1
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
3
|
Chao SJ, Huang CP, Lam CC, Hua LC, Chang SH, Huang C. Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112759. [PMID: 34500387 DOI: 10.1016/j.ecoenv.2021.112759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the transformation of copper oxide nanoparticles (CuO NPs) in aquatic environments under different ionic strength and further examine its effects on copper toxicity and bioaccumulation by monitoring the responses and uptake behaviours of zebrafish embryo. Ionic strength (IS) was simulated according to surface water (1.5 mM), groundwater (15 mM), and wastewater (54 mM), representing low-, mid-, and high-IS water, respectively. At the highest exposure of 10 mg CuO/L, zebrafish larvae mortality was increased from 21.3% to 33.3%, when IS decreased from 54 to 1.5 mM. Low-IS solution also caused the highest numbers of delayed hatching embryo (81.3%) and opaque yolk deformation (36.3%). Copper bioaccumulation markedly increased when larvae were exposed to low-IS water (35%) relative to high-IS water (15%). Exposing to low-IS particularly enhanced copper uptake (~15 ng Cu/g inside embryo), facilitating the copper accumulation in the heart of larvae, whereas aggregated CuO NPs (>500 nm) in mid- and high-IS water were blocked from the embryo and found abundantly in the body axis and tail. Results indicate that CuO NPs in low-IS solutions rapidly form the relatively small CuO NP aggregates with a high copper dissolution, which would pose great concern for aquatic organisms.
Collapse
Affiliation(s)
- Shu-Ju Chao
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chi-Cuong Lam
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Lap-Cuong Hua
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan
| | - Chihpin Huang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
4
|
Wei WJ, Yang Y, Li XY, Huang P, Wang Q, Yang PJ. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 2021; 239:123117. [PMID: 34890942 DOI: 10.1016/j.talanta.2021.123117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Silver Nanoparticles (Ag-NPs), an emerging type of pollutant, might occur various physical and chemical transformations, which would affect its environmental fate, transformation and biological effects. Sulfurization is the most common conversion of Ag-NPs, accompanied by the formation of nano-silver sulfide (Ag2S-NPs). The method of Ag2S-NPs analysis and characterization is of great significance for assessing the environmental risks of Ag. In this study, cloud point extraction (CPE) and Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) were used in combination to establish a simple and reliable analysis method to quantify Ag2S-NPs in water, with the morphology unchanged. Non-Ag2S-NPs were dissociated into Ag+ firstly, and Ag2S-NPs and Ag+ were separated by CPE, followed by SP-ICP-MS analysis. The extraction rate based on particle number concentration was between (76.19 ± 0.56) % to (106.35 ± 0.00) % in environmental waters. Compared with the (76.96 ± 2.18) nm Ag2S-NPs spiked, the particle size extracted increased slightly with (94.19 ± 2.72) nm- (97.25 ± 0.22) nm as the large-size Ag2S-NPs originally presented in waters, instead of agglomeration. This method could be generally applicable to the analysis of Ag2S-NPs in waters, and provide ideas for other metal sulfide nanoparticles (MS-NPs), which has certain significance.
Collapse
Affiliation(s)
- Wen-Jing Wei
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Yuan Yang
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China
| | - Xin-Yuan Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Peng Huang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China.
| | - Ping-Jian Yang
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai, Chaoyang District, Beijing, 100012, PR China.
