1
|
Ahmed SAH, Saif B, LingHui Q. Preparation of carboxyl-functionalized silica core-shell microspheres and their applications in weak cation exchange chromatography, heavy metal removal, and lysozyme enrichment. J Sep Sci 2024; 47:e2400126. [PMID: 38819781 DOI: 10.1002/jssc.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Chromatography is a technique of separation based on adsorption and/or interaction of target molecules with stationary phases. Herein, we report the design and fabrication of BTDA@SiO2 core-shell microspheres as a new class of stationary phase and demonstrate its impressive performance for chromatographic separations. The silica microspheres of BTDA@SiO2 were synthesized by in situ method with 1,3,5-benzenetricarboxaldehyde and 3,5-diaminobenzoic to separate peptides and proteins on high-performance liquid chromatography. The BTDA@SiO2 core-shell structure has a high specific surface area and retention factor of 4.27 and 8.31 for anionic and cationic peptides, respectively. The separation factor and resolution were high as well. A typical chromatogram illustrated nearly baseline resolution of the two peptides in less than 3 min. The BTDA@SiO2 was also highly stable in the pH range of 1 to 14. Furthermore, the prepared BTDA@SiO2 core-shell material not only be used for chromatographic separation but also as heavy metal removal from water. Using a BTDA@SiO2, we also achieved a lysozyme enrichment with a maximum saturated adsorption capacity reaching 714 mg/g. In summary, BTDA@SiO2 has great application prospects and significance in separation and purification systems.
Collapse
Affiliation(s)
- Shadi Ali Hassen Ahmed
- College of Pharmaceutical science, Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Qian LingHui
- College of Pharmaceutical science, Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ma Q, Wei Y, Zhao N, Wang S, Zhang B, Liu D, Yuan P. Construction of an allophane-based molecularly imprinted polymer for the efficient removal of antibiotic from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166464. [PMID: 37607629 DOI: 10.1016/j.scitotenv.2023.166464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
The widespread presence of ciprofloxacin (CIP) antibiotic in the water and soil poses substantial potential risks to the environment, threatening both human and animal health. In this study, we used nanoclay mineral allophane (Allo), β-cyclodextrin (β-CD) as a bifunctional monomer, and sodium alginate as a cross-linking agent, to prepare 3D porous Allo-β-CD molecularly imprinted polymers (MIPs) for the efficient removal of CIP from aqueous solution. The prepared Allo-β-CD MIP was characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and zeta potential measurements. The effects of initial concentration, time, pH level, and ion concentration on CIP removal dynamics were systematically studied. The adsorption kinetics and equilibrium data of CIP were well-fitted by the pseudo-second-order kinetic model and Langmuir isotherm models, respectively. The Allo-β-CD MIP can efficiently remove CIP from an aqueous solution, with a maximal adsorption capacity of 635 mg/g. It also has impressive recyclability, and enhanced selectivity, and is widely adaptable to various environmental conditions. The adsorption mechanisms of the as-prepared adsorbent include H bonds, hydrophobic interactions, surface complexation, and n-π EDA interactions. Given the experimental evidence, as-prepared adsorbent is therefore a promising candidate for the effective removal of CIP from the aquatic environment.
