry Science and Technology
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jie Liu
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Rong Cui
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
26
|
Zhang J, Wen CY, Li Q, Meteku BE, Zhao R, Cui B, Li X, Zeng J. Electro-enhanced solid-phase microextraction of bisphenol A from thermal papers using a three-dimensional graphene coated fiber. J Chromatogr A 2019; 1585:27-33. [DOI: 10.1016/j.chroma.2018.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
|
27
|
Lashgari M, Yamini Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019; 191:283-306. [DOI: 10.1016/j.talanta.2018.08.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
28
|
Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres. J Chromatogr A 2018; 1579:1-8. [DOI: 10.1016/j.chroma.2018.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/20/2022]
|
29
|
Hashemi B, Zohrabi P, Shamsipur M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018; 187:337-347. [DOI: 10.1016/j.talanta.2018.05.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
|
30
|
Ma JK, Huang XC, Wei SL. Preparation and application of chlorpyrifos molecularly imprinted solid-phase microextraction probes for the residual determination of organophosphorous pesticides in fresh and dry foods. J Sep Sci 2018; 41:3152-3162. [PMID: 29878613 DOI: 10.1002/jssc.201800385] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
A solid-phase microextraction probe was prepared on the surface of a stainless-steel wire through molecular sol-gel imprinting technology using chlorpyrifos as a template molecule, tetraethoxysilane as a sol-gel precursor, and acrylamide and β-cyclodextrin as functional monomers. The polymer was characterized by infrared spectrometry and scanning electron microscopy. Moreover, the selectivity and the parameters including the type and volume of the extraction solvents, ionic strength, pH, temperature, extraction time, stirring speed, and desorption time affecting extraction performance were evaluated. Under the optimum solid-phase microextraction and gas chromatography conditions, the linear ranges were 0.25-25.0 μg/L for chlorpyrifos, quinalphos, triazophos, pirimiphos-methyl, and chlorpyrifos-methyl with the correlation coefficient above 0.99. The detection limits (S/N = 3) were in the range of 0.02-0.07 μg/L and the RSDs were <7.3%. The developed method was successfully used to determine the multi-residues of chlorpyrifos, quinalphos, triazophos, pirimiphos-methyl, and chlorpyrifos-methyl in green peppers and cinnamon with satisfactory recoveries.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| | - Shou-Lian Wei
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| |
Collapse
|
31
|
Ji S, Li T, Yang W, Shu C, Li D, Wang Y, Ding L. A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS. Mikrochim Acta 2018; 185:203. [DOI: 10.1007/s00604-018-2728-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
|
32
|
Qiu J, Wang F, Zhang T, Chen L, Liu Y, Zhu F, Ouyang G. Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:145-151. [PMID: 29199421 DOI: 10.1021/acs.est.7b04883] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Decreasing the tedious sample preparation duration is one of the most important concerns for the environmental analytical chemistry especially for in vivo experiments. However, due to the slow mass diffusion paths for most of the conventional methods, ultrafast in vivo sampling remains challenging. Herein, for the first time, we report an ultrafast in vivo solid-phase microextraction (SPME) device based on electrosorption enhancement and a novel custom-made CNT@PPY@pNE fiber for in vivo sampling of ionized acidic pharmaceuticals in fish. This sampling device exhibited an excellent robustness, reproducibility, matrix effect-resistant capacity, and quantitative ability. Importantly, the extraction kinetics of the targeted ionized pharmaceuticals were significantly accelerated using the device, which significantly improved the sensitivity of the SPME in vivo sampling method (limits of detection ranged from 0.12 ng·g-1 to 0.25 ng·g-1) and shorten the sampling time (only 1 min). The proposed approach was successfully applied to monitor the concentrations of ionized pharmaceuticals in living fish, which demonstrated that the device and fiber were suitable for ultrafast in vivo sampling and continuous monitoring. In addition, the bioconcentration factor (BCF) values of the pharmaceuticals were derived in tilapia (Oreochromis mossambicus) for the first time, based on the data of ultrafast in vivo sampling. Therefore, we developed and validated an effective and ultrafast SPME sampling device for in vivo sampling of ionized analytes in living organisms and this state-of-the-art method provides an alternative technique for future in vivo studies.
Collapse
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Tianlang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Le Chen
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yuan Liu
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| |
Collapse
|
33
|
do Nascimento TA, Dutra FVA, Pires BC, Borges KB. Efficient removal of anti-inflammatory phenylbutazone from an aqueous solution employing a composite material based on poly(aniline-co-pyrrole)/multi-walled carbon nanotubes. NEW J CHEM 2018. [DOI: 10.1039/c8nj00861b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(Ani-co-Py)/MWCNT was synthesized by chemical oxidation in a triple-phase interface system and presented a high capacity for the removal of PBZ from wastewater.
