1
|
Li W, Chen Z, Li X, Li X, Hui Y, Chen W. The Biosynthesis, Structure Diversity and Bioactivity of Sterigmatocystins and Aflatoxins: A Review. J Fungi (Basel) 2024; 10:396. [PMID: 38921382 PMCID: PMC11204465 DOI: 10.3390/jof10060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological activities. Studies have shown that sterigmatocystins and aflatoxins have a wide range of biological activities such as antitumour, antibacterial, anti-inflammatory, antiplasmodial, etc. The sterigmatocystins and aflatoxins had been shown to be hepatotoxic and nephrotoxic in animals. This review attempts to give a comprehensive summary of progress on the chemical structural features, synthesis, and bioactivity of sterigmatocystins and aflatoxins reported from 1954 to April 2024. A total of 72 sterigmatocystins and 20 aflatoxins are presented in this review. This paper reviews the chemical diversity and potential activity and toxicity of sterigmatocystins and aflatoxins, enhances the understanding of sterigmatocystins and aflatoxins that adversely affect humans and animals, and provides ideas for their prevention, research and development.
Collapse
Affiliation(s)
- Wenxing Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zhaoxia Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xize Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xinrui Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Zeng X, Li J, Xu L, Deng A, Li J. Development of a flow injection chemiluminescence immunoassay based on DES-mediated CuCo 2O 4 nanoenzyme for ultrasensitive detection of zearalenone in foods. Mikrochim Acta 2024; 191:175. [PMID: 38436786 DOI: 10.1007/s00604-024-06242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for 15 repetitive injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
3
|
Ali S, Battaglini Franco B, Theodoro Rezende V, Gabriel Dionisio Freire L, Lima de Paiva E, Clara Fogacio Haikal M, Leme Guerra E, Eliana Rosim R, Gustavo Tonin F, Savioli Ferraz I, Antonio Del Ciampo L, Augusto Fernandes de Oliveira C. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil. Food Res Int 2024; 180:114087. [PMID: 38395556 DOI: 10.1016/j.foodres.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| | - Bruna Battaglini Franco
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP) -Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Esther Lima de Paiva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Maria Clara Fogacio Haikal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Eloiza Leme Guerra
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Ivan Savioli Ferraz
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Luiz Antonio Del Ciampo
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
4
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Innovative approaches for mycotoxin detection in various food categories. AMB Express 2024; 14:7. [PMID: 38216801 PMCID: PMC10786816 DOI: 10.1186/s13568-024-01662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any processing phase before or after harvest. Animals and humans who consume MTs-contaminated food or feed may experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, developing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, and future directions of conventional detection methods versus innovative methods have also been highlighted and discussed.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt.
| |
Collapse
|
5
|
Yang H, Lv L, Niu M, Zhang D, Guo Z. A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods 2023; 12:4332. [PMID: 38231791 DOI: 10.3390/foods12234332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
The determination of the aflatoxin B1 (AFB1) content has received widespread attention in the context of food safety, which is a global public health issue. Accordingly, a label-free and turn-on fluorescent AFB1 determination method is developed herein with an ss-DNA aptamer as the recognition element, 4, 4-(1E,1E)-2, 2-(anthracene-9, 10-diyl) bis(ethene-2, 1-diyl) bis(N, N, N-trimethylbenzenaminium iodide) (DSAI) as the aggregation-induced emission (AIE) fluorescent probe, and single-walled carbon nanohorns (SWCNHs) as the selective part with a fluorescence quenching effect. In the presence of AFB1, the AFB1-specific aptamer undergoes a structural transformation and switches from being a random helix to a folded structure. DSAI's fluorescence is protected as a result of the resistance of the transformed aptamer adsorbed on the SWCNHs' surface. Because DSAI's fluorescence is not quenchable, the fluorescence intensity is calculated as a function of the AFB1 concentration. By simply mixing DSAI, aptamer, AFB1 samples, and SWCNHs, the method can be carried out in 2 h, with a limit of detection (LOD) of 1.83 ng/mL. It has a high selectivity in the presence of other mycotoxins, and its performance is confirmed in soybean sauce with a known concentration of AFB1. The LOD was 1.92 ng/mL in the soy sauce samples and the recovery ranged from 95 to 106%, implying that the presented aptasensor has great potential for food analysis.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Lei Lv
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
6
|
Mastanjević K, Kovačević D, Nešić K, Krstanović V, Habschied K. Traditional Meat Products-A Mycotoxicological Review. Life (Basel) 2023; 13:2211. [PMID: 38004351 PMCID: PMC10671907 DOI: 10.3390/life13112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.
Collapse
Affiliation(s)
- Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Dragan Kovačević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Ksenija Nešić
- Food and Feed Department, Institute of Veterinary Medicine of Serbia, Smolućska 11, 11070 Beograd, Serbia;
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| |
Collapse
|
7
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
8
|
Tavassoli M, Khezerlou A, Khalilzadeh B, Ehsani A, Kazemian H. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Mikrochim Acta 2023; 190:371. [PMID: 37646854 DOI: 10.1007/s00604-023-05937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC, V2N4Z9, Canada.
| |
Collapse
|
9
|
Martiník J, Boško R, Svoboda Z, Běláková S, Benešová K, Pernica M. Determination of mycotoxins and their dietary exposure assessment in pale lager beers using immunoaffinity columns and UPLC-MS/MS. Mycotoxin Res 2023:10.1007/s12550-023-00492-4. [PMID: 37332076 DOI: 10.1007/s12550-023-00492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
The use of contaminated raw materials can lead to the transfer of mycotoxins into the final product, including beer. This study describes the use of the commercially available immunoaffinity column 11+Myco MS-PREP® and UPLC-MS/MS for the determination of mycotoxins in pale lager-type beers brewed in Czech Republic and other European countries. The additional aim of the work was to develop, optimize and validate this analytical method. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy were tested. The calibration curves were linear with correlation coefficients (R2 > 0.99) for all mycotoxins under investigation. The LOD ranged from 0.1 to 50 ng/L and LOQ from 0.4 to 167 ng/L. Recoveries of the selected analytes ranged from 72.2 to 101.1%, and the relative standard deviation under conditions repeatability (RSDr) did not exceed 16.3% for any mycotoxin. The validated procedure was successfully applied for the analysis of mycotoxins in a total of 89 beers from the retail network. The results were also processed using advanced chemometric techniques and compared with similar published studies. The toxicological impact was taken into account.