Collapse
Affiliation(s)
- Qiyi Ma
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao
| | - Ning Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Wang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Neutron Science Platform, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Baifa Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Cheng Y, Liu H, Kuang L, Yan Z, Li H, Xu G. Preparation and evaluation of molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and determination of quercetin in red wine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
5
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
6
|
|
7
|
Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wang J, Liu J, Wang M, Qiu Y, Kong J, Zhang X. A host guest interaction enhanced polymerization amplification for electrochemical detection of cocaine. Anal Chim Acta 2021; 1184:339041. [PMID: 34625250 DOI: 10.1016/j.aca.2021.339041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Cocaine (Coc) is one of the illegal drugs and is harmful to digestive, immune, cardiovascular and urogenital systems. To achieve drug abuse control and legal action, it is essential to develop an effective method for cocaine analysis. In this work, an aptasensor has been developed using atom transfer radical polymerization (ATRP) based on host-guest chemistry for electrochemical analysis of cocaine. The NH2-DNA (Apt1) was immobilized on the indium tin oxide (ITO) electrode via addition reaction, and Fc-DNA (Apt2) was introduced to ITO relying on the specific recognition of cocaine. The Apt2 can initiate host-guest chemistry between Apt2 and ATRP initiators (β-CD-Br15), then the β-CD-Br15 further triggers ATRP. Moreover, ATRP avoids the sluggish kinetics and poor coupling capability sustained. The result shows a sensitive and selective analysis of cocaine within a linear range from 0.1 ng/mL to 10 μg/mL (R2 = 0.9985), with the detection limit down to 0.0335 ng/mL. Thus, this strategy provides a universal method for the analysis of illegal drugs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Meng Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Yunliang Qiu
- Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing, 210023, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
9
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Li Y, Jiang LL, Qiao YX, Wan D, Huang YF. Yolk–shell magnetic composite Fe 3O 4@Co/Zn-ZIF for MR imaging-guided chemotherapy of tumors in vivo. NEW J CHEM 2021. [DOI: 10.1039/d0nj05723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The yolk–shell composites Fe3O4@Co/Zn-ZIF exhibited high doxorubicin loading capacity, pH-responsive release characteristics, and strong T2-weighted MR imaging contrast enhancement, and were used for MR imaging-guided chemotherapy of tumors in vivo.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- and College of Chemistry and Chemical Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Lu-Lu Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes
- and College of Chemistry and Chemical Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Ya-Xian Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes
- and College of Chemistry and Chemical Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Dong Wan
- State Key Laboratory of Separation Membranes and Membrane Processes
- and College of Chemistry and Chemical Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Yan-Feng Huang
- State Key Laboratory of Separation Membranes and Membrane Processes
- and College of Chemistry and Chemical Engineering
- Tiangong University
- Tianjin 300387
- China
| |
Collapse
|
11
|
Liu H, Jin P, Zhu F, Nie L, Qiu H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hu L, Yin H, Dong Y, Liu J, Chu X. An electrogenerated chemiluminescence aptasensor for lysozyme based on the interaction between Ru(bpy) 3 2+ and cucurbit[8]uril. LUMINESCENCE 2020; 36:418-424. [PMID: 33037741 DOI: 10.1002/bio.3958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Strong anodic Ru(bpy)3 2+ electrogenerated chemiluminescence (ECL) was obtained at a cucurbil[8]uril (CB[8]) modified electrode in neutral conditions without the need of an additional coreactant. An ECL aptasensor was fabricated based on the strong ECL emission as well as the host-guest interaction between DNA and CB[8]. Firstly, amino group-terminated complementary DNA (DNA-NH2 ) was firmly immobilized on CB[8]/glass carbon electrode, which could further increase ECL intensity. Then, a ferrocene group-terminated lysozyme aptamer (Fc-DNA) was hybridized with complementary DNA. The inhibiting effect of ferrocene on Ru(bpy)3 2+ ECL resulted in the apparent decrease in ECL signal. When the modified electrode was incubated in lysozyme, specific binding between lysozyme and its aptamer could release the ferrocene group from the electrode surface, and the ECL emission was recovered. As a result, an 'on-off-on' mode ECL aptasensor for lysozyme was fabricated. In the range 0.14-140 pg ml-1 , the increased ECL intensities exhibited excellent linearity with the logarithm of lysozyme concentrations, and the detection limit was calculated as 0.093 pg ml-1 (3σ). The proposed ECL aptasensor exhibited satisfactory analytical performance, revealing the potential application of CB[n]s in an ECL sensing field.
Collapse
Affiliation(s)
- LiQiao Hu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - Hao Yin
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - JingXin Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| |
Collapse
|
13
|
Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111063. [DOI: 10.1016/j.msec.2020.111063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/04/2023]
|
14
|
Cheng H, Xia S, Zhou Y, Lin B. A High-matched Melamine Sensor Using Core/shell Nano Particles of Fe 3O 4@Polyrutin-COOH and Ionic Liquid as Imprinted Polymeric Monomers. ANAL SCI 2020; 36:745-749. [PMID: 31956157 DOI: 10.2116/analsci.19p371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 08/09/2023]
Abstract
We describe here a magnetic molecular imprinted polymeric ionic liquid (MMIPIL) film by using a functionalized ionic liquid (3-vinyl-4-amino-5-imidazole carboxamide chloride, IL) and Fe3O4@Polyrutin-COOH as a functional monomer and supporting materials. The change in the direction of the charge density in the structure of MMIPIL polymer resulted in a red shift of about 100 nm for the characteristic group of -C=O. Polyrutin containing an electron-rich benzene ring and multiple hydroxyl groups not only prevented the aggregation of Fe3O4, but also benefitted to immobilize template molecules. More symmetric amino groups in the template molecules generated more hydrogen bonds and other synergistic effects between MEL and the functional monomers, which resulted in a highly-matched and highly stable MMIPIL sensor. The proposed magnetic sensor lowered the matching potential, and enhanced the signal for the detection of melamine (MEL) in milk powder. Under the optimum conditions, the MEL template molecule showed a significant linear relationship between 5.0 × 10-3 and 0.8 μg/L with a detection limit (S/N = 3) of 1.5 × 10-3 μg/L. The MMIPIL sensor showed wonderful selectivity and exhibited facile, fast and efficient results in the monitoring MEL with recoveries of between 96.5 and 108.3%.