Collapse
Affiliation(s)
| | | | - Bruna Carneiro Pires
- Departamento de Ciências Naturais
- Universidade Federal de São João del-Rei
- São João del-Rei
- Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais
- Universidade Federal de São João del-Rei
- São João del-Rei
- Brazil
| |
Collapse
|
34
|
Internal Extractive Electrospray Ionization Mass Spectrometry for Quantitative Determination of Fluoroquinolones Captured by Magnetic Molecularly Imprinted Polymers from Raw Milk. Sci Rep 2017; 7:14714. [PMID: 29116200 PMCID: PMC5676746 DOI: 10.1038/s41598-017-15202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Antibiotics contamination in food products is of increasing concern due to their potential threat on human health. Herein solid-phase extraction based on magnetic molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry (MMIPs-SPE-iEESI-MS) was designed for the quantitative analysis of trace fluoroquinolones (FQs) in raw milk samples. FQs in the raw milk sample (2 mL) were selectively captured by the easily-lab-made magnetic molecularly imprinted polymers (MMIPs), and then directly eluted by 100 µL electrospraying solvent biased with +3.0 kV to produce protonated FQs ions for mass spectrometric characterization. Satisfactory analytical performance was obtained in the quantitative analysis of three kinds of FQs (i.e., norfloxacin, enoxacin, and fleroxacin). For all the samples tested, the established method showed a low limit of detection (LOD ≤ 0.03 µg L−1) and a high analysis speed (≤4 min per sample). The analytical performance for real sample analysis was validated by a nationally standardized protocol using LC-MS, resulting in acceptable relative error values from −5.8% to +6.9% for 6 tested samples. Our results demonstrate that MMIPs-SPE-iEESI-MS is a new strategy for the quantitative analysis of FQs in complex biological mixtures such as raw milk, showing promising applications in food safety control and biofluid sample analysis.
Collapse
|
35
|
Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia 2017. [DOI: 10.1007/s10337-017-3422-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
A high area, porous and resistant platinized stainless steel fiber coated by nanostructured polypyrrole for direct HS-SPME of nicotine in biological samples prior to GC-FID quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:5-10. [DOI: 10.1016/j.jchromb.2017.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/30/2022]
|
37
|
Alencar LM, de Oliveira LH, Backes R, Rosa TM, de Oliveira PR, da Silva RAB, Trindade MAG. Liquid-liquid Extraction Coupled to Batch Injection Analysis for Electroanalysis of Levofloxacin at Low Concentration Level. ELECTROANAL 2017. [DOI: 10.1002/elan.201700364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Letícia Machado Alencar
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; Rodovia Dourados-Itahum, km 12 Dourados-MS Brazil
| | - Luiz Henrique de Oliveira
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; Rodovia Dourados-Itahum, km 12 Dourados-MS Brazil
| | - Rafael Backes
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; Rodovia Dourados-Itahum, km 12 Dourados-MS Brazil
| | - Tamires Macedo Rosa
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; Rodovia Dourados-Itahum, km 12 Dourados-MS Brazil
| | - Paulo Roberto de Oliveira
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; Rodovia Dourados-Itahum, km 12 Dourados-MS Brazil
| | | | | |
Collapse
|
38
|
Li Z, Qi M, Tu C, Wang W, Chen J, Wang AJ. Magnetic Metal-Organic Framework/Graphene Oxide-Based Solid-Phase Extraction Combined with Spectrofluorimetry for the Determination of Enrofloxacin in Milk Sample. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0971-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Zhang Z, Cheng H. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products. Crit Rev Anal Chem 2017; 47:223-250. [DOI: 10.1080/10408347.2016.1266924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, P. R. China
| |
Collapse
|
40
|
Zaidi SA. Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater Sci 2017; 5:388-402. [DOI: 10.1039/c6bm00765a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imprinted polymerization is considered one of the most useful preparation strategies to obtain highly selective polymeric materials called molecular imprinted polymers (MIPs).
Collapse
|
41
|
Ayazi Z. Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst 2017; 142:721-739. [DOI: 10.1039/c6an02744j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a general overview of the recent trends for the preparation of nanocomposites and their applications in microextraction techniques.