Collapse
Affiliation(s)
- Jan Martiník
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5 166 28, Prague 6, Czech Republic
| | - Rastislav Boško
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Zdeněk Svoboda
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Sylvie Běláková
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Karolína Benešová
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Marek Pernica
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Vardali S, Papadouli C, Rigos G, Nengas I, Panagiotaki P, Golomazou E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023; 28:2519. [PMID: 36985489 PMCID: PMC10053411 DOI: 10.3390/molecules28062519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.
Collapse
Affiliation(s)
- Sofia Vardali
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christina Papadouli
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Ioannis Nengas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Golomazou
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
11
|
da Silva AAR, da Silva Júnior JJ, Cavalcanti MIDS, Machado DC, Medeiros PL, Rodrigues CG. Alphatoxin Nanopore Detection of Aflatoxin, Ochratoxin and Fumonisin in Aqueous Solution. Toxins (Basel) 2023; 15:toxins15030183. [PMID: 36977074 PMCID: PMC10058818 DOI: 10.3390/toxins15030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Mycotoxins are toxic and carcinogenic metabolites produced by groups of filamentous fungi that colonize food crops. Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are among the most relevant agricultural mycotoxins, as they can induce various toxic processes in humans and animals. To detect AFB1, OTA and FB1 in the most varied matrices, chromatographic and immunological methods are primarily used; however, these techniques are time-consuming and expensive. In this study, we demonstrate that unitary alphatoxin nanopore can be used to detect and differentiate these mycotoxins in aqueous solution. The presence of AFB1, OTA or FB1 inside the nanopore induces reversible blockage of the ionic current flowing through the nanopore, with distinct characteristics of blockage that are unique to each of the three toxins. The process of discrimination is based on the residual current ratio calculation and analysis of the residence time of each mycotoxin inside the unitary nanopore. Using a single alphatoxin nanopore, the mycotoxins could be detected at the nanomolar level, indicating that alphatoxin nanopore is a promising molecular tool for discriminatory analysis of mycotoxins in aqueous solution.
Collapse
Affiliation(s)
- Artur Alves Rodrigues da Silva
- Education and Health Center, Federal University of Campina Grande, Rua Aprígio Veloso, 882, Universitário, Campina Grande 58429-900, Brazil
- Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Janilson José da Silva Júnior
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Maria Isabel dos Santos Cavalcanti
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Dijanah Cota Machado
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Paloma Lys Medeiros
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Claudio Gabriel Rodrigues
- Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81-2126-8535
| |
Collapse
|
12
|
Leite M, Freitas A, Barbosa J, Ramos F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins (Basel) 2023; 15:toxins15030173. [PMID: 36977064 PMCID: PMC10054876 DOI: 10.3390/toxins15030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins are compounds produced by several fungi that contaminate agricultural fields and, either directly or by carry-over, final food products. Animal exposure to these compounds through contaminated feed can lead to their excretion into milk, posing threats to public health. Currently, aflatoxin M1 is the sole mycotoxin with a maximum level set in milk by the European Union, as well as the most studied. Nonetheless, animal feed is known to be contaminated by several groups of mycotoxins with relevance from the food safety point of view that can be carried over into milk. To evaluate the multi-mycotoxin occurrence in this highly consumed food product it is crucial to develop precise and robust analytical methodologies towards their determination. In this sense, an analytical method for the simultaneous identification of 23 regulated, non-regulated, and emerging mycotoxins in raw bovine milk using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was validated. A modified QuEChERS protocol for extraction purposes was used, and further validation was performed by assessing the selectivity and specificity, limits of detection and quantification (LOD and LOQ), linearity, repeatability, reproducibility, and recovery. The performance criteria were compliant with mycotoxin-specific and general European regulations for regulated, non-regulated, and emerging mycotoxins. The LOD and LOQ ranged between 0.001 and 9.88 ng mL−1 and 0.005 and 13.54 ng mL−1, respectively. Recovery values were between 67.5 and 119.8%. The repeatability and reproducibility parameters were below 15 and 25%, respectively. The validated methodology was successfully applied to determine regulated, non-regulated, and emerging mycotoxins in raw bulk milk from Portuguese dairy farms, proving the importance of widening the monitoring scope of mycotoxins in dairy products. Additionality, this method presents itself as a new strategic and integrated biosafety control tool for dairy farms for the analysis of these natural and relevant human risks.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Jorge Barbosa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Combining nanoflares biosensor and mathematical resolution technique for multi-class mycotoxin analysis in complex food matrices. Food Chem 2023; 402:134487. [DOI: 10.1016/j.foodchem.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
|
15
|
Küçük N, Şahin S, Çağlayan MO. An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies. Crit Rev Anal Chem 2023; 54:2422-2434. [PMID: 36719654 DOI: 10.1080/10408347.2023.2172677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patulin is a low molecular weight mycotoxin and poses a global problem, especially threatening food safety. It is also resistant to processing temperatures and is commonly found in fruits and vegetables. Studies have shown that it has toxic effects on animals and humans and the severity of patulin toxicity depends on the amount ingested. Therefore, the consumption of contaminated products, especially in infants and children, is important. The maximum daily intake of PAT that can be tolerated is found to be 0.4 µg/kg body weight to prevent chronic effects and the maximum residue limits in food samples were given as 50 ng/g (∼320 nM). Conventional methods for the detection of PAT have many disadvantages such as the use of expensive equipment, the need for trained personnel, and complicated sample preparation steps. To this extent, various numbers of research have been conducted on selective and sensitive detection of patulin using biosensor platforms in various media. This review presents an overview of the current literature dealing with the studies to develop patulin-specific aptamer-based biosensors and adapts various immobilization methods to increase the sensor response using different nanomaterials. Furthermore, a comparison of biosensors with conventional methods is presented using analytical performance parameters and their practicality for the detection of patulin.
