1
|
Aschemacher NA, Siano ÁS, Teglia CM, Goicoechea HC. Development, optimization and comparison of solid-liquid and liquid-liquid microextraction for the determination of four flavonols in Schinus molle L. using high-performance liquid chromatography coupled with second-order data modeling. Anal Bioanal Chem 2024:10.1007/s00216-024-05700-3. [PMID: 39681698 DOI: 10.1007/s00216-024-05700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Flavonoids are particularly interesting because they have a broad spectrum of biological effects, including antioxidant and free radical scavenging activities. In this work, solid-liquid microextraction and dispersive liquid-liquid microextraction enhanced by ultrasound were developed and compared with the conventional method (Soxhlet extraction) to optimize the extraction of four flavonoids: rutin, quercitrin, quercetin, and myricetin in samples of Schinus molle (Aguaribay). During the development of the analytical method, different chemometric tools were used to optimize the microextraction procedure. In addition, an analytical method based on high-performance liquid chromatography with diode array detector (HPLC-DAD) and second order calibration using multivariate curve resolution-alternating least square (MCR-ALS) is presented to quantify the flavonoids with limits of quantification between 0.011 and 0.082 µg mL-1. Finally, solid-liquid microextraction using 4.00 mL water/ethanol (54.3:45.7%), 14 s vortex, and 45 min was selected as the most suitable method due to its high recovery rate and environmental friendliness (with a greenness score of 0.78). After the optimization step, the concentrations found in the plant samples were 1825.3, 632.6, 110.2, and 18.9 µg g-1 for rutin, quercitrin, quercetin, and myricetin, respectively. The present work is the first achievement of simultaneously determining these four analytes with exceptional sensitivity, demonstrating lower LOQs compared to previous reports.
Collapse
Affiliation(s)
- Nicolás A Aschemacher
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290 CP C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhao J, Quinto M, Zakia F, Li D. Microextraction of essential oils: A review. J Chromatogr A 2023; 1708:464357. [PMID: 37696126 DOI: 10.1016/j.chroma.2023.464357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Liquid phase microextraction (LPME) and solid phase microextraction (SPME) are popular extraction techniques for sample preparation due to their green and highly efficient single-step extraction efficiency. With the increasing attention to essential oils, their evaluation and analysis are significant in analytical sciences. In this review, starting from a brief description of the recent advances in the last decade, the attention has been focused on the up-to-date research works and applications based on liquid and solid phase microextraction for essential oil analyses. Particular attention has been given to the approaches using ionic liquids, eutectic solvents, gas flow assisted, and novel composite materials. In the end, the technological convergence of novel microextraction of essential oils in the future has been prospected.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Maurizio Quinto
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Fatima Zakia
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Donghao Li
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin, China.
| |
Collapse
|
3
|
Švecová H, Vojs Staňová A, Klement A, Kodešová R, Grabic R. LC-HRMS method for study of pharmaceutical uptake in plants: effect of pH under aeroponic condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96219-96230. [PMID: 37566327 PMCID: PMC10482775 DOI: 10.1007/s11356-023-29035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Global climate changes cause water scarcity in many regions, and the sustainable use of recycled water appears crucial, especially in agriculture. However, potentially hazardous compounds such as pharmaceuticals can enter the food chain and pose severe risks. This paper aims to study the presence of selected pharmaceutical active compounds (PhACs) and their metabolites in crops grown in aeroponic conditions and evaluate the potential of PhAC plant uptake. A solvent extraction with an acidified mixture of acetonitrile and water followed by LC-HRMS was developed and validated for quantifying nine pharmaceuticals and their nine metabolites in three plants. We aimed for a robust method with a wide linear range because an extensive concentration range in different matrices was expected. The developed method proved rapid and reliable determination of selected pharmaceuticals in plants in the wide concentration range of 10 to 20,000 ng g-1 and limit of detection range 0.4 to 9.0 ng g-1. The developed method was used to study the uptake and translocation of pharmaceuticals and their metabolites in plant tissues from an aeroponic experiment at three different pH levels. Carbamazepine accumulated more in the leaves of spinach than in arugula. On the other hand, sulfamethoxazole and clindamycin evinced higher accumulation in roots than in leaves, comparable in both plants. The expected effect of pH on plants' uptake was not significant.
