1
|
Sun M, Emran MY, Kotb A, Bai J, Ma C, Zhou M. A stand-alone and point-of-care electrochemical immuno-device for Salmonella typhimurium testing. Talanta 2024; 285:127366. [PMID: 39672000 DOI: 10.1016/j.talanta.2024.127366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
The rapid development of accurate and point-of-care diagnostic tools for foodborne diseases has made a massive impact in global health. Salmonella typhimurium (S. typhimurium) exemplifies an enteric pathogen, being a gram-negative bacteria responsible for several gastrointestinal and systemic illnesses. However, the existing electrochemical devices used to detect S. typhimurium have always been bulky or unfully integrated, implying a critical need for the design and development of stand-alone and point-of-care electrochemical sensors for portable S. typhimurium testing. Herein, we present the first instance of a stand-alone and point-of-care electrochemical immuno-device (SPEID) capable of conducting S. typhimurium analysis in actual specimens of purified drinking water that is mixed with S. typhimurium and watermelon juice that is mixed with S. typhimurium at point-of-care. The development of SPEID for S. typhimurium testing is achieved by overcoming substantial engineering challenges in seamlessly integrating an autonomous-transportation module (ATM) for microfluidic autonomous and directional liquid transportation, an immune-testing module (ITM) for S. typhimurium testing, and an electronic-integration module (EIM) for converting signal and wirelessly transmitting. The SPEID is a stand-alone one which possesses pump-free and cost-effective feature for measuring S. typhimurium at point of care.
Collapse
Affiliation(s)
- Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
2
|
Daurai B, Baruah AJ, Gogoi M. Recent advances in point-of-care biosensors for pancreatic diseases. Trends Analyt Chem 2024; 179:117867. [DOI: 10.1016/j.trac.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Pérez-Ginés V, Torrente-Rodríguez RM, Pedrero M, Martínez-Bosch N, de Frutos PG, Navarro P, Pingarrón JM, Campuzano S. Electrochemical immunoplatform to help managing pancreatic cancer. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Electrochemical Immunoassay for Tumor Marker CA19-9 Detection Based on Self-Assembled Monolayer. Molecules 2022; 27:molecules27144578. [PMID: 35889454 PMCID: PMC9324264 DOI: 10.3390/molecules27144578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022] Open
Abstract
A CA19-9 electrochemical immunosensor was constructed using a hybrid self-assembled membrane modified with a gold electrode and applied to detect real samples. Hybrid self-assembled membranes were selected for electrode modification and used to detect antigens. First, the pretreated working electrodes were placed in a 3-mercaptopropionic acid (MPA)/β-mercaptoethanol (ME) mixture for 24 h for self-assembly. The electrodes were then placed in an EDC/NHS mixture for 1 h. Layer modification was performed by stepwise dropwise addition of CA19-9 antibody, BSA, and antigen. Differential pulse voltammetry was used to characterize this immunosensor preparation process. The assembled electrochemical immunosensor enables linear detection in the concentration range of 0.05–500 U/mL of CA19-9, and the detection limit was calculated as 0.01 U/mL. The results of the specificity measurement test showed that the signal change of the interfering substance was much lower than the response value of the detected antigen, indicating that the sensor has good specificity and strong anti-interference ability. The repeatability test results showed that the relative standard deviations were less than 5%, showing good accuracy and precision. The CA19-9 electrochemical immunosensor was used for the actual sample detection, and the experimental results of the standard serum addition method showed that the RSD values of the test concentrations were all less than 10%. The recoveries were 102.4–115.0%, indicating that the assay has high precision, good accuracy, and high potential application value.