Collapse
Affiliation(s)
- Netice Küçük
- Department of Biotechnology, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
16
|
A novel dual-flux immunochromatographic test strip based on luminescence resonance energy transfer for simultaneous detection of ochratoxin A and deoxynivalenol. Mikrochim Acta 2022; 189:466. [DOI: 10.1007/s00604-022-05561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/30/2022] [Indexed: 11/26/2022]
|
17
|
Understanding Current Methods for Sampling of Aflatoxins in Corn and to Generate a Best Practice Framework. Toxins (Basel) 2022; 14:toxins14120819. [PMID: 36548716 PMCID: PMC9785018 DOI: 10.3390/toxins14120819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Aflatoxin contamination in corn is a significant issue, posing substantial health threats to humans and animals. Aflatoxin testing protects consumer health, ensures the safe global trade of corn, and verifies compliance with legislation; however, effective sampling procedures are essential to ensure reliable results. While many sampling procedures exist, there is no evidence to indicate which is the best approach to ensure accurate detection. Using scientific and gray literature sources, this review analyzed sampling procedures to determine an optimum approach to guide the development of standard practices. Results revealed that sampling is the major source of error in the accurate assessment of aflatoxin levels in food and crucial for obtaining reliable results. To guarantee low variability and sample bias-increased sample size and sampling frequency, the use of automatic dynamic sampling techniques, adequate storage, and homogenization of aggregate samples for analysis are advised to ensure a representative sample. However, there is a lack of evidence to support this or indicate the current utilization of the reviewed procedures. Inadequate data prevented the recommendation of sample sizes or frequency for optimum practice, and thus, further research is required. There is an urgent need to make sampling procedures fit-for-purpose to obtain accurate and reliable aflatoxin measurements.
Collapse
|
18
|
Li S, Li X, Liu X, Zhang Q, Fang J, Li X, Yin X. Stability Evaluation of Aflatoxin B 1 Solution Certified Reference Material via Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. ACS OMEGA 2022; 7:40548-40557. [PMID: 36385854 PMCID: PMC9647931 DOI: 10.1021/acsomega.2c05829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxin B1 (AFB1) solution certified reference materials (CRMs) have been widely utilized in the measurements of AFB1 contaminations in foods and agricultural products. It is of great importance to evaluate the stability of AFB1 solution CRMs in different matrices for their practical applications. In this study, the stability of AFB1 solution CRM was investigated and its degradation products under various conditions were elucidated using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry for the first time. Exposure to high temperatures and UV light irradiation accelerated the degradation of AFB1 solution significantly, and the degradation products were largely dependent on the solvents. Two degradation pathways were proposed based on the degradation products. The addition reaction, oxidation reaction, and modification of the methoxy group are the major processes involved in the degradation of the AFB1 solution. The results of this study indicate that the property value of the acetonitrile solution of AFB1 can be well retained when it is stored at temperatures lower than 60 °C, and the exposure to UV light irradiation is avoided.
Collapse
Affiliation(s)
- Shuangqing Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiaomin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xuehui Liu
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Qinghe Zhang
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Jiaqi Fang
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xiuqin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiong Yin
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
19
|
Jeong HI, Han JE, Shin BC, Jang S, Won JH, Kim KH, Sung SH. Herbal Decoctions for the Levels of Sulfur Dioxide, Benzopyrene, and Mycotoxin from Traditional Korean Medicine Clinics: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13595. [PMID: 36294180 PMCID: PMC9602765 DOI: 10.3390/ijerph192013595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we investigated whether the levels of sulfur dioxide (SO2), benzopyrene, and mycotoxins in herbal decoctions in Korea in 2019 were within normal limits. In total, 30 decoctions composed of multi-ingredient traditional herbs were sampled from traditional Korean medicine (TKM) clinics, TKM hospitals, and external herbal dispensaries in 2019. The decoctions were analyzed for SO2, benzopyrene, and mycotoxins using 10 samples. SO2 and benzopyrene were not detected in any of the herbal decoctions. With regard to mycotoxins, aflatoxin B1 was not detected, but B2 was detected in 7 cases (0.00~0.04 ppb), G1 in 13 cases (0.03~0.29 ppb), and G2 in 9 cases (0.02~0.93 ppb). None of these values exceeded the restrictions in prior studies. Thus, we confirm that the amounts of SO2, benzopyrene, and mycotoxins in herbal decoctions are at safe levels and provides the basis of establishing safety management criteria for herbal decoctions.