Collapse
Affiliation(s)
- Hongying Cheng
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Siyu Xia
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Yujie Zhou
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Binbin Lin
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| |
Collapse
|
15
|
Ma JB, Wu HW, Liao YF, Rui QH, Zhu Y, Zhang Y. Application of petal-shaped ionic liquids modified covalent organic frameworks for one step cleanup and extraction of general anesthetics in human plasma samples. Talanta 2020; 210:120652. [PMID: 31987200 DOI: 10.1016/j.talanta.2019.120652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Here, the novel petal-shaped ionic liquids modified covalent organic frameworks (PS-IL-COFs) particles have been synthesized by using ionic liquids as modifying agent, which could be beneficial to avoid the aggregation of COFs during the preparation and improve its dispersing performance. The novel PS-IL-COFs particles have been used and evaluated in the one step cleanup and extraction (OSCE) procedure for human plasma prior to the analysis of 3 general anesthetics by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In the OSCE procedure, human plasma samples are directly mixed with extraction solvent and PS-IL-COFs particles, and the extraction and cleanup procedure have been carried out simultaneously. Compared with the Oasis PRiME HLB cartridge method, the OSCE procedure using PS-IL-COFs particles as sorbents is much more effective for the minimization of ion suppression resulted from blood phospholipids. Under optimal conditions, the PS-IL-COFs particles show higher cleanup efficiency of 3 general anesthetics with recoveries in the range of 82.5%-115%. The limits of quantification (LOQs) for propofol, ketamine and etomidate are 0.18 μg/L, 0.15 μg/L and 0.016 μg/L, respectively. Validation results on linearity, specificity, precision and trueness, as well as on the application to analysis of general anesthetics in a case of a 54-year-old female suffered gallstone demonstrate the applicability to clinical studies.
Collapse
Affiliation(s)
- Jian-Bo Ma
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Hong-Wei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yu-Feng Liao
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Qiu-Hong Rui
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
16
|
Li F, Huang Y, Huang K, Lin J, Huang P. Functional Magnetic Graphene Composites for Biosensing. Int J Mol Sci 2020; 21:E390. [PMID: 31936264 PMCID: PMC7013569 DOI: 10.3390/ijms21020390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic graphene composites (MGCs), which are composed of magnetic nanoparticles with graphene or its derivatives, played an important role in sensors development. Due to the enhanced electronic properties and the synergistic effect of magnetic nanomaterials and graphene, MGCs could be used to realize more efficient sensors such as chemical, biological, and electronic sensors, compared to their single component alone. In this review, we first reviewed the various routes for MGCs preparation. Then, sensors based on MGCs were discussed in different groups, including optical sensors, electrochemical sensors, and others. At the end of the paper, the challenges and opportunities for MGCs in sensors implementation are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China; (F.L.); (Y.H.); (K.H.); (J.L.)
| |
Collapse
|
17
|
Sun Y, Feng X, Hu J, Bo S, Zhang J, Wang W, Li S, Yang Y. Preparation of hemoglobin (Hb)-imprinted poly(ionic liquid)s via Hb-catalyzed eATRP on gold nanodendrites. Anal Bioanal Chem 2019; 412:983-991. [PMID: 31848668 DOI: 10.1007/s00216-019-02324-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Hemoglobin (Hb)-imprinted poly(ionic liquid)s (HIPILs) were prepared on the surface of Au electrode modified with gold nanodendrites (Au/ND/HIPILs). HIPILs were synthesized with 1-vinyl-3-propyl imidazole sulfonate ionic liquids as functional monomers via electrochemically mediated atom transfer radical polymerization (eATRP) catalyzed by Hb. The Au/ND/HIPILs electrode was examined by cyclic voltammetry (CV), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The Au/ND/HIPILs electrode was also used as an electrochemical sensor to determine Hb by differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of Hb was from 1.0 × 10-14 to 1.0 × 10-4 mg/mL with a limit of detection of 5.22 × 10-15 mg/mL (S/N = 3). Compared with other methods, the sensor based on poly(ionic liquid)s had the broader linear range and lower detection limit. Graphical Abstract.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China.