Collapse
Affiliation(s)
- Helena Švecová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Aleš Klement
- Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Suchdol, Czech Republic
| | - Radka Kodešová
- Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Suchdol, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
4
|
Benedetti B, Di Carro M, Scapuzzi C, Magi E. Solvent-Free Determination of Selected Polycyclic Aromatic Hydrocarbons in Plant Material Used for Food Supplements Preparation: Optimization of a Solid Phase Microextraction Method. Molecules 2023; 28:5937. [PMID: 37630189 PMCID: PMC10459292 DOI: 10.3390/molecules28165937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The exploitation of waste and by-products in various applications is becoming a cornerstone of the circular economy. A range of biomasses can be employed to produce food supplements. An example is a particular extract obtained from plant buds (rich in bioactive molecules), which can be easily retrieved from cities' pruning. In order to safely use this material, its possible contamination by organic pollutants needs to be estimated. A green and simple method to detect priority polycyclic aromatic hydrocarbons (PAHs) in bud samples by head space solid phase microextraction coupled to GC-MS was developed. This strategy, optimized through experimental design and response surface methodology, requires a minimal sample pre-treatment and negligible solvent consumption. The final method was found to be accurate and sensitive for PAHs with mass up to 228 Da. For these analytes, satisfactory figures of merit were achieved, with detection limits in the range 1-4 ng g-1, good inter-day precision (relative standard deviation in the range 4-11%), and satisfactory accuracy (88-105%), along with specificity guaranteed by the selected ion monitoring detection. The method was applied to bud samples coming from differently polluted areas, thus helping in estimating the safety of their use for the production of food supplements.
Collapse
Affiliation(s)
| | | | | | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy; (B.B.); (M.D.C.); (C.S.)
| |
Collapse
|
5
|
Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils. Molecules 2023; 28:molecules28031073. [PMID: 36770740 PMCID: PMC9920165 DOI: 10.3390/molecules28031073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this work, a rapid, precise, and cost-valuable method has been established to quantify phenolic compounds in olive oil using new-based hydrophilic interaction solid-phase extraction (SPE). Boehlert's experimental design applied the determination of the optimal operating conditions. An investigation into the effects of the methanol composition (50-100%), the volume of eluent (1-12 mL), and pH (1-3) on the extraction of phenols acids and total phenols from Tunisian olive oils was performed. The results showed that the extraction conditions had a significant effect on the extraction efficiency. The experiment showed that the greatest conditions for the SPE of phenolic acids were the methanol composition at 90.3%, pH at 2.9, and volume at 7.5 mL, respectively. The optimal conditions were applied to different types of olive oils, and it could be concluded that larger concentrations of polyphenols were found in extra virgin olive oil (89.15-218), whereas the lowest levels of these compounds (66.8 and 5.1) were found in cold-pressed crude olive oil and olive pomace oil, respectively.