Collapse
Affiliation(s)
- Hye In Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ji-Eun Han
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Korea
| | - Byung-Cheul Shin
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Soobin Jang
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38609, Korea
| | - Jae-Hee Won
- Department of Public Infrastructure Operation, National Institute of Korean Medicine Development, Seoul 04554, Korea
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Korea
| | - Soo-Hyun Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Korea
| |
Collapse
|
20
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
21
|
Santos AR, Carreiró F, Freitas A, Barros S, Brites C, Ramos F, Sanches Silva A. Mycotoxins Contamination in Rice: Analytical Methods, Occurrence and Detoxification Strategies. Toxins (Basel) 2022; 14:647. [PMID: 36136585 PMCID: PMC9504649 DOI: 10.3390/toxins14090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of mycotoxins in the environment is associated with potential crop contamination, which results in an unavoidable increase in human exposure. Rice, being the second most consumed cereal worldwide, constitutes an important source of potential contamination by mycotoxins. Due to the increasing number of notifications reported, and the occurrence of mycotoxins at levels above the legislated limits, this work intends to compile the most relevant studies and review the main methods used in the detection and quantification of these compounds in rice. The aflatoxins and ochratoxin A are the predominant mycotoxins detected in rice grain and these data reveal the importance of adopting safety storage practices that prevent the growth of producing fungi from the Aspergillus genus along all the rice chain. Immunoaffinity columns (IAC) and QuECHERS are the preferred methods for extraction and purification and HPLC-MS/MS is preferred for quantification purposes. Further investigation is still required to establish the real exposition of these contaminants, as well as the consequences and possible synergistic effects due to the co-occurrence of mycotoxins and also for emergent and masked mycotoxins.
Collapse
Affiliation(s)
- Ana Rita Santos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Filipa Carreiró
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
22
|
Adeyeye SAO, Ashaolu TJ, Idowu-Adebayo F. Mycotoxins: Food Safety, Consumer Health and Africa’s Food Security. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1957952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. A. O Adeyeye
- Department of Food Technology, Hindustan Institute of Technology and Science, Hindustan University, Chennai, Tamil Nadu, India
| | - T. J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Viet Nam
| | - F Idowu-Adebayo
- Department of Food Science & Technology, Federal University, Oye-Ekiti, Nigeria
- Food Quality & Design Group, Wageningen University and Research, The Netherlands
| |
Collapse
|
23
|
Troestch J, Reyes S, Vega A. Determination of Mycotoxin Contamination Levels in Rice and Dietary Exposure Assessment. J Toxicol 2022; 2022:3596768. [PMID: 36091100 PMCID: PMC9463030 DOI: 10.1155/2022/3596768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination by aflatoxins, ochratoxin A, and zearalenone of samples of paddy and polished rice stored in silos located in Chiriquí, Panama, was evaluated. A total of 23 samples were extracted using immunoaffinity columns and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector (FLD) and post-column photochemical derivatization. For the method used, the detection limits were lower than 0.25 μg/Kg for aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A and 9.35 μg/Kg for zearalenone; the limits of quantification were between 0.25 and 18.75 μg/Kg, respectively. Of the samples analyzed, all of the paddy rice samples were positive for at least one of the mycotoxins studied, zearalenone being the one found with the highest incidence (90.91%); for the polished rice samples, the mycotoxin with the highest incidence was zearalenone (50%), although in concentrations lower than those established in European legislation (100 μg/Kg). The estimate of the daily zearalenone intake according to the concentrations found was always less than 0.07 μg/Kg/bw. This is the first report on the determination of 6 mycotoxins in rice grains from Panama by the HPLC-FLD methodology. Considering the high incidence of mycotoxins in the analyzed rice samples, regular control in the production process is recommended to improve quality and ascertain its safety.
Collapse
Affiliation(s)
- Jose Troestch
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Stephany Reyes
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Aracelly Vega
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| |
Collapse
|
24
|
Orman E, Bekoe SO, Jato J, Spiegler V, Asare-Nkansah S, Agyare C, Hensel A, Bekoe EO. Quality assessment of African herbal medicine: A systematic review and the way forward. Fitoterapia 2022; 162:105287. [PMID: 36031027 DOI: 10.1016/j.fitote.2022.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In Africa, herbalism supplements allopathic medicine's efforts to ensure Universal Health Coverage attainment. This review was conducted to identify and to summarise current literature on methodological approaches used for quality control of herbal medicines in Africa, to evaluate the gaps associated with existing strategies within context of best practices, and make recommendations for future improvements. METHODS A systematic search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles were screened and assessed for eligibility. RESULTS 118 articles were included into the study. There was a high preference for impurity profiling tests (77%) indicating the prioritization for tests that guarantee safety despite the limited analytical resources available. Other classes of tests reported included identification tests (29%), physicochemical tests (18%), and content assays (12%). Although standard methods exist in preparing samples for impurity tests, different techniques were observed in different studies, and this could lead to differences in analytical outcomes. Content assays focused on single marker assessments, which may be inadequate to comprehensively assess the quality of products. CONCLUSION This review provides knowledge of existing strengths and challenges for herbal medicine quality assessments in Africa. For future it is recommended to implement more studies on contaminants (e.g. mycotoxins) and pharmaceutical adulterants. The use of chemometrics to develop analytical methods should be promoted. Also, stakeholders in the medicine quality industry in Africa need to effectively collaborate to establish a well co-ordinated and harmonized system to provide a sustainable framework for the GACP and GMP guided production and quality assurance of herbal medicines.