| | - Xuewei Feng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Shuang Bo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jiameng Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Siyu Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Yifei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| |
Collapse
|
18
|
Abstract
: Nanomaterial biosensors have revolutionized the entire scientific, technology, biomedical, materials science, and engineering fields. Among all nanomaterials, magnetic nanoparticles, microparticles, and beads are unique in offering facile conjugation of biorecognition probes for selective capturing of any desired analytes from complex real sample matrices (e.g., biofluids such as whole blood, serum, urine and saliva, tissues, food, and environmental samples). In addition, rapid separation of the particle-captured analytes by the simple use of a magnet for subsequent detection on a sensor unit makes the magnetic particle sensor approach very attractive. The easy magnetic isolation feature of target analytes is not possible with other inorganic particles, both metallic (e.g., gold) and non-metallic (e.g., silica), which require difficult centrifugation and separation steps. Magnetic particle biosensors have thus enabled ultra-low detection with ultra-high sensitivity that has traditionally been achieved only by radioactive assays and other tedious optical sources. Moreover, when traditional approaches failed to selectively detect low-concentration analytes in complex matrices (e.g., colorimetric, electrochemistry, and optical methods), magnetic particle-incorporated sensing strategies enabled sample concentration into a defined microvolume of large surface area particles for a straightforward detection. The objective of this article is to highlight the ever-growing applications of magnetic materials for the detection of analytes present in various real sample matrices. The central idea of this paper was to show the versatility and advantages of using magnetic particles for a variety of sample matrices and analyte types and the adaptability of different transducers with the magnetic particle approaches.
Collapse
|
19
|
Electrogenerated chemiluminescence of cucurbit[n]urils modified electrode and its sensing application. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Wei X, Wang Y, Chen J, Ni R, Meng J, Liu Z, Xu F, Zhou Y. Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Anal Chim Acta 2019; 1081:81-92. [PMID: 31446968 DOI: 10.1016/j.aca.2019.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022]
Abstract
The novel ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers (Fe3O4-COOH@IL-MIP) were firstly constructed with 1-vinyl-3-aminoformylmethyl imidazolium chloride ionic liquid ([VAFMIM]Cl-IL) modified magnetic particles as the substrate materials, [VAFMIM]Cl-IL as functional monomer, 1,6-hexanediyl-3,3'-bis-1-vinylimidazolium dichloride ionic liquid as cross-linker and Lysozyme (Lys) as template protein via surface-imprinting technique. The structure of Fe3O4-COOH@IL-MIP were confirmed by transmission and scanning electron microscopy, dynamic light scattering, thermo-gravimetric analysis, fourier transform infrared spectrometry and X-ray diffraction. The adsorption mechanism was discussed from the perspective of amino acid residues of Lys. The maximum adsorption capacity of MIPs was 166.36 mg g-1 and imprinting factor was 2.67. The competitive adsorption experiments demonstrated the favorable recognition ability of MIPs toward Lys. Reusability studies indicated MIPs can be reused ten times without obvious loss of rebinding ability. The Lys conformation maintained intact after elution and the elution rate was as high as 74%. The adsorption experiment of egg white manifested that MIPs can effectively separate Lys in practical samples. Only ILs and Fe3O4 were utilized to fabricate MIPs, this strategy realized the goal of energy and cost saving while achieving simple synthesis of imprinted materials, and is expected to provide a new feasible idea to exploit synthetic methods for protein-MIPs.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rui Ni
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiaojiao Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083, PR China
| |
Collapse
|
21
|
A chemiluminescence biosensor for lysozyme detection based on aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod carbon fiber composite. Talanta 2019; 200:57-66. [PMID: 31036225 DOI: 10.1016/j.talanta.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/16/2023]
Abstract
In our work, aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod graphene quantum dots @ graphene oxide @ carbon fiber composite (DNAzyme/L-Apt/GQDs@GO@CF) was successfully prepared for sensitive and selective chemiluminescence (CL) detection of lysozyme (LZM). Initially, GQDs@GO@CF was successfully prepared and characterized. Lysozyme aptamers (L-Apt) as a recognition element and hemin/G-quadruplex DNAzyme (DNAzyme) as a catalyst of luminal - H2O2 were modified on the surface of GQDs@GO@CF, sequentially. The immobilization properties of GQDs@GO@CF to L-Apt and the adsorption properties of L-Apt/GQDs@GO@CF to DNAzyme were also researched, respectively. Then, the modified sandwich-rod carbon fiber composite was applied to the construction of CL biosensor for LZM detection. When LZM existed, DNAzyme would be released from the surface of L-Apt/GQDs@GO@CF and catalyzed the reaction of luminal - H2O2. Under optimized conditions, the CL biosensor for LZM detection showed wide linear range of 2.64 × 10-10 to 6.6 × 10-8 g/L and low detection limit of 1.25 × 10-11 g/L (3δ). Finally, the CL biosensor was successfully used for LZM detection in human urine samples and illustrated the potential application in pratical samples.
