1
|
Yano K, Matsuie Y, Sato A, Okada M, Akimoto T, Sugimoto I. Characterization of plasma polymerized acetonitrile film for fluorescence enhancement and its application to aptamer-based sandwich assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5311-5320. [PMID: 39028106 DOI: 10.1039/d4ay00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Among biosensing systems for sensitive diagnoses fluorescence enhancement techniques have attracted considerable attention. This study constructed a simple multilayered structure comprising a plane metal mirror coated with a plasma-polymerized film (PPF) as an optical interference layer on a glass slide for fluorescence enhancement. Plasma polymerization enables the easy deposition of organic thin films containing functional groups, such as amino groups. This study prepared PPFs using acetonitrile as a monomer, and the influences of washing and the output powers of plasma polymerization on PPF thickness were examined by Fourier transform infrared spectroscopy. This is because controlling the PPF thickness is vital in fluorescence enhancement. Multilayered glass slides prepared using a silver layer with 84 nm-thick acetonitrile PPFs exhibited 11- and 281-fold fluorescence enhancements compared with those obtained from the substrates with a bare surface and only modified by the silver layer, respectively. Oligonucleotides labeled with a thiol group and cyanine5 were successfully immobilized on the multilayered substrates, and the fluorescence of the acetonitrile PPFs was superior to that of the allylamine and cyclopropylamine PPFs. Furthermore, an aptamer-based sandwich assay targeting thrombin was performed on the multilayered glass slides, resulting in an approximately 5.1-fold fluorescence enhancement compared with that obtained from the substrate with a bare surface. Calibration curves revealed the relationship between fluorescence intensity and thrombin concentration of 10-1000 nM. This study demonstrates that PPFs can function as materials for fluorescence enhancement, immobilization for biomaterials, and aptamer-based sandwich assays.
Collapse
Affiliation(s)
- Kazuyoshi Yano
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Yutaro Matsuie
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Ayaka Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Maiko Okada
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Takuo Akimoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Iwao Sugimoto
- Graduate School of Computer Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
2
|
Semeniak D, Cruz DF, Chilkoti A, Mikkelsen MH. Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107986. [PMID: 35332957 PMCID: PMC9986847 DOI: 10.1002/adma.202107986] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Indexed: 05/31/2023]
Abstract
Fluorescence-based biosensors have widely been used in the life-sciences and biomedical applications due to their low limit of detection and a diverse selection of fluorophores that enable simultaneous measurements of multiple biomarkers. Recent research effort has been made to implement fluorescent biosensors into the exploding field of point-of-care testing (POCT), which uses cost-effective strategies for rapid and affordable diagnostic testing. However, fluorescence-based assays often suffer from their feeble signal at low analyte concentrations, which often requires sophisticated, costly, and bulky instrumentation to maintain high detection sensitivity. Metal- and metal oxide-based nanostructures offer a simple solution to increase the output signal from fluorescent biosensors due to the generation of high field enhancements close to a metal or metal oxide surface, which has been shown to improve the excitation rate, quantum yield, photostability, and radiation pattern of fluorophores. This article provides an overview of existing biosensors that employ various strategies for fluorescence enhancement via nanostructures and have demonstrated the potential for use as POCT. Biosensors using nanostructures such as planar substrates, freestanding nanoparticles, and metal-dielectric-metal nanocavities are discussed with an emphasis placed on technologies that have shown promise towards POCT applications without the need for centralized laboratories.