Collapse
Affiliation(s)
- Emmanuel Orman
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany; Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Oppong Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jonathan Jato
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany; Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Verena Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Samuel Asare-Nkansah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Emelia Oppong Bekoe
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Ghana, Accra, Ghana
| |
Collapse
|
25
|
Pereira C, Cunha SC, Fernandes JO. Mycotoxins of Concern in Children and Infant Cereal Food at European Level: Incidence and Bioaccessibility. Toxins (Basel) 2022; 14:toxins14070488. [PMID: 35878226 PMCID: PMC9317499 DOI: 10.3390/toxins14070488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cereals are of utmost importance for the nutrition of infants and children, as they provide important nutrients for their growth and development and, in addition, they are easily digestible, being the best choice for the transition from breast milk/infant formula to solid foods. It is well known that children are more susceptible than adults to toxic food contaminants, such as mycotoxins, common contaminants in cereals. Many mycotoxins are already regulated and controlled according to strict quality control standards in Europe and around the world. There are, however, some mycotoxins about which the level of knowledge is lower: the so-called emerging mycotoxins, which are not yet regulated. The current review summarizes the recent information (since 2014) published in the scientific literature on the amounts of mycotoxins in infants’ and children’s cereal-based food in Europe, as well as their behaviour during digestion (bioaccessibility). Additionally, analytical methods used for mycotoxin determination and in vitro methods used to evaluate bioaccessibility are also reported. Some studies demonstrated the co-occurrence of regulated and emerging mycotoxins in cereal products used in children’s food, which highlights the need to adopt guidelines on the simultaneous presence of more than one mycotoxin. Although very little research has been done on the bioaccessibility of mycotoxins in these food products, very interesting results correlating the fiber and lipid contents of such products with a higher or lower bioaccessibility of mycotoxins were reported. LC-MS/MS is the method of choice for the detection and quantification of mycotoxins due to its high sensibility and accuracy. In vitro static digestion models are the preferred ones for bioaccessibility evaluation due to their simplicity and accuracy.
Collapse
|
26
|
|
27
|
Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxins present serious threats not only for public health, but also for the economy and environment. The problems become more complex and serious due to co-contamination of multiple hazardous mycotoxins in commodities and environment. To mitigate against this issue, accurate, affordable, and rapid multiplex detection methods are required. This review presents an overview of emerging rapid immuno-based multiplex methods capable of detecting mycotoxins present in agricultural products and feed ingredients published within the past five years. The scientific principles, advantages, disadvantages, and assay performance of these rapid multiplex immunoassays, including lateral flow, fluorescence polarization, chemiluminescence, surface plasmon resonance, surface enhanced Raman scattering, electrochemical sensor, and nanoarray are discussed. From the recent literature landscape, it is predicted that the future trend of the detection methods for multiple mycotoxins will rely on the advance of various sensor technologies, a variety of enhancing and reporting signals based on nanomaterials, rapid and effective sample preparation, and capacity for quantitative analysis.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Christopher T Elliott
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Ratthaphol Charlermroj
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
28
|
Ayele M, Haile D, Alonso S, Sime H, Abera A, Balcha KH, Roba KT, Guma GT, Endris BS. Aflatoxin exposure among children of age 12-59 Months in Butajira District, South-Central Ethiopia: a community based cross-sectional study. BMC Pediatr 2022; 22:326. [PMID: 35655154 PMCID: PMC9161506 DOI: 10.1186/s12887-022-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background The continued provision of safe food, free of aflatoxin remains a huge challenge in developing countries. Despite several favourable climatic conditions that facilitate aflatoxin contamination in Ethiopia, there is little information showing aflatoxin exposure in children. Therefore, this study assessed aflatoxin exposure among young children in Butajira district, South-Central Ethiopia. Methods Community based cross-sectional study stratified by agro-ecology was employed in Health and Demographic Surveillance Site (HDSS) of Butajira. The study included 332 children aged 12–59 months and were selected by simple random sampling technique using the HDSS registration number as a sampling frame. We collected data on dietary practice and aflatoxin exposure. Aflatoxin M1 concentration in urine was measured by Enzyme-Linked Immunosorbent assay (ELISA). The data analysis was carried out using STATA. Results Detectable urinary Aflatoxin M1 was found in 62.4% (95% CI: 56.9 – 67.5%) of the children at a level ranging from 0.15 to 0.4 ng/ml. Children living in lowland agro-ecological zone had [AOR = 2.11 (95% CI; 1.15, 3.88] odds of being exposed to aflatoxin as compared to children living in highland agro-ecological zone. Children at lower socio-economic status [AOR = 0.27 (95% CI; 0.14, 0.50] and medium socio-economic status [AOR = 0.47 (95% CI; 0.25, 0.87] had 73% and 53% lower odds of being exposed to aflatoxin as compared to children in the higher socio-economic status, respectively. Conclusions Aflatoxin exposure among young children was very high in South-Central Ethiopia. This high aflatoxin exposure might emphasize the need for aflatoxin exposure mitigation strategies in Ethiopia. Especially, raising awareness of the community towards aflatoxin exposure is very crucial. In addition, further research is required to assess long-term aflatoxin exposure and its association with child growth and development.
Collapse
Affiliation(s)
- Mary Ayele
- Doctors With Africa CUAMM, Medici Con L'Africa, Cuamm, Ethiopia.
| | - Demewoz Haile
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Silvia Alonso
- Animal and Human Health Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Heven Sime
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Adugna Abera
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kifle Habte Balcha
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kedir Teji Roba
- College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Geremew Tasew Guma
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Bilal Shikur Endris
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Sarwat A, Rauf W, Majeed S, De Boevre M, De Saeger S, Iqbal M. LC-MS/MS based appraisal of multi-mycotoxin co-occurrence in poultry feeds from different regions of Punjab, Pakistan. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:106-122. [PMID: 35227167 DOI: 10.1080/19393210.2022.2037722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins, being a threat to animal and human health, contribute significantly towards economic losses in the poultry sector. A liquid chromatography-mass spectrometry-based study was conducted on poultry feed samples collected from Punjab, Pakistan to evaluate the prevalence, contamination levels, and co-occurrence of multi-mycotoxins across different processed forms of the feed, types of utilities and sampling regions. All samples were found to be contaminated with aflatoxin B1 (AFB1) and fumonisin B1 (FB1). The European Commission (EC) maximum level for AFB1 in complete feedingstuffs in poultry and guidance values for FB1 and zearalenone (ZEN) were exceeded in 73%, 2%, and 14% of the contaminated samples, respectively. The corresponding median values were 39.9 µg/kg, 205 µg/kg, and 34.5 µg/kg. In addition to exceeding contamination levels, a varying co-occurrence of three to fourteen mycotoxins was observed in each of the feed samples that calls for mitigation measures to safeguard the feed and its ingredients.