Collapse
|
5
|
Qiu R, Dai J, Meng L, Gao H, Wu M, Qi F, Feng J, Pan H. A Novel Electrochemical Immunosensor Based on COF-LZU1 as Precursor to Form Heteroatom-Doped Carbon Nanosphere for CA19-9 Detection. Appl Biochem Biotechnol 2022; 194:3044-3065. [PMID: 35334069 DOI: 10.1007/s12010-022-03861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 01/07/2023]
Abstract
Porous carbon sphere materials have a large variety of applications in several fields due to the large surface area, adaptable porosity, and good conductivity they possess. Obtaining a steady carbon sphere using the green synthesis method remains a significant challenge. In this experiment, covalent organic frameworks (COFs) were used as a precursor and Fe3O4NPs were integrated into the precursor in order to synthesize a porous carbon sphere material using the one-step pyrolysis method. COFs have an ordered porous structure, perpetual porosity, large surface area, and low density and display good environmental tolerance. These properties make them an excellent precursor for synthesizing porous carbon sphere, which maintains good morphology at high temperatures, and it is not involved in the removal of dangerous reagent and small size restrictions during the synthesis process. In addition to the formation of a porous carbon sphere, transition metal carbon material that contains N element can be an active catalyst. The composites exhibit better activity when Fe is doped into carbon materials containing N element than that of other doped transition metals including Mn and Co. In this situation, the integration of Fe3O4NPs and N element in the COF precursor exposed the active sites of the composites and the two substances synergistically improved the electrocatalytic properties, and the composites were named Fe3O4@NPCS. The constructed Fe3O4@NPCS/GCE immunosensor was applied as a means of detecting CA19-9 antigen and presented a wide linear range from 0.00001 to 10 U/mL with a low detection limit of 2.429 μU/mL (S/N = 3). In addition, the prepared immunosensor was utilized for detecting CA19-9 antigen in the real human serum, and the recovery rates were in the range from 95.24% to 106.38%. Therefore, a porous carbon sphere prepared by COFs as a precursor can be applied for the detection of CA19-9 antigen in real samples, which could be an excellent strategy for CA19-9 antigen detection and could potentially promote the development of COF materials in various electrochemical fields.
Collapse
Affiliation(s)
- Ren Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jianmin Dai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Lingqiang Meng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongmin Gao
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Mengdie Wu
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feifan Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jing Feng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
6
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
7
|
An Immunosensor for the Detection of ULBP2 Biomarker. MICROMACHINES 2020; 11:mi11060568. [PMID: 32503144 PMCID: PMC7344431 DOI: 10.3390/mi11060568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023]
Abstract
Pancreatic cancer (PC) is a global health problem that features a very high mortality rate. The UL16 binding protein 2 (ULBP2) is a new biomarker for PC detection. This study develops a simple, reliable, and inexpensive immunosensor for the detection of the ULBP2 antigen while also investigating the effects of an array configuration of connected sensors and zinc oxide (ZnO) nanoparticles on the immunosensor’s sensitivity. The ULBP2 antibody was immobilized onto the screen-printed carbon electrode (SPCE) surfaces of three different sensors: a simple SPCE (ULBP2-SPCE); an SPCE array, which is a series of identical SPCE connected to each other at different arrangements of rows and columns (ULBP2-SPCE-1x2 and ULBP2-SPCE-1x3); and an SPCE combined with ZnO nanoparticles (ULBP2-ZnO/SPCE). Impedance spectrum measurements for the immunosensors to ULBP2 antigen were conducted and compared. According to the result, the array configurations (ULBP2-SPCE-1x2 and ULBP2-SPCE-1x3) show an improvement of sensitivity compared to the ULBP2-SPCE alone, but the improvement is not as significant as that of the ULBP2-ZnO/SPCE configuration (ULBP2-ZnO/SPCE > ULBP2-SPCE: 18 times larger). The ULBP2-ZnO/SPCE immunosensor has a low limit of detection (1 pg/mL) and a high sensitivity (332.2 Ω/Log(pg/mL)), excellent linearity (R2 = 0.98), good repeatability (coefficients of variation = 5.03%), and is stable in long-term storage (retaining 95% activity after 28 days storage). In an array configuration, the immunosensor has an increased signal-to-noise ratio (ULBP2-SPCE-1x3 > ULBP2-SPCE: 1.5-fold) and sensitivity (ULBP2-SPCE-1x3 > ULBP2-SPCE: 2.6-fold). In conclusion, either the modification with ZnO nanoparticles onto the sensor or the use of an array configuration of sensors can enhance the immunosensor’s sensitivity. In this study, the best immunosensor for detecting ULBP2 antigens is the ULBP2-ZnO/SPCE immunosensor.