Collapse
Affiliation(s)
- Daria Semeniak
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniela F Cruz
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Deb A, Nalkar GR, Chowdhury D. Biogenic carbon dot-based fluorescence-mediated immunosensor for the detection of disease biomarker. Anal Chim Acta 2023; 1242:340808. [PMID: 36657894 DOI: 10.1016/j.aca.2023.340808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The dynamic interplay of nanotechnology and immunoassay has unlocked an arena for developing next-generation techniques to contribute to detecting disease biomarkers. Herein, the work establishes the strategic fabrication of an immunosensor by sandwich technique based on the fluorescence phenomenon of carbon dots for the detection of the disease biomarker VEGF (Vascular Endothelial Growth Factor). VEGF, a biomarker for angiogenesis, is considered cancerous if found in elevated levels in the blood, and so is paramount for early detection of disease. Carbon dots derived from a biogenic source were synthesized employing a green microwave-assisted method followed by conjugating with a detection antibody, human immunoglobulin G (IgG), via EDC-NHS amidation reaction. On the other hand, the VEGF biomarker was immobilized onto the capture antibody. The detection antibody tagged with the fluorescent probe is employed as a bridge to connect with the VEGF biomarkers bound to the capture antibody. The response to different concentrations of VEGF biomarkers was recorded in terms of the fluorescence intensity of the carbon dots. The fluorescence immunosensor could exhibit a wide linear range of 0.1 fg/mL to 10 pg/mL with a low detection limit of 5.65 pg/mL towards VEGF. The potentiality of this designed immunosensor was qualitatively assessed with human blood plasma samples, showing promising results, thereby upholding the applicability of carbon dots as fluorescent labels in immunoassay techniques.
Collapse
Affiliation(s)
- Ankita Deb
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035, India
| | - Gaurav Raghunath Nalkar
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035, India.
| |
Collapse
|
4
|
Lei Z, Wang Z. Peptide Array-Based In Situ Fluorescence Assay for Profiling Multiple Matrix Metalloproteinase Activities. Methods Mol Biol 2023; 2578:177-189. [PMID: 36152287 DOI: 10.1007/978-1-0716-2732-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Peptide array-based in situ fluorescence assay is a reliable and efficient technique for high-throughput profiling and localization of enzyme activity. Here, peptide array is fabricated by spotting five specific MMPs (MMP-2, MMP-3, MMP-7, MMP-9, and MMP-14) peptide substrates containing FAM/Dabcyl fluorescent resonance energy transfer (FRET) pair on the surface of cell monolayers or tissue sections. MMP activities are determined in situ by the fluorescence intensity of stained cells/tissues due to the cellular internalization of hydrolyzed peptide fragments with FAM moieties. Identification of MMP expression patterns of cells, highly sensitive determination of MMP activities in cell monolayer (as low as hundreds of cells per square centimeter), and evaluation of inhibition potencies of six compounds toward five MMPs are achieved by this method. Five MMP activities in the localized parts of 32 thyroid tissues are also well profiled without separation or extraction procedures.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Recent Advances in Silver Nanostructured Substrates for Plasmonic Sensors. BIOSENSORS 2022; 12:bios12090713. [PMID: 36140098 PMCID: PMC9496211 DOI: 10.3390/bios12090713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Noble metal nanostructures are known to confine photon energies to their dimensions with resonant oscillations of their conduction electrons, leading to the ultrahigh enhancement of electromagnetic fields in numerous spectroscopic methods. Of all the possible plasmonic nanomaterials, silver offers the most intriguing properties, such as best field enhancements and tunable resonances in visible-to-near infrared regions. This review highlights the recent developments in silver nanostructured substrates for plasmonic sensing with the main emphasis on surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS) over the past decade. The main focus is on the synthesis of silver nanostructured substrates via physical vapor deposition and chemical synthesis routes and their applications in each sensing regime. A comprehensive review of recent literature on various possible silver nanostructures prepared through these methodologies is discussed and critically reviewed for various planar and optical fiber-based substrates.