Collapse
Affiliation(s)
- Asifa Sarwat
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,A & K Pharmaceuticals, 94-A, Punjab Small Industrial Estate, Sargodha Road, Faisalabad, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Saima Majeed
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health,MYTOX-SOUTH®- Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health,MYTOX-SOUTH®- Ghent University, Ghent, Belgium.,Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
31
|
Mohebbi A, Nemati M, Ali Farajzadeh M, Reza Afshar Mogaddam M, Lotfipour F. High performance liquid chromatography–tandem mass spectrometry determination of patulin and ochratoxin A in commercial fruit juices after their extraction with a green synthesized metal organic framework–based dispersive micro solid phase extraction procedure. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
33
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
34
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
35
|
Gab-Allah MA, Choi K, Kim B. Development of isotope dilution–liquid chromatography/tandem mass spectrometry as a candidate reference method for the accurate determination of patulin in apple products. Anal Bioanal Chem 2022; 414:1867-1879. [DOI: 10.1007/s00216-021-03817-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023]
|
36
|
Levels of T-2 toxin and its metabolites, and the occurrence of Fusarium fungi in spring barley in the Czech Republic. Food Microbiol 2021; 102:103875. [PMID: 34809928 DOI: 10.1016/j.fm.2021.103875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Mycotoxins have been widely studied by many research groups but further multidisciplinary research is needed to better understand and clarify many issues. This study describes the use of high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC-MS) to measure T-2 toxin and its metabolites, such as HT-2 toxin, neosolaniol (NEO) and diacetoxyscirpenol (DAS), as well as masked glucosylated mycotoxins in Fusarium-infected Czech spring barley. In total, 152 spring barley samples from the 2018 harvest were analyzed by the ELISA screening method for the presence of T-2 toxin. The most contaminated samples (15), which exceeded the recommended maximum level set by the EU for the sum of T-2 and HT-2 toxin in unprocessed cereals (200 μg/kg), were analyzed by HPLC-MS/MS and microbiological testing. Isolated fungi were evaluated microscopically and identified by polymerase chain reaction (PCR) assays. The prevalence of Fusarium species in spring barley across the Czech Republic in 2018 showed a predominance of F. poae (12 barley samples) and F. tricinctum (9 barley samples). Other strains (F. sporotrichioides and F. langsethiae) were present at a lower frequency, in 1 and 2 samples, respectively. The average concentration of T-2 plus HT-2 toxin was 107.7 μg/kg, while NEO and DAS were found in a few samples at values close to their limit of quantification. HT-2 glucoside was identified in all samples.
Collapse
|
37
|
Soares Mateus AR, Barros S, Pena A, Sanches Silva A. Mycotoxins in Pistachios ( Pistacia vera L.): Methods for Determination, Occurrence, Decontamination. Toxins (Basel) 2021; 13:682. [PMID: 34678975 PMCID: PMC8538126 DOI: 10.3390/toxins13100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
The consumption of pistachios (Pistacia vera L.) has been increasing, given their important benefit to human health. In addition to being an excellent nutritional source, they have been associated with chemical hazards, such as mycotoxins, resulting in fungal contamination and its secondary metabolism. Aflatoxins (AFs) are the most common mycotoxins in pistachio and the most toxic to humans, with hepatotoxic effects. More mycotoxins such as ochratoxin A (OTA), fumonisins (FBs), zearalenone (ZEA) and trichothecenes (T2, HT2 and DON) and emerging mycotoxins have been involved in nuts. Because of the low levels of concentration and the complexity of the matrix, the determination techniques must be very sensitive. The present paper carries out an extensive review of the state of the art of the determination of mycotoxins in pistachios, concerning the trends in analytical methodologies for their determination and the levels detected as a result of its contamination. Screening methods based on immunoassays are useful due to their simplicity and rapid response. Liquid chromatography (LC) is the gold standard with new improvements to enhance accuracy, precision and sensitivity and a lower detection limit. The reduction of Aspergillus' and aflatoxins' contamination is important to minimize the public health risks. While prevention, mostly in pre-harvest, is the most effective and preferable measure to avoid mycotoxin contamination, there is an increased number of decontamination processes which will also be addressed in this review.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Angelina Pena
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 55142 Oporto, Portugal
| |
Collapse
|
38
|
González-López NM, Huertas-Ortiz KA, Leguizamon-Guerrero JE, Arias-Cortés MM, Tere-Peña CP, García-Castañeda JE, Rivera-Monroy ZJ. Omics in the detection and identification of biosynthetic pathways related to mycotoxin synthesis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4038-4054. [PMID: 34486583 DOI: 10.1039/d1ay01017d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties, which could be relevant in the fields of pharmaceutical analysis and food research. Omics techniques are a group of analytical tools applied in the biological sciences in order to study genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics). Omics have become a vital tool in the field of mycotoxins, especially contributing to the identification of biomarkers with potential use for the detection of mycotoxigenic species and the gathering of information about the biosynthetic pathways of mycotoxins in different environments. This approach has provided tools for the development of prevention strategies and control measures for different mycotoxins. Additionally, research has revealed important information about the impact of global warming and climate change on the prevalence of mycotoxin issues in society. In the context of foodomics, the aim is to apply omics techniques in order to ensure food safety. The objective of the present review is to determine the state of the art regarding the development of analytical techniques based on omics in the identification of biosynthetic pathways related to mycotoxin synthesis.