Collapse
|
8
|
Bibi N, Awan IT, Awan AT. New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:107-140. [DOI: 10.1007/978-981-15-1067-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Pollap A, Kochana J. Electrochemical Immunosensors for Antibiotic Detection. BIOSENSORS 2019; 9:E61. [PMID: 31052356 PMCID: PMC6628091 DOI: 10.3390/bios9020061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are an important class of drugs destined for treatment of bacterial diseases. Misuses and overuses of antibiotics observed over the last decade have led to global problems of bacterial resistance against antibiotics (ABR). One of the crucial actions taken towards limiting the spread of antibiotics and controlling this dangerous phenomenon is the sensitive and accurate determination of antibiotics residues in body fluids, food products, and animals, as well as monitoring their presence in the environment. Immunosensors, a group of biosensors, can be considered an attractive tool because of their simplicity, rapid action, low-cost analysis, and especially, the unique selectivity arising from harnessing the antigen-antibody interaction that is the basis of immunosensor functioning. Herein, we present the recent achievements in the field of electrochemical immunosensors designed to determination of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Pollap
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Jolanta Kochana
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
10
|
Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. SENSORS 2018; 18:s18072010. [PMID: 29932161 PMCID: PMC6069457 DOI: 10.3390/s18072010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Electrochemical enzyme-linked immunosorbent assay (ELISA)-based immunoassays for cancer biomarker detection have recently attracted much interest owing to their higher sensitivity, amplification of signal, ease of handling, potential for automation and combination with miniaturized analytical systems, low cost and comparative simplicity for mass production. Their developments have considerably improved the sensitivity required for detection of low concentrations of cancer biomarkers present in bodily fluids in the early stages of the disease. Recently, various attempts have been made in their development and several methods and processes have been described for their development, amplification strategies and testing. The present review mainly focuses on the development of ELISA-based electrochemical immunosensors that may be utilized for cancer diagnosis, prognosis and therapy monitoring. Various fabrication methods and signal enhancement strategies utilized during the last few years for the development of ELISA-based electrochemical immunosensors are described.
Collapse
|
11
|
Alarfaj NA, El-Tohamy MF, Oraby HF. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite. Int J Mol Sci 2018; 19:E1162. [PMID: 29641488 PMCID: PMC5979385 DOI: 10.3390/ijms19041162] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL-1 and had a lower detection limit of 0.007 U mL-1. The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.
Collapse
Affiliation(s)
- Nawal Ahmad Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Maha Farouk El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
- General Administration and Medical Affairs, Zagazig University, Zagazig 44511, Egypt.
| | - Hesham Farouk Oraby
- Department of Agronomy, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
12
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
13
|
Soares J, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHG, Reis RM, Carvalho AL, Corrêa DS, Oliveira ON. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS OMEGA 2017; 2:6975-6983. [PMID: 30023536 PMCID: PMC6044935 DOI: 10.1021/acsomega.7b01029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 05/15/2023]
Abstract
We report the fabrication of immunosensors based on nanostructured mats of electrospun nanofibers of polyamide 6 and poly(allylamine hydrochloride) coated either with multiwalled carbon nanotubes (MWCNTs) or gold nanoparticles (AuNPs), whose three-dimensional structure was suitable for the immobilization of anti-CA19-9 antibodies to detect the pancreatic cancer biomarker CA19-9. Using impedance spectroscopy, the sensing platform was able to detect CA19-9 with a detection limit of 1.84 and 1.57 U mL-1 for the nanostructured architectures containing MWCNTs and AuNPs, respectively. The high sensitivity achieved can be attributed to the irreversible adsorption between antibodies and antigens, as confirmed with polarization-modulated infrared reflection absorption spectroscopy. The adsorption mechanism was typical Langmuir-Freundlich processes. The high sensitivity and selectivity of the immunosensors were also explored in tests with blood serum from patients with distinct concentrations of CA19-9, for which the impedance spectra data were processed with a multidimensional projection technique. The robustness of the immunosensors in dealing with patient samples without suffering interference from analytes present in biological fluids is promising for a simple, effective diagnosis of pancreatic cancer at early stages.