Collapse
Affiliation(s)
- Zahra Ayazi
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
42
|
Chen L, Huang X. Sensitive Monitoring of Fluoroquinolones in Milk and Honey Using Multiple Monolithic Fiber Solid-Phase Microextraction Coupled to Liquid Chromatography Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8684-8693. [PMID: 27787985 DOI: 10.1021/acs.jafc.6b03965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study, a new multiple monolithic fiber solid-phase microextraction (MMF-SPME) based on poly(apronal-co-divinylbenzene/ethylenedimethacrylate) monolith (APDE) was synthesized. The effect of the preparation parameters of APED on extraction efficiency was studied thoroughly. The combination of APDE/MMF-SPME with high-performance liquid chromatography tandem mass spectrometry detection (HPLC/MS-MS) was developed for sensitive monitoring of ultratrace fluoroquinolones (FQs) in foodstuffs, including milk and honey samples. Under the optimized experimental conditions, the limits of detection (S/N = 3) for the targeted FQs ranged from 0.0019 to 0.018 μg/kg in milk and 0.0010 to 0.0028 μg/kg in honey. The relative standard deviations (RSDs) for method reproducibility were less than 9% in all samples. The established method was successfully applied for the monitoring of FQs residues in milk and honey samples with the recoveries between 74.5% and 116% (RSDs were in the range 0.9-9.5%). In comparison to previous methods, the developed APDE/MMF-SPME-HPLC/MS-MS showed some merits, including satisfactory sensitivity, simplicity, high cost-effectiveness, and low consumption of organic solvent.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University , Xiamen 361005, China
| | - Xiaojia Huang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University , Xiamen 361005, China
| |
Collapse
|
43
|
Wang H, Song W, Zhang M, Zhen Q, Guo M, Zhang Y, Du X. Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on Nitinol-based fibers for efficient solid phase microextraction. J Chromatogr A 2016; 1468:33-41. [PMID: 27667650 DOI: 10.1016/j.chroma.2016.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
A novel titanium and nickel oxide composite nanosheets (TiO2/NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO2/NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO2/NiOCNSs (TiO2/NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO2/NiOCNSs-Ph coated NiTi (NiTi-TiO2/NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO2/NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Qi Zhen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yida Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
44
|
Application of a solid-phase microextraction fiber coated with a graphene oxide-poly(dimethylsiloxane) composite for the extraction of triazoles from water. J Sep Sci 2016; 39:3171-7. [DOI: 10.1002/jssc.201600485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 11/07/2022]
|
45
|
Seyhan Bozkurt S, Erdogan D, Antep M, Tuzmen N, Merdivan M. Use of ionic liquid based chitosan as sorbent for preconcentration of fluoroquinolones in milk, egg, fish, bovine, and chicken meat samples by solid phase extraction prior to HPLC determination. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2015.1116010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Serap Seyhan Bozkurt
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Deniz Erdogan
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Mine Antep
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Nalan Tuzmen
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Melek Merdivan
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| |
Collapse
|
46
|
Shamsayei M, Yamini Y, Rezazadeh M, Asiabi H, Seidi S. Self-assembled benzyl mercaptan monolayer as a coating in electromembrane surrounded solid-phase microextraction of antihistamines in urine and plasma samples. NEW J CHEM 2016. [DOI: 10.1039/c5nj03334a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electromembrane extraction based on a monolayer of benzyl mercaptan on a copper wire was applied to extract naphazoline and antazoline from biological samples.
Collapse
Affiliation(s)
| | | | | | - Hamid Asiabi
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Shahram Seidi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran 16315-1355
- Iran
| |
Collapse
|
47
|
Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2015.10.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sarafraz-Yazdi A, Razavi N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Graphene oxide/polyethyleneglycol composite coated stir bar for sorptive extraction of fluoroquinolones from chicken muscle and liver. J Chromatogr A 2015; 1418:36-44. [DOI: 10.1016/j.chroma.2015.09.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
|
50
|
Zeng J, Chen J, Li M, Subhan F, Chong F, Wen C, Yu J, Cui B, Chen X. Determination of amphetamines in biological samples using electro enhanced solid-phase microextraction-gas chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1000:169-75. [PMID: 26245360 DOI: 10.1016/j.jchromb.2015.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Abstract
In this work, an ordered mesoporous carbon (OMC)/Nafion coated fiber for solid-phase microextraction (SPME) was prepared and used as the working electrode for electro-enhanced SPME (EE-SPME) of amphetamines. The EE-SPME strategy is primarily based on the electro-migration and complementary charge interaction between fiber coating and ionic compounds. Compared with traditional SPME, EE-SPME exhibited excellent extraction efficiency for amphetamine (AP) and methamphetamine (MA) with an enhancement factor of 7.8 and 12.1, respectively. The present strategy exhibited good linearity for the determination of AP and MA in urine samples in the range of 10-1000ngmL(-1) and 20-1000ngmL(-1), respectively. The detection limits were found to be 1.2ngmL(-1) for AP and 4.8ngmL(-1) for MA. The relative standard deviations were calculated to be 6.2% and 8.5% for AP and MA, respectively. Moreover, the practical application of the proposed method was demonstrated by analyzing the amphetamines in urine and serum samples with satisfactory results.
Collapse
Affiliation(s)
- Jingbin Zeng
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China.
| | - Jingjing Chen
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China
| | - Min Li
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China
| | - Fazle Subhan
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China; Department of Chemistry, Abdul Wali Khan University, Mardan K.P.K, Pakistan
| | - Fayun Chong
- Qingdao Institute of Criminal Science and Technology, Qingdao 266000, China
| | - Chongying Wen
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China
| | - Jianfeng Yu
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China
| | - Bingwen Cui
- State Key Laboratory of heavy oil processing and College of Science, China University of Petroleum East China, Qingdao 266555, China
| | - Xi Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|