Collapse
|
22
|
Zhang H, Yuan Y, Sun Y, Niu C, Qiao F, Yan H. An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 2018; 143:175-181. [PMID: 29168845 DOI: 10.1039/c7an01290j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ionic liquid-magnetic graphene (IL-MG) composite was used as the adsorbent in magnetic dispersive solid-phase extraction to rapidly extract and isolate triazine herbicides from surface water. IL-MG was synthesized by a simple and time-saving one-pot strategy where the synthesis of magnetic Fe3O4, the modification with an IL, and the reduction of graphene oxide to graphene were conducted at the same time. An IL was applied to enrich the interaction mechanism between IL-MG and analytes (π-π, hydrophobic interaction, and electrostatic interaction). Moreover, the IL and Fe3O4 nanoparticles acted as spacers, inserting between the layers of graphene to prevent the aggregation of graphene, which improved the adsorption ability because of the large specific surface area of IL-MG. The resultant IL-MG had hierarchical flake structures and showed a high adsorption capacity (8266.0-12 324.1 μg g-1) toward triazine herbicides. Under suitable conditions, the linearity for triazine herbicides was achieved in the range of 0.55-500 ng mL-1 with a detection limit of 0.09-0.15 ng mL-1 and a quantitation limit of 0.31-0.51 ng mL-1, and the enrichment factor was 83-fold, which indicated that the proposed method could be successfully applied for the determination of triazine herbicides in surface water.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education & Hebei University, Baoding, 071002, China
| | | | | | | | | | | |
Collapse
|
23
|
Xu W, Dai Q, Wang Y, Hu X, Xu P, Ni R, Meng J. Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme. RSC Adv 2018; 8:21850-21856. [PMID: 35541737 PMCID: PMC9081177 DOI: 10.1039/c8ra03818j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023] Open
Abstract
A novel magnetic (Fe3O4) surface molecularly imprinted polymer (MIP) based on ionic liquid (IL) (Fe3O4@VTEO@IL-MIPs) was prepared for the selective extraction of lysozyme (Lys). As the functional monomer of the MIPs, an imidazolium-based IL with vinyl groups was prepared. It can provide multiple interactions with template molecules. The amount of IL was optimized (200 mg). Fourier transform infrared spectrometry (FT-IR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and a vibrating sample magnetometer (VSM) were used to characterize the MIP. The results indicate the successful formation of an imprinting polymer layer. The concentration of Lys in the supernatant was determined by UV-vis spectrophotometry at a wavelength of 280 nm. The maximum adsorption capability of the MIP is 213.7 mg g-1 and the imprinting factor (IF) is 2.02. It took 2.5 h for the MIP to attain adsorption equilibrium. The structure of the protein was evaluated using circular dichroism (CD) spectra and UV-visible spectra. The adsorption performance was further investigated in detail by selective adsorption experiments, competitive rebinding tests, and reusability and stability experiments. Furthermore, it was utilized to separate the template protein from a mixture of proteins and real samples successfully because of the high adsorption capacity for Lys.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Qingzhou Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Xiaojian Hu
- Department of Chemistry, School of Basic Medicine, Changsha Medical University Changsha 410219 P. R. China
| | - Panli Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Rui Ni
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Jiaojiao Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| |
Collapse
|
24
|
Sun Y, Ding C, Lin Y, Sun W, Liu H, Zhu X, Dai Y, Luo C. Highly selective and sensitive chemiluminescence biosensor for adenosine detection based on carbon quantum dots catalyzing luminescence released from aptamers functionalized graphene@magnetic β-cyclodextrin polymers. Talanta 2018; 186:238-247. [PMID: 29784355 DOI: 10.1016/j.talanta.2018.04.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