Collapse
|
6
|
Fluorescent and colorimetric detection of Norfloxacin with a bifunctional ligand and enzymatic signal amplification system. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Afsharipour R, Haji Shabani AM, Dadfarnia S. A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Shi J, Shen M, Zhao W, Liu J, Qu Z, Zhu M, Chen Z, Shi P, Zhang Z, Zhang SS. Ultrasensitive Dual-Signal Detection of Telomerase and MiR-21 Based on Boolean Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51393-51402. [PMID: 34665612 DOI: 10.1021/acsami.1c17912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Telomerase and micro-RNAs (miRNAs) are simultaneously upregulated in a variety of tumor cells and have emerged as promising tumor markers. However, sensitive detection of telomerase and miRNAs in situ remains a great challenge due to their low expression levels. Here, we designed a Boolean logic "AND" signal amplification strategy based on functionalized ordered mesoporous nanoparticles (FOMNs) to achieve ultrasensitive detection of telomerase and miR-21 in living tumor cells. Briefly, the strategy uses telomerase as an input to enable the release of DNA3-ROX-BHQ hairpins by making the wrapping DNA1 form a DNA-a hairpin with the joint participation of dNTPs. Subsequently, DNA2-Ag, DNA3-ROX-BHQ, and the second input miR-21 participated in hybridization chain reaction to amplify fluorescence and Raman signals. Experimental results showed the intensity of output dual signals relevant to the expression levels of telomerase and miR-21. The Ag nanoparticles (AgNPs) not only enhanced the fluorescence signals but also allowed to obtain more sensitive Raman signals. Therefore, even if expression of tumor markers is at a low level, the FOMN-based dual-signal logic operation strategy can still achieve sensitive detection of telomerase and miR-21 in situ. Furthermore, FOMNs can detect miR-21 expression levels in a short time. Consequently, this strategy has a potential clinical application value in detection of tumor markers and the assessment of tumor treatment efficacy.
Collapse
Affiliation(s)
- Jiaju Shi
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Meiqi Shen
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongjin Qu
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Mengting Zhu
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pengfei Shi
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zhen Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shu-Sheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
9
|
Pan V, Wang W, Heaven I, Bai T, Cheng Y, Chen C, Ke Y, Wei B. Monochromatic Fluorescent Barcodes Hierarchically Assembled from Modular DNA Origami Nanorods. ACS NANO 2021; 15:15892-15901. [PMID: 34570467 DOI: 10.1021/acsnano.1c03796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With the rapid advancement of fluorescence microscopy, there is a growing interest in the multiplexed detection and identification of various bioanalytes (e.g., nucleic acids and proteins) for efficient sample processing and analysis. We introduce in this work a simple and robust method to provide combinations for micrometer-scale fluorescent DNA barcodes of hierarchically assembled DNA origami superstructures for multiplexed molecular probing. In addition to optically resolvable dots, we placed fluorescent loci on adjacent origami within the diffraction limit of each other, rendering them as unresolvable bars of measurable lengths. We created a basic set of barcodes and trained a machine learning algorithm to process and identify individual barcodes from raw images with high accuracy. Moreover, we demonstrated that the number of combinations can be increased exponentially by generating longer barcodes, by controlling the number of incorporated fluorophores to create multiple levels of fluorescence intensity, and by employing super-resolution imaging. To showcase the readiness of the barcodes for applications, we used our barcodes to capture and identify target nucleic acid sequences and for simultaneous multiplexed characterization of binding kinetics of several orthogonal complementary nucleic acids.
Collapse
Affiliation(s)
- Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Wen Wang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Ian Heaven
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Tanxi Bai
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yongxin Cheng
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Cao X, Song Q, Sun Y, Mao Y, Lu W, Li L. A SERS-LFA biosensor combined with aptamer recognition for simultaneous detection of thrombin and PDGF-BB in prostate cancer plasma. NANOTECHNOLOGY 2021; 32:445101. [PMID: 34298537 DOI: 10.1088/1361-6528/ac1754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
An innovative surface-enhanced Raman spectroscopy and lateral flow assay (SERS-LFA) biosensor combined with aptamer recognition had been developed for the convenient, rapid, sensitive and accurate detection of thrombin and platelet-derived growth factor-BB (PDGF-BB) associated with prostate cancer simultaneously. During the biosensor operation, thrombin and PDGF-BB in the sample were recognized and combined by thiol-modified aptamers immobilized on Au-Ag hollow nanoparticles (Au-Ag HNPs) surface and biotinylated aptamers immobilized on the test lines of the biosensor. Thus, thrombin and PDGF-BB were simultaneously captured between detection aptamers and capture aptamers in a sandwich structure. Finite difference time domain simulation confirmed that 'hot spots' appeared at the gaps of Au-Ag HNPs dimer in the enhanced electromagnetic field compared to that of a single Au-Ag HNP, indicating that the aggregated Au-Ag HNPs owned a good SERS signal amplification effect. The detection limits of thrombin and PDGF-BB in human plasma were as low as 4.837 pg ml-1and 3.802 pg ml-1, respectively. Moreover, the accuracy of the biosensor which was applied to detect thrombin and PDGF-BB in prostate cancer plasma had been verified. This designed biosensor had broad application prospects in the clinical diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Qilong Song
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen, 041004, People's Republic of China
| | - Li Li
- Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6890. [PMID: 33276535 PMCID: PMC7729484 DOI: 10.3390/s20236890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.