Collapse
Affiliation(s)
- Juliana
C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| | - Leonardo E. O. Iwaki
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | - Andrey C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | | | - Matias E. Melendez
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | | | - Rui M. Reis
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
- ICVS/3B’s-PT
Government Associate Laboratory, Life and Health Sciences Research
Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Andre L. Carvalho
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | - Daniel S. Corrêa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| |
Collapse
|
14
|
Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, Fregnani JHTG, Carvalho AL, Oliveira ON. Carbon Nanotube Matrix for Highly Sensitive Biosensors To Detect Pancreatic Cancer Biomarker CA19-9. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25878-25886. [PMID: 28696659 DOI: 10.1021/acsami.7b07384] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biosensors fabricated with nanomaterials promise faster, cheaper, and more efficient alternatives to traditional, often bulky devices for early cancer diagnosis. In this study, we fabricated a thin film sensing unit on interdigitated gold electrodes combining polyethyleneimine and carbon nanotubes in a layer by layer fashion, onto which antibodies anti-CA19-9 were adsorbed with a supporting layer of N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide solution. By use of impedance spectroscopy, the pancreatic cancer biomarker CA19-9 was detected in a buffer with limit of detection of 0.35 U/mL. This high sensitivity allowed for distinction between samples of blood serum from patients with distinct probabilities to develop pancreatic cancer. The selectivity of the biosensor was confirmed in subsidiary experiments with HT-29 and SW-620 cell lines and possible interferents, e.g., p53 protein, ascorbic acid, and glucose, where significant changes in capacitance could only be measured with HT-29 that contained the CA19-9 biomarker. Chemisorption of CA19-9 molecules onto the layer of anti-CA19-9 antibodies was the mechanism responsible for sensing while electrostatic interactions drove the adsorption of carbon nanotubes, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The adsorption behavior was successfully described by the Langmuir-Freundlich isotherm.
Collapse
Affiliation(s)
- Anshu Thapa
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
- Department of Physics, University of Bath , Bath BA2 7AY, United Kingdom
| | | | | | - Iram Taj Awan
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| | - Diogo Volpati
- Department of Natural Sciences, Mittuniversitetet , Sundsvall 851 70, Sweden
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| |
Collapse
|
15
|
Mandli J, Attar A, Ennaji MM, Amine A. Indirect competitive electrochemical immunosensor for hepatitis A virus antigen detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Huang Z, Jiang Z, Zhao C, Han W, Lin L, Liu A, Weng S, Lin X. Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19-9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples. Int J Nanomedicine 2017; 12:3049-3058. [PMID: 28450781 PMCID: PMC5399979 DOI: 10.2147/ijn.s131805] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carbohydrate antigen 19-9 (CA19-9) is an important biomarker for the early diagnosis and clinical monitoring of pancreatic cancer. Reliable, simple, and accurate methods for the detection of CA19-9 are still urgently needed. In this study, polythionine-Au composites (AuNPs@ PThi) were designed and prepared through one-pot reaction using HAuCl4 as the co-oxidant and raw material in thionine solution containing FeCl3 as the oxidant. AuNPs@PThi-immobilized glassy carbon electrode was used as a sensitive redox probe for electrochemical interface. AuNPs@PThi not only favored the amplification of electrochemical signals but also facilitated excellent environmental friendliness for bioassay. Maximizing the electrochemical properties of AuNPs@PThi, an effective label-free electrochemical immunoassay for the ultrasensitive and reliable detection of CA19-9 was developed. Under optimal conditions, the linear range of the proposed immunosensor was estimated to range from 6.5 to 520 U/mL, with a detection limit of 0.26 U/mL at a signal-to-noise ratio of 3. The prepared immunosensor for CA19-9 detection showed high sensitivity, stability, and reproducibility. Furthermore, the fabricated immunosensor based on AuNPs@PThi can effectively detect and distinguish clinical serum samples of pancreatic cancer and normal control with accuracy and convenience.