| |
Collapse
|
5
|
Quantitative Detection of Zinc Oxide Nanoparticle in Environmental Water by Cloud Point Extraction Combined ICP-MS. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9958422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing usage of zinc oxide nanoparticles (ZnONPs) inevitably leads to their release into the environment. To understand their fate and toxicity in water systems, a reliable method for the quantitative analysis of ZnONPs in environmental waters is urgently needed to be established. In this study, a quantitative analytical method of ZnONPs in environmental waters was developed by cloud point extraction (CPE) combined inductively coupled plasma mass spectrometry (ICP-MS). To obtain high recoveries of ZnONPs, the CPE parameters including pH, surfactant concentration, salt concentration, bath temperature, and time were optimized. The results demonstrated that the addition of β-mercaptoethylamine could significantly reduce the interference of Zn2+ on the extraction of ZnONPs, while the CPE approach was not affected significantly by the typical environmental inorganic ion and ENMs (such as Au, TiO2, and Al2O3). The extraction method of ZnONPs with different diameters was also assessed, and satisfactory extraction efficiency was obtained. The results of ZnONP concentration in collected environmental water were in the range of
-
μg/L. And the recoveries of ZnONPs in different environmental waters were
-
at low concentration spiked levels (12.57-54.68 μg/L), demonstrating that it is efficient to extract trace ZnONPs from real environmental waters. This established method offered a reliable method for the quantitative determination of ZnONPs in environmental waters, which could further promote the study of the environmental behavior, fate, and toxicity of ZnONPs in an aqueous environment.
Collapse
|
6
|
Parsai T, Kumar A. Weight-of-evidence process for assessing human health risk of mixture of metal oxide nanoparticles and corresponding ions in aquatic matrices. CHEMOSPHERE 2021; 263:128289. [PMID: 33297232 DOI: 10.1016/j.chemosphere.2020.128289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 05/04/2023]
Abstract
This study proposed a framework to estimate health risks due to exposure of mixture of nanoparticles (NPs) from surface water, for the first time, as per authors' best knowledge. The framework consisted of hazard identification, exposure assessment, dose-response assessment, risk characterization and risk management steps. Concentrations of mixture of NPs and associated ions were compiled and range of values were used for exposure estimation. The resulting concentrations of nanoparticle and metal ions in simulated digestive fluid were calculated and used to estimate exposure dose to digestive system organs during a hypothetical exposure of water during recreational activity. Exposure doses of different possible combinations of ZnO NP, CuO NP, Zn2+ and Cu2+ ions were considered. The ECHA weight-of- evidence framework was used for formulating hypotheses and collecting evidence for determining reference dose (RfD) and interaction parameter for estimating hazard interaction value (an index for risk) as per the USEPA modified weight-of-evidence method for estimating risks of binary NPs and ions. RfD values of CuO (0.0262 mg/kg/d) and ZnO NP (0.0315 mg/kg/d) were derived using information from rat-based oral toxicity studies and assumed values of uncertainty factors. The results showed that mixture of NPs under environmentally-relevant conditions do not pose any health risk. The uncertainty analysis indicated that ZnO + CuO + Zn + Cu ion suspension posed the highest risk. The switchover analysis indicated that NP concentration >0.207 mg/L resulted in risk estimate greater than 1 and pose risk. Although risk estimate was found to be smaller than 1 under the studied natural water condition, efforts should be made to continue monitoring mixture of NPs as a precautionary approach. More efforts are required to obtain data on (i)toxicity of mixture of NPs, (ii)their interaction effects, (iii)fractions of NPs reaching target organ in order to accurately predict risk. Potential benefit of this framework is in its usage for development of structure for estimating exposure risks due to mixture of NPs and ions from surface water. This can also be used to adopt methodology for gathering information on evidence required in different steps of risk assessment process, like obtaining RfD/uncertainty factor -related parameters in dose-response assessment step, deriving interaction and mixture toxicity-related parameters in risk estimation step.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
7
|
Campos DA, Schaumann GE, Philippe A. Natural TiO 2-Nanoparticles in Soils: A Review on Current and Potential Extraction Methods. Crit Rev Anal Chem 2020; 52:1-21. [PMID: 33054361 DOI: 10.1080/10408347.2020.1823812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The monitoring of anthropogenic TiO2-nanoparticles in soils is challenged by the knowledge gap on their characteristics of the large natural TiO2-nanoparticle pool. Currently, no efficient method is available for characterizing natural TiO2-nanoparticles in soils without an extraction procedure. Considering the reported diversity of extraction methods, the following article reviews and discusses their potential for TiO2 from soils, focusing on the selectivity and the applicability to complex samples. It is imperative to develop a preparative step reducing analytical interferences and producing a stable colloidal dispersion. It is suggested that an oxidative treatment, followed by alkaline conditioning and the application of dispersive agents, achieve such task. This enables the further separation and characterization through size or surface-based separation (i.e., hydrodynamic fractionation methods, filtration or sequential centrifugation). Meanwhile, cloud point extraction, gel electrophoresis, and electrophoretic deposition have been studied on various nanoparticles but not on TiO2-nanoparticles. Furthermore, industrially applied methods in, for example, kaolin processing (flotation and flocculation) are interesting but require further improvements on terms of selectivity and applicability to soil samples. Overall, none of the current extraction methods is sufficient toward TiO2; however, further optimization or combination of orthogonal techniques could help reaching a fair selectivity toward TiO2.