Collapse
Affiliation(s)
- Greta Jarockyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Vitalijus Karabanovas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
12
|
Sultangaziyev A, Bukasov R. Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. SENSING AND BIO-SENSING RESEARCH 2020; 30:100382. [PMID: 33101976 PMCID: PMC7566769 DOI: 10.1016/j.sbsr.2020.100382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/05/2022] Open
Abstract
Surface-enhanced fluorescence (SEF) is rapidly becoming one of the main spectroscopic techniques for the detection of a variety of biomolecules and biomarkers. The main reasons for this trend are the high sensitivity and selectivity, robustness, and speed of this analytical method. Each year, the number of applications that utilize this phenomenon increases and with each such work, the complexity and novelty of the used substrates, procedures, and analytes rises. To obtain a clearer view of this phenomenon and research area, we decided to combine 76 valuable research articles from a variety of different research groups into this mini-review. We present and describe these works concisely and clearly, with a particular interest in the quantitative parameters of the experiment. These sources are classified according to the nature of the analyte, on the contrary to most reviews, which sort them by substrate nature. This point of view gives us insight into the development of this research area and the consequent increase in the complexity of the analyte nature. Moreover, this type of sorting can show possible future routes for the expansion of this research area. Along with the analytes, we can also pay attention to the substrates used for each situation and how the development of substrates affects the direction of research and subsequently, the choice of an analyte. About 108 sources and several interesting trends in the SEF research area over the past 25 years are discussed in this mini-review.
Collapse
Affiliation(s)
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
13
|
Affinity binding-mediated fluorometric protein assay based on the use of target-triggered DNA assembling probes and aptamers labelled with upconversion nanoparticles: application to the determination of platelet derived growth factor-BB. Mikrochim Acta 2019; 187:9. [PMID: 31797061 DOI: 10.1007/s00604-019-4024-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
The target-triggered DNA assembling probe is presented for highly selective protein detection. Target-triggered DNA assembling is used in an amplification strategy based on affinity binding for identification and determination of proteins in general. Specifically, it was applied to the platelet derived growth factor-BB (PDGF-BB). A hairpin DNA (H-DNA) probe was designed containing (a) an aptamer domain for protein recognition and (b) a blocked DNAzyme domain for DNAzyme cleavage. An assistant DNA (A-DNA) probe containing aptamer and complementary domains was also employed to recognize protein and to induce DNA assembly. Once H-DNA and A-DNA recognize the same protein, H-DNA and A-DNA are in close proximity to each other. This induces DNA assembling for protein-triggered complex (Protein-Complex) with free DNAzyme domains. The free DNAzymes trigger the circular cleavage of molecular beacons for amplified signals. The assay is performed by fluorometry at an excitation wavelength of 980 nm and by collecting fluorescence at 545 nm. The platelet derived growth factor-BB (PDGF-BB) was accurately identified and selectively determined by this assay with a 22 pM detection limit (using the 3σ criterion). The responses for PDGF-BB is nearly 6-fold higher than for PDGF-AB, and 16-fold higher than PDGF-AA. This upconversion assay avoids any interference by the autofluorescence of biological fluids. Graphical abstractSchematic representation of the principle of the target-triggered DNA assembling probes mediated amplification strategy based on affinity binding for PDGF-BB. The UCNP probe is used for the quantitation of PDGF-BB with high selectivity.