Collapse
Affiliation(s)
- Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
| | - Zhouqian Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
| | - Chengfei Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
| | - Wendi Han
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Correspondence: Liqing Lin; Shaohuang Weng, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou, Fujian 350122, People’s Republic of China, Tel/fax +86 591 2286 2016, Email ;
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Correspondence: Liqing Lin; Shaohuang Weng, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou, Fujian 350122, People’s Republic of China, Tel/fax +86 591 2286 2016, Email ;
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
| |
Collapse
|
17
|
Sun AL, Qi QA. Silver-functionalized g-C3N4 nanohybrids as signal-transduction tags for electrochemical immunoassay of human carbohydrate antigen 19-9. Analyst 2016; 141:4366-72. [PMID: 27183220 DOI: 10.1039/c6an00696e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A simple and feasible electrochemical immunosensing platform was developed for highly efficient screening of a disease-related protein (human carbohydrate antigen 19-9, CA 19-9 used in this case) using silver-functionalized g-C3N4 nanosheets (Ag/g-C3N4) as signal-transduction tags. Initially, Ag/g-C3N4 nanohybrids were synthesized by combining thermal polymerization of the melamine precursor with the photo-assisted reduction method. Thereafter, the as-synthesized Ag/g-C3N4 nanohybrids were utilized for the labeling of the anti-CA 19-9 detection antibody by using a typical carbodiimide coupling method. The assay was carried out on a capture antibody-modified glassy carbon electrode in a sandwich-type detection mode. The detectable signal mainly derived from the voltammetric characteristics of the immobilized nanosilver particles on the g-C3N4 nanosheets within the applied potentials. Under the optimal conditions, the voltammetric peak currents increased with the increasing amount of target CA 19-9, and exhibited a wide linear range from 5.0 mU mL(-1) to 50 U mL(-1) with a detection limit of 1.2 mU mL(-1). Our strategy also displayed good reproducibility, precision and specificity. The results of the analysis of clinical serum specimens were in good accordance with the results obtained by an enzyme-linked immunosorbent assay (ELISA) method. The newly developed immunosensing system is promising for enzyme-free and cost-effective analysis of low-abundance proteins.
Collapse
Affiliation(s)
- Ai-Li Sun
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453000, P.R. China.
| | | |
Collapse
|
18
|
Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and Challenges. ELECTROANAL 2016. [DOI: 10.1002/elan.201501174] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry; Faculty of Pharmacy; Ege University, Ege University Faculty of Pharmacy Department of Analytical Chemistry; Izmir Turkey 35100 Bornova/Izmir Turkey
| | - Mostafa Azimzadeh
- Department of Life Science Engineering; Faculty of New Sciences and Technologies; University of Tehran; Tehran Iran
| | - Mehmet Ozsoz
- Department of Biomedical Engineering Faculty of Engineering and Architecture; Gediz University; İzmir Turkey
| |
Collapse
|
19
|
Yu B, Cong H, Zhai F, Wang Y, Zhang X. Preparation of three-dimensional ordered macroporous C60 and its application in electrochemical sensors. RSC Adv 2016. [DOI: 10.1039/c6ra21016c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional ordered macroporous (3DOM) materials of C60 were prepared on gold surfaces by using colloidal crystals as templates.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yuezhong Wang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Xiaoyan Zhang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
20
|