Collapse
Affiliation(s)
- Daniel Armando Campos
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Gabriele Ellen Schaumann
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Allan Philippe
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
8
|
|
9
|
Bland GD, Lowry GV. Multistep Method to Extract Moderately Soluble Copper Oxide Nanoparticles from Soil for Quantification and Characterization. Anal Chem 2020; 92:9620-9628. [PMID: 32520530 DOI: 10.1021/acs.analchem.0c00824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of this study is to assess how method parameters impact the extraction of moderately soluble CuO nanoparticles (NPs) from a standard natural soil (LUFA 2.1) suitable for chemical analysis. The extraction procedure is comprised of three steps: (i) preconditioning the soil to increase the sodium adsorption ratio, (ii) extracting colloids/NPs from the soil matrix using sonication and a dispersing agent, and (iii) separating the dissolved and nanoparticulate CuO fractions using cloud point extraction. Method parameters of the extraction procedure, including sonication, number of extraction cycles, and dispersing agent, were adjusted to achieve the highest extraction of CuO NPs, while minimizing dissolution. The maximum recovery of CuO NPs ranged from 31% to 42% for an amended concentration range of 10-250 mg-Cu (kg soil)-1 using a preconditioning step to exchange divalent cations for monovalent ions, 0.2% carboxymethyl cellulose (CMC) 700 kg mol-1 as the dispersing agent, probe sonication for 1 min, 3 extraction cycles, and a 1:10 soil-to-liquid ratio. CuO NPs that are polyvinylpyrrolidone (PVP)-coated with a greater stability against aggregation had significantly higher extractability and dissolution. This procedure is the first to effectively extract moderately soluble NPs from soil and experimentally separate them from their dissolved fraction and can be applied to other moderately soluble metal containing natural, incidental, or engineered NPs in soil.
Collapse
Affiliation(s)
- Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Safa F, Osaghi B. Adsorption onto MWCNTs Coupled with Cloud Point Extraction for Dye Removal from Aqueous Solutions: Optimization by Experimental Design. Comb Chem High Throughput Screen 2020; 24:246-258. [PMID: 32552635 DOI: 10.2174/1386207323666200618153940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
AIMS The main aim of the study was to examine the feasibility and benefits of adsorption onto multi-walled carbon nanotubes (MWCNTs) coupled with cloud point extraction (CPE) for the removal of Rhodamine B (RB) from aqueous solutions. BACKGROUND MWCNTs offer the particular features of the ideal adsorbents for the organic dyes such as hollow tubular structure and specific surface area. Nevertheless, they suffer from the drawbacks of low dispersion in the aqueous solutions and separation inconvenience from the media. Cloud point extraction, combined with the adsorption onto MWCNTs can be a promising method to overcome the problems. OBJECTIVE In the study, adsorption onto MWCNTs coupled with CPE was applied for RB removal from aqueous solutions. The process was optimized by the response surface modeling method. Moreover, the applicability of the proposed method in the real sample analyses was investigated. METHODS MWCNTs were used as adsorbent and Triton X-100 (TX-100) as the nonionic surfactant for CPE process. The experiments were carried out based on a Box-Behnken design (BBD) with the input variables of MWCNTs dosage (0.6-1.2 mg), solution pH (3-9), clouding time (20-40 min) and TX-100 concentration (10-20 v/v%) using 5 mg L-1 RB solutions. RESULT Regression analyses resulted in a statistically significant quadratic model (R2=0.9718, F=24.96, p<0.0001) by which the optimum levels of the variables were predicted as: MWCNTs dosage of 0.7 mg, pH=3, clouding time of 39.9 minutes and TX-100 concentration of 19.91% (v/v). The predicted conditions were experimentally validated by achieving an RB removal of 94.24%. CONCLUSION Based on the results, the combination of the environmentally friendly technique of CPE with adsorption onto MWCNTs allows the efficient removal of RB from water samples and the method can be effectively optimized by the response surface modeling.