Collapse
|
6
|
Wen Q, Myridakis A, Boshier PR, Zuffa S, Belluomo I, Parker AG, Chin ST, Hakim S, Markar SR, Hanna GB. A Complete Pipeline for Untargeted Urinary Volatolomic Profiling with Sorptive Extraction and Dual Polar and Nonpolar Column Methodologies Coupled with Gas Chromatography Time-of-Flight Mass Spectrometry. Anal Chem 2023; 95:758-765. [PMID: 36602225 PMCID: PMC9850407 DOI: 10.1021/acs.analchem.2c02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Volatolomics offers an opportunity for noninvasive detection and monitoring of human disease. While gas chromatography-mass spectrometry (GC-MS) remains the technique of choice for analyzing volatile organic compounds (VOCs), barriers to wider adoption in clinical practice still exist, including: sample preparation and introduction techniques, VOC extraction, throughput, volatolome coverage, biological interpretation, and quality control (QC). Therefore, we developed a complete pipeline for untargeted urinary volatolomic profiling. We optimized a novel extraction technique using HiSorb sorptive extraction, which exhibited high analytical performance and throughput. We achieved a broader VOC coverage by using HiSorb coupled with a set of complementary chromatographic methods and time-of-flight mass spectrometry. Furthermore, we developed a data preprocessing strategy by evaluating internal standard normalization, batch correction, and we adopted strict QC measures including removal of nonlinearly responding, irreproducible, or contaminated metabolic features, ensuring the acquisition of high-quality data. The applicability of this pipeline was evaluated in a clinical cohort consisting of pancreatic ductal adenocarcinoma (PDAC) patients (n = 28) and controls (n = 33), identifying four urinary candidate biomarkers (2-pentanone, hexanal, 3-hexanone, and p-cymene), which can successfully discriminate the cancer and noncancer subjects. This study presents an optimized, high-throughput, and quality-controlled pipeline for untargeted urinary volatolomic profiling. Use of the pipeline to discriminate PDAC from control subjects provides proof of principal of its clinical utility and potential for application in future biomarker discovery studies.
Collapse
Affiliation(s)
- Qing Wen
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Piers R. Boshier
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Simone Zuffa
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Sung-Tong Chin
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Stephanie Hakim
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom
| | - Sheraz R. Markar
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom,Nuffield
Department of Surgical Sciences, University
of Oxford, Oxford OX3 9DU, United Kingdom
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United Kingdom,
| |
Collapse
|
7
|
Letseka TE, Sepheka NJ, Dubery IA, George MJ. Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2749. [PMID: 36297773 PMCID: PMC9609334 DOI: 10.3390/plants11202749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Essential oils are vital constituents of oil-bearing plants. However, their screening still demands harvesting of the plant for laboratory analysis. We report herein a simple, rapid and robust headspace bubble-in-drop microextraction screening technique (BID-SPME) requiring only small amounts of plant material. The optimised method uses 0.5 g of the crushed plant leaves sample obtained in a 2 mL capped chromatography vial, heated to 55 °C and sampled with 2 µL heptadecane in a Hamilton gastight syringe equilibrated for 15 min exposed to the headspace volume. The method was applied to three plants, Pinus radiata, Tagetes minuta and Artemisia afra, which are known for their essential oil content. The method was able to extract at least 80% of the oil constituents in such abundance that they could be easily annotated using the gas chromatography-mass spectrometry (GC-MS) mass spectral libraries. The major volatile organic compounds (VOCs) detected included tagetone, terpinen-4-ol, ocimenone, caryophyllene, dihydrotagetone, terpinolene and artemisia ketone, just to mention a few, at different concentrations in different plants. Importantly, these annotated VOCs were also reported in other studies in the same and even different plants, extracted using normal steam distillation and importantly those reported in the literature for different extraction techniques.
Collapse
Affiliation(s)
- Thabiso E. Letseka
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Box 180, Roma 100, Lesotho
| | - Ntjana J. Sepheka
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Box 180, Roma 100, Lesotho
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Mosotho J. George
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Box 180, Roma 100, Lesotho
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
8
|
Extraction and Identification of Volatile Organic Compounds in Scentless Flowers of 14 Tillandsia Species Using HS-SPME/GC-MS. Metabolites 2022; 12:metabo12070628. [PMID: 35888753 PMCID: PMC9316202 DOI: 10.3390/metabo12070628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
VOCs emitted by flowers play an important role in plant ecology. In the past few years, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Hence, we decided to enlarge the VOCs composition study already undergone in our laboratory on fragrant 3 Tillandsia species to 12 unscented and 2 faint-scented Tillandsia species and hybrids. The headspace solid phase microextraction (HS-SPME) coupled with gas chromatography combined with the mass spectrometry (GC-MS) method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the 14 species and between 6 to 25 compounds were identified in each of the species. The aromatic profile of 10 of the species and hybrids are similar to each other’s and show 8 predominant compounds: benzaldehyde, benzacetaldehyde, hexanol, hexanal, heptanal, octanal, nonanal, and furan-2-pentyl. Some specific compounds are present only in some unique species such as trans-calamenene, α-muurolene, and α-guaiene trans-β-bergamotene. The two faint-scented species studied present an original aromatic profile with a high number of monoterpenes or phenylpropanoids/benzenoids. Our studies allow a better understanding of the ecological role and function of these VOCs in the interactions between these plants with their environment.