Soares AC, Soares JC, Shimizu FM, Melendez ME, Carvalho AL, Oliveira ON. Controlled Film Architectures to Detect a Biomarker for Pancreatic Cancer Using Impedance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25930-7. [PMID: 26539972 DOI: 10.1021/acsami.5b08666] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The need for analytical devices for detecting cancer at early stages has motivated research into nanomaterials where synergy is sought to achieve high sensitivity and selectivity in low-cost biosensors. In this study, we developed a film architecture combining self-assembled monolayer (SAM) and layer-by-layer (LbL) films of polysaccharide chitosan and the protein concanavalin A, on which a layer of anti-CA19-9 antibody was adsorbed. Using impedance spectroscopy with this biosensor, we were capable of detecting low concentrations of the antigen CA19-9, an important biomarker for pancreatic cancer. The limit of detection of 0.69U/mL reached is sufficient for detecting pancreatic cancer at very early stages. The selectivity of the biosensor was inferred from a series of control experiments with samples of cell lines that were tested positive (HT29) and negative (SW620) for the biomarker CA19-9, in addition to the lack of changes in the capacitance value for other analytes and antigen that are not related to this type of cancer. The high sensitivity and selectivity are ascribed to the very specific antigen-antibody interaction, which was confirmed with PM-IRRAS and atomic force microscopy. Also significant is that used information visualization methods to show that different cell lines and commercial samples containing distinct concentrations of CA19-9 and other analytes can be easily distinguished from each other. These computational methods are generic and may be used in optimization procedures to tailor biosensors for specific purposes, as we demonstrated here by comparing the performance of two film architectures in which the concentration of chitosan was varied.
Collapse
Affiliation(s)
- Andrey C Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo Brazil
- São Carlos School of Engineering, University of São Paulo , 13560-000 São Carlos, São Paulo, Brazil
| | - Juliana C Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo Brazil
| | - Flavio M Shimizu
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo Brazil
| | | | - André L Carvalho
- Barretos Cancer Hospital , 14784-400 Barretos, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo Brazil
| |
Collapse
|
21
|
Xu Q, Tang J, Shen Y, Jin L, Hu X. Hierarchical porous TiO2 fabricated from magnolia grandiflora petals templates for the immobilization and electrical wiring of proteins. Talanta 2015; 144:6-12. [DOI: 10.1016/j.talanta.2015.05.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
22
|
Sha Y, Guo Z, Chen B, Wang S, Ge G, Qiu B, Jiang X. A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosens Bioelectron 2015; 66:468-73. [DOI: 10.1016/j.bios.2014.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
|
23
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
24
|
Cámara CI, Monzón LMA, Coey JMD, Yudi LM. Interaction of magnetic nanoparticles with phospholipid films adsorbed at a liquid/liquid interface. Phys Chem Chem Phys 2015; 17:414-21. [DOI: 10.1039/c4cp04464a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of Co magnetic nanoparticles in phospholipid films decreases their structuration and increases their permeability to ion transfer.
Collapse
Affiliation(s)
- C. I. Cámara
- INFIQC (CONICET-Universidad Nacional de Córdoba)
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
- 5000 Córdoba
- Argentina
| | | | | | - L. M. Yudi
- INFIQC (CONICET-Universidad Nacional de Córdoba)
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
- 5000 Córdoba
- Argentina
| |
Collapse
|
25
|
Radhakrishnan S, Kim SJ. An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2-reduced graphene oxide nanocomposite. RSC Adv 2015. [DOI: 10.1039/c4ra12841a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study describes cerium oxide-reduced graphene oxide (CeO2-rGO) prepared by a facile one-pot hydrothermal approach and its assembly with horseradish peroxidase (HRP) for the detection of hydrogen peroxide (H2O2) at trace levels.
Collapse
Affiliation(s)
- Sivaprakasam Radhakrishnan
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 690-756
- Republic of Korea
| | - Sang Jae Kim
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 690-756
- Republic of Korea
| |
Collapse
|
26
|
Feng X, Gan N, Zhou J, Li T, Cao Y, Hu F, Yu H, Jiang Q. A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|