Collapse
Affiliation(s)
- Fariba Safa
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Bahare Osaghi
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
11
|
Wang Y, Chen B, Wang B, He M, Hu B. Phosphoric acid functionalized magnetic sorbents for selective enrichment of TiO 2 nanoparticles in surface water followed by inductively coupled plasma mass spectrometry detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135464. [PMID: 31753505 DOI: 10.1016/j.scitotenv.2019.135464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Phosphoric acid functionalized superparamagnetic iron oxide was synthesized, and different adsorption behavior of TiO2 NPs and titanium ions on it was found. By means of dispersion-corrected density functional theory (DFT-D), the adsorption mechanism of TiO2 NPs and titanium ions on the functionalized sorbents was explored, and the difference in the adsorption behavior was attributed to the different deprotonated forms of phosphates and the competitive adsorption of OH- anion with respect to either TiO2 NPs or aqueous titanium ions. Based on the different adsorption performance of phosphoric acid functionalized sorbents for TiO2 NPs and titanium ions under pH 3, a method by combining magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICP-MS) was established for the selective quantification of trace TiO2 NPs in environmental water. Under the optimal experimental conditions, the detection limit of TiO2 NPs was 17 ng/L with an enrichment factor of 400. The developed MSPE-ICPMS method was applied to the detection of trace TiO2 NPs in the Yangtze River and the East Lake water. Sub μg/L level of TiO2 NPs was found in the tested water samples, and recoveries of 91-110% and 90-110% were obtained for TiO2 NPs at three concentration levels in spiked water samples, respectively. The developed method exhibited high adsorption capacity and low detection limit for target TiO2 NPs, and was demonstrated with great potential for monitoring TiO2 NPs in the environment.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Baoshan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
12
|
Fate Determination of ZnO in Commercial Foods and Human Intestinal Cells. Int J Mol Sci 2020; 21:ijms21020433. [PMID: 31936671 PMCID: PMC7014048 DOI: 10.3390/ijms21020433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Zinc oxide (ZnO) particles are widely used as zinc (Zn) fortifiers, because Zn is essential for various cellular functions. Nanotechnology developments may lead to production of nano-sized ZnO, although nanoparticles (NPs) are not intended to be used as food additives. Current regulations do not specify the size distribution of NPs. Moreover, ZnO is easily dissolved into Zn ions under acidic conditions. However, the fate of ZnO in commercial foods or during intestinal transit is still poorly understood. (2) Methods: We established surfactant-based cloud point extraction (CPE) for ZnO NP detection as intact particle forms using pristine ZnO-NP-spiked powdered or liquid foods. The fate determination and dissolution characterization of ZnO were carried out in commercial foods and human intestinal cells using in vitro intestinal transport and ex vivo small intestine absorption models. (3) Results: The results demonstrated that the CPE can effectively separate ZnO particles and Zn ions in food matrices and cells. The major fate of ZnO in powdered foods was in particle form, in contrast to its ionic fate in liquid beverages. The fate of ZnO was closely related to the extent of its dissolution in food or biomatrices. ZnO NPs were internalized into cells in both particle and ion form, but dissolved into ions with time, probably forming a Zn–ligand complex. ZnO was transported through intestinal barriers and absorbed in the small intestine primarily as Zn ions, but a small amount of ZnO was absorbed as particles. (4) Conclusion: The fate of ZnO is highly dependent on food matrix type, showing particle and ionic fates in powdered foods and liquid beverages, respectively. The major intracellular and intestinal absorption fates of ZnO NPs were Zn ions, but a small portion of ZnO particle fate was also observed after intestinal transit. These findings suggest that the toxicity of ZnO is mainly related to the Zn ion, but potential toxicity resulting from ZnO particles cannot be completely excluded.