Collapse
|
9
|
Li Y, Ma C, You J, Zhang S. Stable isotope labeling method with sensitive identification and accurate quantitation function for aldehydes in fried foods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
|
11
|
Kazemi M, Niazi A, Yazdanipour A. Extraction of Satureja Rechingeri volatile components through ultrasound-assisted and microwave-assisted extractions and comparison of the chemical composition with headspace solid-phase microextraction. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1975575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Kazemi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atisa Yazdanipour
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Extraction and Identification of Volatile Organic Compounds Emitted by Fragrant Flowers of Three Tillandsia Species by HS-SPME/GC-MS. Metabolites 2021; 11:metabo11090594. [PMID: 34564410 PMCID: PMC8471741 DOI: 10.3390/metabo11090594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Numerous volatile organic compounds (VOCs) with a large chemical diversity are emitted by plant flowers. They play an important role in the ecology of plants, such as pollination, defense, adaptation to their environment, and communication with other organisms. The Tillandsia genus belongs to the Bromeliaceae family, and most of them are epiphytes. The aromatic profile of the Tillandsia genus is scarcely described. In this study, we use the headspace solid phase microextraction (HS-SPME) coupled with gas chromatography combined with mass spectrometry (GC-MS) method developed in our laboratory to explore the chemical diversity of the VOCs of fragrant flowers of three species of the genus Tillandsia. We were able to identify, for the first time, 66 volatile compounds (monoterpenes, sesquiterpenes, phenylpropanoids, and other compounds). We identified 30 compounds in T. xiphioides, 47 compounds in T. crocata, and 43 compounds in T. caliginosa. Only seven compounds are present in all the species studied. Comparison of the volatile compounds profiles by principal component analysis (PCA) between T. xiphoides, T. crocata, and T. caliginosa species showed a clear difference in the floral emissions of the studied species. Moreover, floral VOCs profiles allowed to differentiate two forms of T. xiphioides and of T. crocata.
Collapse
|
13
|
Leng G, Lin L, Worsfold PJ, Xu W, Luo X, Chang L, Li W, Zhang X, Xia C. A simple and rapid head space-single drop microextraction-‘spectro-pipette’ (HS-SDME-SP) method for the on-site measurement of arsenic species in natural waters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Volatile Organic Compounds of the Glandular Trichomes of Ocimum basilicum and Artifacts during the Distillation of the Leaves. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on volatile organic compounds (VOC) of Ocimum basilicum, this study aims to determine the chemical composition of VOC in secretory trichomes and compare it with that of essential oil obtained by hydrodistillation of leaves. The technique of extracting the content of glandular trichomes refers to the microneedle shuttle analysis. Hydrodistillation of fresh leaves was done with a Clevenger distiller (EO). The chemical compositions were determined by GC/FID and GC/MS. The head of the capitate trichomes does not contain volatile compounds. Fifty volatile compounds were detected in the EO, and twenty-four volatile compounds were detected in the VOC; the main components were eugenol (from 15.47 ± 1.05% to 41.89 ± 2.83%) and linalool (from 32.05 ± 2.57% to 28.99 ± 2.32%), respectively. During the distillation of the basil leaves 26 artifacts are formed. The composition of the essential oil of O. basilicum therefore depends not only on the plant but also on the method used to obtain it.