Collapse
|
14
|
Lei Z, Jian M, Wei J, Wang Y, Meng X, Wang Z. Array-based in situ fluorescence assay for profiling multiplex matrix metalloproteinases activities in tissue section. Anal Chim Acta 2019; 1078:112-118. [DOI: 10.1016/j.aca.2019.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
|
15
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Khoshbin Z, Housaindokht MR, Izadyar M, Verdian A, Bozorgmehr MR. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion. Anal Chim Acta 2019; 1071:70-77. [PMID: 31128757 DOI: 10.1016/j.aca.2019.04.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
In this study, a simple paper-based aptasensor has been developed for the ultrasensitive detection of lead (Pb2+) ion within about 10 min. The aptasensor has been successfully designed by taking advantages of the Förster Resonance Energy Transfer (FRET) process and the super fluorescence quenching property of graphene oxide (GO) sheet. The sensing mechanism of the aptasensor is based on the conformational switch of the Pb2+-specific aptamer from a random coil to a G-quadruplex structure. An injection of Pb2+ on the paper-based platform induces the release of the specific aptamer from the GO surface that recovers the fluorescence emission. Under the optimal experimental conditions, there is a good linear relationship between the fluorescence recovery and the Pb2+concentration in the ranges of 5-70 pM and 0.07-20 nM. Moreover, the aptasensing array exhibits a high sensitivity to Pb2+ with an ultra-low detection limit of 0.5 pM. The developed aptasensor has been successfully applied to determine Pb2+ in tap water, lake water, milk, and human blood serum. The paper-based aptasensor can be efficiently utilized to detect other metal ions and biological molecules by substituting target specific aptamer.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
17
|
Yun W, You L, Li F, Wu H, Chen L, Yang L. Proximity ligation assay induced and DNAzyme powered DNA motor for fluorescent detection of thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:39-45. [PMID: 30195184 DOI: 10.1016/j.saa.2018.08.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A novel DNA motor for thrombin detection was described here based on proximity ligation assay (PLA) induced DNAzyme recycling cleavage. Fluorophore labeled DNA is modified on gold nanoparticles (AuNPs) and the fluorescent signal is quenched by AuNPs. The PLA between target thrombin and two aptamers induces the forming of Mg2+-dependent DNAzyme. The fluorophore labeled DNA is cleaved circularly by the DNAzyme, releasing the fluorescent fragment from AuNPs surface. The cleavage and rebinding process create a processive walking along AuNPs surface track. As a result, the fluorescent intensity recovers significantly. A good linear relationship is obtained between the ratio of fluorescence intensity and thrombin concentration in the range from 10 pM to 10 nM. The limit of detection is calculated to be 4 pM. These results are comparable or even better than other amplification based methods.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Linfeng You
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fukun Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
18
|
Qi X, Xia L, Li Y, Wang T, Zhang X, Chen J, Zhang L, Fu Y. The Fabrication of 2D Cu-Based MOF Nanosheets for DNA Detection. Aust J Chem 2019. [DOI: 10.1071/ch19312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Cu-based metal–organic framework (MOF) analogues, copper 1,4-benzenedicarboxylate (CuBDC), copper 2,6-naphthalenedicarboxylate (Cu(2,6-NDC)), and copper 1,4-naphthalenedicarboxylate (Cu(1,4-NDC)) MOF nanosheets, are prepared as biosensor nanoplatforms for DNA detection by a spray method. With the ultrathin 2D structure, the fabricated MOF nanosheets exhibited better detection of target DNA, in particular when compared with the corresponding 3D MOF bulky crystals, when used as a DNA biosensor platform. The Cu(1,4-NDC) nanosheets display a distinct sensitivity with a detection limit of 0.3nM and linear range of 0–20nM, and selectivity for the target DNA or target DNA mixture. The feasible biosensor nanoplatform composed of 2D MOF nanosheets broadens the application scope of MOF nanosheets.