Collapse
Affiliation(s)
| | - Kevin Andrey Huertas-Ortiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| | | | | | | | | | - Zuly Jenny Rivera-Monroy
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| |
Collapse
|
39
|
Kumari R, Jaiswal H, Chowdhury T, Ghosh A. Antibody conjugated magnetic nanoparticle based colorimetric assay for the detection and quantification of aflatoxin B1 in wheat grains. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1 (AFB1) is a most potent carcinogenic secondary metabolite produced by Aspergillus flavus. As a food safety concern, development of a rapid, cost effective, sensitive and easy to use method for the detection of aflatoxin is of prime requirement. In this study, AFB1 was conjugated with bovine serum albumin (BSA), and AFB1-BSA conjugate was purified by HPLC. Purification was confirmed by UV-Vis spectroscopy, FTIR and MALDI-TOF mass spectrometry. The polyclonal antibody was raised against AFB1-BSA conjugate in rabbit and purified by protein A sepharose and BSA sepharose affinity columns. Iron oxide nanoparticles (MNPs) were synthesised by co-precipitation method and their surface was functionalised with (3-aminopropyl) triethoxysilane (APTES). Size of APTES conjugated MNPs was determined by electron microscopy, and characterised by several biophysical techniques. The purified anti-AFB1 antibody was conjugated with surface functionalised MNPs and the conjugation was confirmed by determining the sizes of free and antibody conjugated MNPs by field emission scanning electron microscope where increase of particle sizes from 10-20 to 40-50 nm was observed due to antibody conjugation. Anti-AFB1 antibody conjugated MNPs were used for capturing AFB1 from the aflatoxin spiked wheat grains with a recovery percentage of more than 80% and used effectively five times. The captured AFB1 was then quantified by a sensitive colorimetric assay where colourless AFB1 was first converted into coumaric acid by NaOH. Subsequently, coumaric acid reacted with 2,6-dibromoquinone-4-chloroimide (DBQC) to a green-coloured indophenol product which was quantified spectrophotometrically. AFB1 contamination as low as 2 μg/kg in wheat grains was detected by the developed technique suggesting its potential application for both qualitative and quantitative analysis of aflatoxins present in feed and food materials.
Collapse
Affiliation(s)
- R. Kumari
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - H. Jaiswal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - T. Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A.K. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
40
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Gorniak L, Stela M, Bijak M. The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules 2021; 26:3981. [PMID: 34210086 PMCID: PMC8271920 DOI: 10.3390/molecules26133981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins represent a wide range of secondary, naturally occurring and practically unavoidable fungal metabolites. They contaminate various agricultural commodities like cereals, maize, peanuts, fruits, and feed at any stage in pre- or post-harvest conditions. Consumption of mycotoxin-contaminated food and feed can cause acute or chronic toxicity in human and animals. The risk that is posed to public health have prompted the need to develop methods of analysis and detection of mycotoxins in food products. Mycotoxins wide range of structural diversity, high chemical stability, and low concentrations in tested samples require robust, effective, and comprehensible detection methods. This review summarizes current methods, such as chromatographic and immunochemical techniques, as well as novel, alternative approaches like biosensors, electronic noses, or molecularly imprinted polymers that have been successfully applied in detection and identification of various mycotoxins in food commodities. In order to highlight the significance of sampling and sample treatment in the analytical process, these steps have been comprehensively described.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| |
Collapse
|
42
|
Liu R, Poma A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021; 26:3589. [PMID: 34208380 PMCID: PMC8231147 DOI: 10.3390/molecules26123589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.
Collapse
Affiliation(s)
- Rui Liu
- UCL School of Pharmacy, 29–39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK;
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
43
|
Bessaire T, Ernest M, Christinat N, Carrères B, Panchaud A, Badoud F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:978-996. [PMID: 33861158 DOI: 10.1080/19440049.2021.1902575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 01/27/2023]
Abstract
An analytical workflow including mass spectral library, generic sample preparation, chromatographic separation, and analysis by high-resolution mass spectrometry (HRMS) was developed to gain insight into the occurrence of plant toxins, mycotoxins and phytoestrogens in plant-based food. This workflow was applied to 156 compounds including 90 plant toxins (pyrrolizidine alkaloids, tropane alkaloids, glycoalkaloids, isoquinoline alkaloids and aristolochic acids), 54 mycotoxins (including ergot alkaloids and Alternaria toxins) and 12 phytoestrogens (including isoflavones, lignans and coumestan) in plant-based protein ingredients, cereal and pseudo-cereal products. A mass spectral library was built based on fragmentation spectra collected at 10 different collision energies in both positive and negative ionisation modes for each toxin. Emphasis was put on a generic QuEChERS-like sample preparation followed by ultra-high-pressure liquid chromatography using alkaline mobile phase allowing the separation of more than 50 toxic pyrrolizidine alkaloids. HRMS acquisition comprised a full-scan event for toxins detection followed by data-dependent MS2 for toxin identification against mass spectrum. Method performance was evaluated using fortified samples in terms of sensitivity, repeatability, reproducibility and recovery. All toxins were positively identified at levels ranging from 1 µg kg-1 to 100 µg kg-1. Quantitative results obtained by a standard addition approach met SANTE/12682/2019 criteria for 132 out of 156 toxins. Such a workflow using generic, sensitive and selective multi-residue method allows a better insight into the occurrence of regulated and non-regulated toxins in plant-based foods and to conduct safety evaluation and risk assessments when needed.