Collapse
|
15
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hajmohammadi MR, Najafi AsliPashaki S, Rajab Dizavandi Z, Amiri A. Ultrasound-assisted vesicle-based microextraction as a novel method for determination of phenolic acid compounds in Nepeta cataria L. samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02131-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Baena-Pedroza AM, Londoño-Giraldo LM, Corpas-Iguaran EJ, Taborda-Ocampo G. Bibliometric study of volatile compounds in commercial fruits of the Solanaceae family. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.13220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Bibliometric analysis is a discipline that allows us to identify knowledge trends, assesses scientific activity and the impact of research through its volume, evolution, visibility, and structure. The present study aimed to carry out a bibliometric study of scientific research that contributes to the knowledge of Volatile Organic Compounds (VOCs) of edible and commercial fruits of Solanaceae family. The research consisted of extracting the information from papers in the Web of Science database. We analyzed and performed the production, visibility, and impact of these papers, also relationships and collaboration between authors using BibExcel and VOSviewer software. As a result, 178 documents were obtained from 2001 to 2017. Tomato is the fruit with the largest number of related articles that are focused on studying compounds responsible for taste, aroma, and biotic and abiotic relationships, as well as studies for identification of the genes responsible for these organoleptic and ecological traits. Papers analyzed are related to the research studies of 491 authors from 239 different organizations distributed in 45 countries. This bibliometric study allowed to identify trends in the knowledge in VOCs with respect to Solanaceae fruits, as well as recognizing the location of the scientific material in this field.
Collapse
|
18
|
Zhao J, Jin X, Wang X, Yang C, Piao X, Kaw HY, Li D. A fast and selective gas liquid microextraction of semiochemicals for quantitative analysis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110576. [PMID: 32771138 DOI: 10.1016/j.plantsci.2020.110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
A trapping-based gas liquid microextraction (GLME) method coupled with gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively and quantitatively characterize semiochemicals in plants. The main GLME extraction efficiency associated parameters (heating temperature and extraction time) were optimized. The results obtained from GLME process were compared with those of steam distillation and ultrasonic extraction, and the recovery, peak number and reproducibility were evaluated by using Thuja koraiensis Nakai as a representative plant. Furthermore, the quantitative performances of the GLME in terms of sample amount, recoveries of spiked standards and correlation were systematically evaluated using standard addition method, which gave a good quantitative ability for all the compounds with squares of correlation coefficient (r2) of higher than 0.99. Finally, the contents of α-pinene, camphene, linalool, α-terpinenol, β-caryophyllene, α-caryophyllene, and totarol in Thuja koraiensis Nakai samples were quantified, and their concentrations (SD, n = 3) were; 0.65 (0.06), 0.62 (0.05), 4.12 (0.15), 0.99 (0.08), 1.11 (0.07), 0.63 (0.04), and 21.91 (0.25) μg g-1, respectively. It was demonstrated that GLME is a powerful sample preparation technique for quantitative and qualitative analysis of plant semiochemicals.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Xiangzi Jin
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Xiaoping Wang
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Cui Yang
- Department of Chemistry, Changchun Normal University, Changji North Road 677, Changchun City, Jilin Province, 130032, China
| | - Xiangfan Piao
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Han Yeong Kaw
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Donghao Li
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
19
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
20
|
Jalili V, Barkhordari A, Ghiasvand A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020. [DOI: 10.1007/s10337-020-03884-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Triaux Z, Petitjean H, Marchioni E, Boltoeva M, Marcic C. Deep eutectic solvent–based headspace single-drop microextraction for the quantification of terpenes in spices. Anal Bioanal Chem 2020; 412:933-948. [DOI: 10.1007/s00216-019-02317-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 01/22/2023]
|
22
|
|
23
|
Adadi P, Barakova NV, Krivoshapkina EF. Scientific approaches to improving artisan methods of producing local food condiments in Ghana. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Xia L, Li Y, Liu Y, Li G, Xiao X. Recent advances in sample preparation techniques in China. J Sep Sci 2019; 43:189-201. [DOI: 10.1002/jssc.201900768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Xia