Collapse
|
19
|
Fothergill SM, Joyce C, Xie F. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window. NANOSCALE 2018; 10:20914-20929. [PMID: 30324956 DOI: 10.1039/c8nr06156d] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To increase disease survival rates, there is a vital need for diagnosis at very preliminary stages. Then, low concentrations of biomarkers are present which must be effectively detected and quantified for reliable diagnosis. Fluorescent biosensing is commonly enabled through the labelling of these biomarkers with nanostructures and fluorophores. Metal Enhanced Fluorescence (MEF) is a phenomenon whereby the intensity of a fluorescent biosensor signal can be considerably enhanced by placing a metallic nanostructure and fluorophore in close proximity. Importantly, this allows for an even lower detection limit and thus earlier diagnosis. In recent years, extraordinary efforts have been made in the understanding of how the chemical and physical properties of nanomaterials may be exploited advantageously. Via precise nanoscale engineering, it is possible to optimize the optical properties of plasmonic nanomaterials, which now need to be refined and applied in diagnostics. Through MEF, the intensity of this signal can be related in direct proportion to analyte concentration, allowing for diagnosis of disease at an earlier stage than previously. This review paper outlines the potential and recent progress of applied MEF biosensors, highlighting their substantial clinical potential. MEF biosensors are presented both upon assay-based platforms and in solution, with comments on the various metallic nanoparticle morphologies available. This is explored across various emission wavelengths from ultra-violet to the second near infrared window (NIR-II), emphasising their wide applicability. Further to this, the importance of near infrared (NIR-I and NIR-II) biosensing is made clear as it allows for higher penetration in biological media. Finally, by developing multiplexing techniques, multiple and simultaneous analyses of analytes can be achieved. Through the incorporation of metal enhanced fluorescence into biosensing, it will be possible to diagnose disease more rapidly and more reliably than before, with the potential to save countless lives.
Collapse
Affiliation(s)
- Sarah Madeline Fothergill
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Caoimhe Joyce
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
20
|
Liu X, Li H, Zhao Y, Yu X, Xu D. Multivalent aptasensor array and silver aggregated amplification for multiplex detection in microfluidic devices. Talanta 2018; 188:417-422. [DOI: 10.1016/j.talanta.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023]
|
21
|
Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, de la Guardia M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron 2018; 113:58-71. [PMID: 29729560 DOI: 10.1016/j.bios.2018.04.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Platelet-derived growth factor (PDGF-BB), a significant serum cytokine, is an important protein biomarker in diagnosis and recognition of cancer, which straightly rolled in proceeding of various cell transformations, including tumor growth and its development. Fibrosis, atherosclerosis are certain appalling diseases, which PDGF-BB is near to them. Generally, the expression amount of PDGF-BB increases in human life-threatening tumors serving as an indicator for tumor angiogenesis. Thus, identification and quantification of PDGF-BB in biomedical fields are particularly important. Affinity chromatography, immunohistochemical methods and enzyme-linked immunosorbent assay (ELISA), conventional methods for PDGF-BB detection, requiring high-cost and complicated instrumentation, take too much time and offer deficient sensitivity and selectivity, which restrict their usage in real applications. Hence, it is essential to design and build enhanced systems and platforms for the recognition and quantification of protein biomarkers. In the past few years, biosensors especially aptasensors have been received noticeable attention for the detection of PDGF-BB owing to their high sensitivity, selectivity, accuracy, fast response, and low cost. Since the role and importance of developing aptasensors in cancer diagnosis is undeniable. In this review, optical and electrochemical aptasensors, which have been applied by many researchers for PDGF-BB cancer biomarker detection, have been mentioned and merits and demerits of them have been explained and compared. Efforts related to design and development of aptamer-based biosensors using nanoparticles for sensitive and selective detection of PDGF-BB have been reviewed considering: Aptamer importance as recognition elements, principal, application and the recent improvements and developments of aptamer based optical and electrochemical methods. In addition, commercial biosensors and future perspectives for rapid and on-site detection of PDGF-BB have been summarized.