Collapse
|
13
|
López-Mayan J, Barciela-Alonso MC, Domínguez-González MR, Peña-Vázquez E, Bermejo-Barrera P. Cloud point extraction and ICP-MS for titanium speciation in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Liu X, He M, Chen B, Hu B. Monolithic capillary microextraction combined with ICP-MS for the determination of TiO2 NPs in environmental water samples. Talanta 2019; 197:334-340. [DOI: 10.1016/j.talanta.2019.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
|
15
|
Kojro G, Rudzki PJ, Pisklak DM, Giebułtowicz J. Matrix effect screening for cloud-point extraction combined with liquid chromatography coupled to mass spectrometry: Bioanalysis of pharmaceuticals. J Chromatogr A 2019; 1591:44-54. [DOI: 10.1016/j.chroma.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
|
16
|
Ruan X, Zhang K, Jiang X, Zhang X, Yan X, Zhang N, He G. Facile fabrication of reinforced homoporous MF membranes by in situ breath figure and thermal adhesion method on substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Yang Y, Reed R, Schoepf J, Hristovski K, Herckes P, Westerhoff P. Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:515-522. [PMID: 28129906 DOI: 10.1016/j.scitotenv.2017.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/18/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Increasing application of engineered nanomaterials (ENMs) in industry and consumer products inevitably lead to their release into and impact on aquatic environments. To characterize the NMs efficiently in surface water, a fast and simple method is needed to separate and concentrate nanomaterials from the aqueous matrix without altering their shape and size. Applying cloud-point extraction (CPE) using the surfactant Triton 114 to an array of NMs (titanium dioxide, gold, silver, and silicon dioxide) with different sizes or capping agents in nanopure water resulted in extraction efficiency of 83%-107%. Additional CPE experiments were conducted to extract NMs from surface, potable, and sewage waters, and NMs enriched in the surfactant phase were characterized using transmission electron microscopy coupled with energy dispersive x-ray spectroscopy. The most abundant nanoparticles identified in surface water were silica, titanium dioxide, and iron oxide with 4-99nm diameter. The extraction efficiencies of CPE for silicon, titanium, and iron elements from environmental water samples were 51%, 15%, and 99%, respectively. This study applied CPE with TEM to enrich and analyze popular nanoparticles such as SiO2 and TiO2 from natural waters, which has not been well addressed by previous researches. Overall, CPE coupled with transmission electron microscopy (TEM) can be an effective method to characterize NMs in aqueous water samples, and further optimization will increase the extraction efficiency of NMs in complicated surface water matrix.
Collapse
Affiliation(s)
- Yu Yang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Robert Reed
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Jared Schoepf
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, United States
| | - Kiril Hristovski
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, United States
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
18
|
Hadri HE, Hackley VA. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. ENVIRONMENTAL SCIENCE. NANO 2017; 4:105-116. [PMID: 28507763 PMCID: PMC5427641 DOI: 10.1039/c6en00322b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg-1 level. The objective of this study was to explore cloud point extraction (CPE) as a viable method to pre-concentrate gold nanoparticles (AuNPs), as a model MNP, spiked into a soil extract matrix. To that end, different extraction conditions and surface coatings were evaluated in a simple matrix. The CPE method was then applied to soil extract samples spiked with AuNPs. Total gold, determined by inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion, yielded a recovery greater than 90 %. The first known application of single particle ICP-MS and asymmetric flow field-flow fractionation to evaluate the preservation of the AuNP physical state following CPE extraction is demonstrated.