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yanxia Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yulan Liu
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Xiaohua Xiao
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
25
|
|
26
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|
27
|
Selective microextraction of polycyclic aromatic hydrocarbons using a hydrophobic deep eutectic solvent composed with an iron oxide-based nanoferrofluid. Mikrochim Acta 2019; 186:560. [DOI: 10.1007/s00604-019-3651-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 01/28/2023]
|
28
|
Sgorbini B, Cagliero C, Liberto E, Rubiolo P, Bicchi C, Cordero C. Strategies for Accurate Quantitation of Volatiles from Foods and Plant-Origin Materials: A Challenging Task. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1619-1630. [PMID: 30644749 DOI: 10.1021/acs.jafc.8b06601] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The volatile fraction of foods and of plant-origin materials provides functional information on sample-related variables, and gas-phase extractions are ideal approaches for its accurate chemical characterization. However, for gas-phase sampling, the usual procedures adopted to standardize results from solvent extraction methods are not appropriate: headspace (HS) composition depends on the intrinsic physicochemical analyte properties (volatility, polarity, partition coefficient(s)) and matrix effects. Method development, design, and expression of the results are therefore challenging. This review article focuses on volatile vapor-phase quantitation methods (internal standard normalization, standard addition, stable isotope dilution assay, multiple headspace extraction) and their suitability in different applications. Because of the analyte informative role, the different ways of expressing results (normalized chromatographic area, percent normalized chromatographic areas, and absolute concentrations) are discussed and critically evaluated with examples of quality markers in chamomile, process contaminants (furan and 2-methylfuran) in roasted coffee, and key-aroma compounds from high-quality cocoa.
Collapse
Affiliation(s)
- Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Turin , Italy
| |
Collapse
|
29
|
Fast on-fiber derivatization and GC/MS analysis of phytohormones in wheat based on pencil-type coated carbon fibers. Food Chem 2019; 274:254-260. [DOI: 10.1016/j.foodchem.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 09/02/2018] [Indexed: 11/22/2022]
|
30
|
Volatile Compounds of Selected Raw and Cooked Brassica Vegetables. Molecules 2019; 24:molecules24030391. [PMID: 30678255 PMCID: PMC6385023 DOI: 10.3390/molecules24030391] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022] Open
Abstract
Brassica vegetables are a significant component of the human diet and their popularity is systematically increasing. The interest in plants from this group is growing because of numerous reports focused on their pro-health properties. However, some consumers are not enthusiastic about these vegetables because of their specific bitter taste and sharp, sulfurous aroma. In this study, the volatile composition of 15 Brassica cultivars (five Brussels sprouts, four kohlrabi, three cauliflower and three broccoli), both raw and cooked, was analyzed by solid phase microextraction and comprehensive two-dimensional gas chromatography with time of flight mass spectrometry (SPME-GC×GC-ToFMS). Differences were found between the analyzed vegetables, as well as different cultivars of the same vegetable. Moreover, the influence of cooking on the composition of volatile compounds was evaluated. All the vegetables were frozen before analyses, which is why the impact of this process on the volatile organic compounds (VOCs) was included. The most abundant groups of compounds were sulfur components (including bioactive isothiocyanates), nitriles, aldehydes and alcohols. Cooking in general caused a decrease in the abundance of main volatiles. However, the amount of bioactive isothiocyanates increased in most cultivars after cooking. The effect of freezing on the volatile fraction was presented based on the Brussels sprout cultivars. Most of the changes were closely related to the activity of the lipoxygenase (LOX) pathway enzymes. These are characterized by a marked reduction in alcohol contents and an increment in aldehyde contents. Moreover, important changes were noted in the concentrations of bioactive components, e.g., isothiocyanates. This research included a large set of samples consisting of many cultivars of each analyzed vegetable, which is why it provides a considerable body of general information concerning volatiles in Brassica vegetables.