Collapse
Affiliation(s)
- Nasrin Razmi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664 Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
22
|
Rossetti M, Porchetta A. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Anal Chim Acta 2018; 1012:30-41. [PMID: 29475471 DOI: 10.1016/j.aca.2017.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/10/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
23
|
Lee WI, Shrivastava S, Duy LT, Yeong Kim B, Son YM, Lee NE. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron 2017; 94:643-650. [PMID: 28376397 DOI: 10.1016/j.bios.2017.03.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
Abstract
The accuracy of a bioassay based on smartphone-integrated fluorescent biosensors has been limited due to the occurrence of false signals from non-specific reactions as well as a high background and low signal-to-noise ratios for complementary metal oxide semiconductor image sensors. To overcome this problem, we demonstrate dual-wavelength fluorescent detection of biomolecules with high accuracy. Fluorescent intensity can be quantified using dual wavelengths simultaneously, where one decreases and the other increases, as the target analytes bind to the split capture and detection aptamer probes. To do this, we performed smartphone imaging-based fluorescence microscopy using a microarray platform on a substrate with metal-enhanced fluorescence (MEF) using Ag film and Al2O3 nano-spacer. The results showed that the sensitivity and specificity of the dual-wavelength fluorescent quantitative assay for the target biomolecule 17-β-estradiol in water were significantly increased through the elimination of false signals. The detection limit was 1pg/mL and the area under the receiver operating characteristic curve of the proposed assay (0.922) was comparable to that of an enzyme-linked immunosorbent assay (0.956) from statistical accuracy tests using spiked wastewater samples. This novel method has great potential as an accurate point-of-care testing technology based on mobile platforms for clinical diagnostics and environmental monitoring.
Collapse
Affiliation(s)
- Won-Il Lee
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sajal Shrivastava
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Le-Thai Duy
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bo Yeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Young-Min Son
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nae-Eung Lee
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
24
|
Tagit O, Hildebrandt N. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sens 2017; 2:31-45. [PMID: 28722447 DOI: 10.1021/acssensors.6b00625] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay of photonics, nanotechnology, and biochemistry has significantly improved the identification and characterization of multiple types of biomarkers by optical biosensors. Great achievements in fluorescence-based technologies have been realized, for example, by the advancement of multiplexing techniques or the introduction of nanoparticles to biochemical and clinical research. This review presents a concise overview of recent advances in fluorescence sensing techniques for the detection of circulating disease biomarkers. Detection principles of representative approaches, including fluorescence detection using molecular fluorophores, quantum dots, and metallic and silica nanoparticles, are explained and illustrated by pertinent examples from the recent literature. Advanced detection technologies and material development play a major role in modern biosensing and consistently provide significant improvements toward robust, sensitive, and versatile platforms for early detection of circulating diagnostic biomarkers.
Collapse
Affiliation(s)
- Oya Tagit
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Niko Hildebrandt
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
| |
Collapse
|
25
|
Li H, Zhao Y, Chen Z, Xu D. Silver enhanced ratiometric nanosensor based on two adjustable Fluorescence Resonance Energy Transfer modes for quantitative protein sensing. Biosens Bioelectron 2016; 87:428-432. [PMID: 27589407 DOI: 10.1016/j.bios.2016.08.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
We developed a silver decahedral nanoparticles (Ag10NPs)-enhanced ratiometric Fluorescence Resonance Energy Transfer (FRET) nanosensor based on two adjustable FRET modes. Alexa Fluor 488 (Alexa) and Cyanine3 (Cy3)-aptamer-Black hole quencher-2 (BHQ-2) were bound with Ag10NPs to form the ratiometric FRET nanosensor (Ag-Alexa/Cy3/BHQ-2). Alexa act as donor and Cy3 as acceptor in the FRET mode 1 while Cy3 was donor and BHQ-2 was acceptor in the FRET mode 2. In the absence of platelet-derived growth factor (PDGF-BB), the fluorescence intensity of Alexa was lowest while that of Cy3 was highest. Upon the addition of PDGF-BB, Cy3-aptamer-BHQ-2 binds with PDGF-BB resulting in the change of structure of aptamer. The fluorescence intensity of Alexa increased while that of Cy3 decreased. In addition, the fluorescence intensity ratio of Alexa to Cy3 increased remarkably with PDGF-BB concentration in the range of 0.4-400ng/mL. A good linear response was obtained when the PDGF-BB concentrations were in the range of 3.1-200ng/mL, with the limit of detection at 0.4ng/mL. When compared to sensors without Ag10NPs (Alexa/Cy3/BHQ-2) and one without BHQ-2 (Ag-Alexa/Cy3), the new nanosensor Ag-Alexa/Cy3/BHQ-2 showed remarkable increase in sensitivity.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China
| | - Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China
| | - Zhu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| |
Collapse
|