Collapse
Affiliation(s)
- Hind El Hadri
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| |
Collapse
|
19
|
Liu X, Chen B, Cai Y, He M, Hu B. Size-Based Analysis of Au NPs by Online Monolithic Capillary Microextraction-ICPMS. Anal Chem 2016; 89:560-564. [DOI: 10.1021/acs.analchem.6b03532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaolan Liu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Beibei Chen
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yabing Cai
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Man He
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bin Hu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
20
|
Leopold K, Philippe A, Wörle K, Schaumann GE. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Li Y, Ao Y, Lv B, Yang Y. Long-term effects of CuO nanoparticles on the surface physicochemical properties of biofilms in a sequencing batch biofilm reactor. Appl Microbiol Biotechnol 2016; 100:9629-9639. [DOI: 10.1007/s00253-016-7799-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
|
22
|
Can cloud point-based enrichment, preservation, and detection methods help to bridge gaps in aquatic nanometrology? Anal Bioanal Chem 2016; 408:7551-7557. [PMID: 27558100 PMCID: PMC5061829 DOI: 10.1007/s00216-016-9873-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this “concentration gap” via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved “sample preparation dilemma” in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the “CPE extractable fraction” by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.
Collapse
|
23
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
24
|
Majedi SM, Lee HK. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel HJ. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:3-19. [PMID: 25455109 DOI: 10.1016/j.scitotenv.2014.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 05/29/2023]
Abstract
Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
Collapse
Affiliation(s)
- Gabriele E Schaumann
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Allan Philippe
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Mirco Bundschuh
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau, Germany; Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala, Sweden.
| | - George Metreveli
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Sondra Klitzke
- Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br., Germany; Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany.
| | - Denis Rakcheev
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Alexandra Grün
- Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz, Germany.
| | - Samuel K Kumahor
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Physics, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany.
| | - Melanie Kühn
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Thomas Baumann
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Friederike Lang
- Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br., Germany.
| | - Werner Manz
- Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz, Germany.
| | - Ralf Schulz
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau, Germany.
| | - Hans-Jörg Vogel
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Physics, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Soil Science and Plant Nutrition, Von-Seckendorff-Platz 3, 06120 Halle/Saale, Germany.
| |
Collapse
|
26
|
Stepanov A, Vasilieva E, Valeeva F, Elistratova J, Mustafina A, Zakharova L, Amirov R, Morozov V, Kleshnina S, Solovyeva S, Rizvanov I, Antipin I, Konovalov A. Synthesis and aggregation properties of new biodegradable amphiphilic derivatives of p-tert-butylphenol for green separation of Gd(III) ions. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Melnyk A, Namieśnik J, Wolska L. Theory and recent applications of coacervate-based extraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Yan N, Zhu Z, Jin L, Guo W, Gan Y, Hu S. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2015; 87:6079-87. [DOI: 10.1021/acs.analchem.5b00612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Neng Yan
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China, 430074
| | - Zhenli Zhu
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China, 430074
| | - Lanlan Jin
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China, 430074
| | - Wei Guo
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China, 430074
| | - Yiqun Gan
- School
of Environmental Studies, China University of Geosciences, Wuhan, China, 430074
| | - Shenghong Hu
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China, 430074
- Faculty
of Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| |
Collapse
|
29
|
GHASEMI E, KAYKHAII M. Developing a New Micro Cloud Point Extraction Method for Simultaneous Preconcentration and Spectrophotometric Determination of Uranium and Vanadium in Brine. ANAL SCI 2015; 31:407-11. [DOI: 10.2116/analsci.31.407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Elham GHASEMI
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan
| | - Massoud KAYKHAII
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan
| |
Collapse
|
30
|
Liu J, Liu M, Li X, Lu X, Chen G, Sun Z, Li G, Zhao X, Zhang S, Song C, Wang H, Suo Y, You J. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics. J Chromatogr A 2014; 1371:20-9. [PMID: 25456583 DOI: 10.1016/j.chroma.2014.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes.
Collapse
Affiliation(s)
- Jianjun Liu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Mengge Liu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiu Li
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaomin Lu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guang Chen
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| | - Zhiwei Sun
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guoliang Li
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xianen Zhao
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shijuan Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Cuihua Song
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Hua Wang
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yourui Suo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| |
Collapse
|
31
|
Nojavan S, Gorji T, Davarani SSH, Morteza-Najarian A. Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel. Anal Chim Acta 2014; 838:51-7. [DOI: 10.1016/j.aca.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
|