Collapse
Affiliation(s)
- Thomas Bessaire
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Marion Ernest
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Benoit Carrères
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Flavia Badoud
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
44
|
|
45
|
Li J, Zhao X, Wang Y, Li S, Qin Y, Han T, Gao Z, Liu H. A highly sensitive immunofluorescence sensor based on bicolor upconversion and magnetic separation for simultaneous detection of fumonisin B1 and zearalenone. Analyst 2021; 146:3328-3335. [PMID: 33999047 DOI: 10.1039/d1an00004g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycotoxins cause significant harm to human health, so it is imperative to develop a highly sensitive and easy-to-operate method for the detection of mycotoxins. Herein, a fluorescence-based magnetic separation immunoassay for simultaneous detection of mycotoxins fumonisin B1 and zearalenone is established. The method employed high fluorescent upconversion-nanoparticles(UCNPs) conjugated with biotinylated antigens as upconversion fluoroscent probes. Magnetic nanoparticles(MNPs) immobilized with monoclonal antibodies are used as immune-capture probes. Highly sensitive detection of FB1 and ZEN was achieved based on the luminescence properties of UCNPs and the separation effects of MNPs. The results showed a robust linear correlation between the enhanced fluorescence emission intensity and the logarithmic concentrations of FB1 and ZEN under the optimal conditions (R2(FB1) = 0.9965, R2(ZEN) = 0.9976), and the linear ranges were 0.05-5 ng mL-1. Furthermore, the limits of detection (LOD) were 0.016 ng mL-1 for FB1 and 0.012 ng mL-1 for ZEN. The standard addition method was used to determine the content of FB1 and ZEN in the samples to evaluate the accuracy of the process. The average recoveries were 89.48% to 113.69% and 85.97% to 113.82%, respectively. Compared with the other five mycotoxins, this method had high selectivity. It is expected that the multi-component simultaneous detection can be further realized by using the multicolor labeling characteristics of UCNPs.
Collapse
Affiliation(s)
- Jingzhi Li
- School of Public Health, Lanzhou University, Lanzhou 730000, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tuncay Söylemez, Mustafa Yamaç. Screening of Macrofungi Isolates for Aflatoxin B1 and Ochratoxin A Degradation. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Sun S, Xie Y. An enhanced enzyme-linked aptamer assay for the detection of zearalenone based on gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1255-1260. [PMID: 33616132 DOI: 10.1039/d0ay02173c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel enhanced enzyme-linked aptamer assay (ELAA) for the detection of zearalenone (ZEN) was developed based on gold nanoparticles (AuNPs) modified with an aptamer and horseradish peroxidase (HRP). In this assay, the aptamer was used as a recognition probe to competitively bind with coated ZEN-BSA on a microplate and ZEN in samples. AuNPs with high surface areas were used as a carrier to immobilize more amounts of HRP labelled aptamer probe, which can amplify the colorimetric signal by enhancing catalysis of the HRP enzyme compared with the traditional enzyme-linked method. Under the optimal conditions, the enhanced ELAA presented a good linearity in the range of 0.1-160 ng mL-1 and the limit of detection was 0.08 ng mL-1 for ZEN detection. In addition, the enhanced ELAA had no cross reactivity with other mycotoxins and showed good recoveries in spiked corn oil samples. These results indicated that the AuNP enhanced ELAA provided a new approach with simplicity, and high sensitivity and specificity for the detection of ZEN in foodstuff.
Collapse
Affiliation(s)
- Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| |
Collapse
|
48
|
|
49
|
Optimization and Validation of an Analytical Method for the Determination of Free and Hidden Fumonisins in Corn and Corn Products by UHPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Development and Validation of a UHPLC-MS/MS Method for the Analysis of Fusarium Mycotoxins in Onion. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01992-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractFusarium basal rot (FBR) of onion is a serious disease problem worldwide. The Fusarium species causing FBR can also produce mycotoxins that are potentially harmful to humans and animals. In this study, a multiple reaction monitoring technique with ultra-high-performance liquid chromatography–tandem mass spectrometry (MRM UHPLC-MS/MS) was developed and validated for onion matrix to study Fusarium mycotoxins in the harvested onions. This study was focused on fumonisins B1, B2, and B3 (FB1, FB2, and FB3), beauvericin (BEA), and moniliformin (MON), which are the main mycotoxins produced by Fusarium oxysporum and Fusarium proliferatum. In the in-house validated protocol, the onion samples were extracted with methanol:water (3:1) using magnetic stirring for 15 min. FBs and BEA were determined directly from the filtered extracts, whereas MON required sample concentration prior to analysis. No cleanup of extracts was needed prior to analysis. The target mycotoxins were separated on an Acquity UPLC system BEH C18 column with gradient elution. Mycotoxins were identified and quantified using 13C-FB1 as internal standard. Minor matrix effect was compensated using multi-point matrix-matched calibration curves with uninfected onion sample. For the mycotoxins studied, a good linearity was obtained (R2 ≥ 0.99) and the recoveries were in the range of 67–122%, with the highest standard deviation for MON, 22%. The limits of quantification were from 2.5 to 10 ng g−1 in onion matrix. The method was successfully employed for the analysis of mycotoxins in harvested onions showing FBR symptoms and found to be infected with F. oxysporum and F. proliferatum.
Collapse
|