Collapse
|
31
|
Abreu DCP, Botrel BMC, Bazana MJF, e Rosa PV, Sales PF, Marques MDS, Saczk AA. Development and comparative analysis of single-drop and solid-phase microextraction techniques in the residual determination of 2-phenoxyethanol in fish. Food Chem 2019; 270:487-493. [DOI: 10.1016/j.foodchem.2018.07.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
|
32
|
Sample Preparation Focusing on Plant Omics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:161-185. [PMID: 31236843 DOI: 10.1007/978-3-030-12298-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of strong impact of omics in many fields, and the complexity of the samples when focusing on areas such as genomics, (metallo)proteomics, metabolomics, among others, it is easy to rationalize the great importance that sample preparation has for achieving reliable results, mainly considering plant science. Then, this chapter points out applications of the sample preparation focusing on such areas, and a diversity of strategies, techniques, and procedures is highlighted and commented.
Collapse
|
33
|
Boiteux J, Monardez C, Fernández MDLÁ, Espino M, Pizzuolo P, Silva MF. Larrea divaricata volatilome and antimicrobial activity against Monilinia fructicola. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Belinato JR, Dias FFG, Caliman JD, Augusto F, Hantao LW. Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics - A review. Anal Chim Acta 2018; 1040:1-18. [PMID: 30327098 DOI: 10.1016/j.aca.2018.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Microextractions have become an attractive class of techniques for metabolomics. The most popular technique is solid-phase microextraction that revolutionized the field of modern sample preparation in the early nineties. Ever since this milestone, microextractions have taken on many principles and formats comprising droplets, fibers, membranes, needles, and blades. Sampling devices may be customized to impart exhaustive or equilibrium-based characteristics to the extraction method. Equilibrium-based approaches may rely on additional methods for calibration, such as diffusion-based or on-fiber kinetic calibration to improve bioanalysis. In addition, microextraction-based methods may enable minimally invasive sampling protocols and measure the average free concentration of analytes in heterogeneous multiphasic biological systems. On-fiber derivatization has evidenced new opportunities for targeted and untargeted analysis in metabolomics. All these advantages have highlighted the potential of microextraction techniques for in vivo and on-site sampling and sample preparation, while many opportunities are still available for laboratory protocols. In this review, we outline and discuss some of the most recent applications using microextractions techniques for comprehensive two-dimensional gas chromatography-based metabolomics, including potential research opportunities.
Collapse
Affiliation(s)
- João R Belinato
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fernanda F G Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Jaqueline D Caliman
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Leandro W Hantao
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
35
|
Abril C, Martín J, Malvar JL, Santos JL, Aparicio I, Alonso E. Dispersive liquid-liquid microextraction as a new clean-up procedure for the determination of parabens, perfluorinated compounds, UV filters, biocides, surfactants, and plasticizers in root vegetables. Anal Bioanal Chem 2018; 410:5155-5163. [PMID: 29947903 DOI: 10.1007/s00216-018-1165-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 05/26/2018] [Indexed: 12/25/2022]
Abstract
An analytical method based on ultrasound-assisted extraction and dispersive liquid-liquid microextraction (DLLME) clean-up has been developed and validated for the determination of 31 emerging pollutants in root vegetables. The target compounds were four preservatives, six perfluoroalkyl compounds, six UV filters, two biocides, eight anionic surfactants, three nonionic surfactants, and two plasticizers. The type and volume of the extraction solvent, those of the disperser solvent, the pH and NaCl content of the DLLME aqueous phase, the amount of sample, and the sonication time were optimized. Box-Behnken experimental design was applied to select the best extraction conditions. Matrix-matched calibration curves were used for quantification. Four internal standards were used to compensate for residual matrix effects. Good linearity (R2 > 0.990), accuracies (expressed as the relative recovery) of >82%, and precisions (expressed as the relative standard deviation) of <18% were achieved. Method quantification limits (MQLs), calculated from spiked samples as the concentrations corresponding to signal-to-noise ratios of 10, were in the range 0.1-25 ng g-1 dry weight (d.w.). MQL values for 26 of the 31 target compounds were lower than 5 ng g-1 d.w. The method was successfully applied to determine the target pollutants in carrots, potatoes, and turnips from a local market. To the best of our knowledge, the proposed method constitutes the first application of DLLME as a clean-up procedure for the multiresidue determination of emerging pollutants in vegetables. The method affords similar recoveries and method detection limits to previously reported methods but requires smaller solvent volumes and sample amounts and is less expensive.
Collapse
Affiliation(s)
- Concepción Abril
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - José Luis Malvar
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain.
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| |
Collapse
|
36
|
Dispersive-Solid-Phase Extraction Cleanup Integrated to Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Determination of Organochlorine Pesticides in Vegetables. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1040-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem 2017; 217:705-715. [DOI: 10.1016/j.foodchem.2016.09.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/28/2023]
|
38
|
Xia Q, Mei J, Yu W, Li Y. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC–MS and chemometric methods. Food Res Int 2017; 91:103-114. [DOI: 10.1016/j.foodres.2016.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/24/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022]
|
39
|
Matrix compatible solid phase microextraction coating, a greener approach to sample preparation in vegetable matrices. Food Chem 2016; 206:67-73. [DOI: 10.1016/j.foodchem.2016.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/31/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
|
40
|
Dawidowicz AL, Szewczyk J, Dybowski MP. Modified HS-SPME for determination of quantitative relations between low-molecular oxygen compounds in various matrices. Anal Chim Acta 2016; 935:121-8. [DOI: 10.1016/j.aca.2016.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
41
|
Kamalabadi M, Mohammadi A, Alizadeh N. Polypyrrole nanowire as an excellent solid phase microextraction fiber for bisphenol A analysis in food samples followed by ion mobility spectrometry. Talanta 2016; 156-157:147-153. [DOI: 10.1016/j.talanta.2016.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023]
|
42
|
Ryabov AY, Chuikin AV, Velikov AA. Solid-phase microextraction of hydrocarbons from water in a centrifuge. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416060200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
He M, Yang ZY, Guan WN, Vicente Gonçalves CM, Nie J, Wu H. GC–MS Analysis and Volatile Profile Comparison for the Characteristic Smell fromLiang-wai Gan Cao(Glycyrrhiza uralensis) and Honey-Roasting Products. J Chromatogr Sci 2016; 54:879-87. [DOI: 10.1093/chromsci/bmw034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/15/2023]
|
44
|
Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Stir-bar sorptive extraction: 15 years making sample preparation more environment-friendly. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Kokosa JM. Recent trends in using single-drop microextraction and related techniques in green analytical methods. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhang Z, Zhang W, Bao T, Chen Z. Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire. J Chromatogr A 2015; 1407:1-10. [DOI: 10.1016/j.chroma.2015.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/15/2023]
|
48
|
Kelly M, Su CY, Schaber C, Crowley JR, Hsu FF, Carlson JR, Odom AR. Malaria parasites produce volatile mosquito attractants. mBio 2015; 6:e00235-15. [PMID: 25805727 PMCID: PMC4453533 DOI: 10.1128/mbio.00235-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. IMPORTANCE Malaria is a key global health concern. Mosquitoes that transmit malaria are more attracted to malaria parasite-infected mammalian hosts. These studies aimed to understand the chemical signals produced by malaria parasites; such an understanding may lead to new transmission-blocking strategies or noninvasive malaria diagnostics.
Collapse
Affiliation(s)
- Megan Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chih-Ying Su
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Chad Schaber
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan R Crowley
- Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
49
|
Rohloff J. Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules 2015; 20:3431-62. [PMID: 25690297 PMCID: PMC6272321 DOI: 10.3390/molecules20023431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 12/13/2022] Open
Abstract
Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS) in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.
Collapse
Affiliation(s)
- Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| |
Collapse
|
50
|
Guo Y, Kannan K. Analytical Methods for the Measurement of Legacy and Emerging Persistent Organic Pollutants in Complex Sample Matrices. PERSISTENT ORGANIC POLLUTANTS (POPS): ANALYTICAL TECHNIQUES, ENVIRONMENTAL FATE AND BIOLOGICAL EFFECTS 2015. [DOI: 10.1016/b978-0-444-63299-9.00001-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|