In this work, a highly selective and sensitive chemiluminescence (CL) biosensor was prepared for adenosine (AD) detection based on carbon quantum dots (CQDs) catalyzing the CL system of luminol-H2O2 under alkaline environment and CQDs was released from the surface of AD aptamers functionalized graphene @ magnetic β-cyclodextrin polymers (GO@Fe3O4@β-CD@A-Apt). Firstly, GO@Fe3O4@β-CD and CQDs were prepared and characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), UV-Vis absorption spectra (UV), fluorescence spectra (FL), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). For GO@Fe3O4@β-CD, Fe3O4 was easy to separate, GO had good biocompatibility and large specific surface area, and β-CD further increased the specific surface area of the adenosine polymers (A-Apt) to provided larger binding sites to A-Apt. Then, A-Apt was modified on the surface of GO@Fe3O4@β-CD while CQDs was modified by ssDNA (a single stranded DNA partially complementary to A-Apt). The immobilization property (GO@Fe3O4@β-CD to A-Apt) and the adsorption property (GO@Fe3O4@β-CD@A-Apt to CQDs-ssDNA) were sequentially researched. The base-supported chain-like polymers - GO@Fe3O4@β-CD@A-Apt/CQDs-ssDNA was successfully obtained. When AD existed, CQDs-ssDNA was released from the surface of GO@Fe3O4@β-CD@A-Apt and catalyzed CL. After that, under optimized CL conditions, AD could be measured with the linear concentration range of 5.0 × 10-13-5.0 × 10-9 mol/L and the detection limit of 2.1 × 10-13 mol/L (3δ) while the relative standard deviation (RSD) was 1.4%. Finally, the GO@Fe3O4@β-CD@A-Apt/CQDs-ssDNA-CL biosensor was used for the determination of AD in urine samples and recoveries ranged from 98.6% to 101.0%. Those satisfactory results illustrated the proposed CL biosensor could achieve highly selective, sensitive and reliable detection of AD and revealed potential application for AD detection in monitoring and diagnosis of human cancers.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chaofan Ding
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Weiyan Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
25
|
Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 2018; 410:3991-4014. [DOI: 10.1007/s00216-018-1013-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
|
26
|
Yang Y, Meng X, Xiao Z. Synthesis of a surface molecular imprinting polymer based on silica and its application in the identification of nitrocellulose. RSC Adv 2018; 8:9802-9811. [PMID: 35540849 PMCID: PMC9078706 DOI: 10.1039/c7ra13264f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
A surface molecular imprinting polymer (MIP) based on silica (SiO2/MIP) with excellent selective identification properties towards nitrocellulose (NC) was synthesized with methylacrylic acid as a functional monomer and NC as a template molecule, through simple in situ polymerization. The functional groups of SiO2/MIP were studied through Fourier transform infrared spectroscopy. The morphology, crystalline state and thermostability of SiO2/MIP were investigated respectively by scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. Binding capacity and selectivity studies of SiO2/MIP for NC and its analogues were carried out through ultraviolet-visible spectrophotometry. The thermal analysis and study of crystalline states confirmed the successful imprinting of NC in the polymer networks. The optimized conditions were found to be a polymerization temperature of 45 °C and a functional monomer to cross-linking ratio of 1 : 3. The adsorption capacity of SiO2/MIP was improved considerably compared with that of polymers prepared by traditional imprinting technology, with a maximum adsorption amount of 1.7 mg mg−1 in 2 mg ml−1 NC solution, compared with an adsorption capacity of about 0.5 mg mg−1 for a traditional MIP. According to the selectivity study, more NC was adsorbed by SiO2/MIP than its analogues; the best adsorption capacity of SiO2/MIP for NC was approaching 5 times that for carboxymethyl cellulose (CMC). The results show that it would be possible to apply SiO2/MIP for the detection of NC, to give improved sensitivity in security checking and improved contaminant adsorption. A novel surface molecular imprinting polymer was prepared which displayed excellent specificity, selectivity and a large adsorption capacity for nitrocellulose.![]()
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiangjun Meng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Zhenggang Xiao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
27
|
Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017; 90:640-648. [DOI: 10.1021/acs.analchem.7b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Faezeh Ghorbanizamani
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
| | - Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
- Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, Bornova, Izmir, Turkey, 35100
| |
Collapse
|
28
|
Zhang W, Zhu Z, Zhang H, Qiu Y. Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and β-Cyclodextrin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090991. [PMID: 28858259 PMCID: PMC5615528 DOI: 10.3390/ijerph14090991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
To develop efficient materials with enhanced adsorption and selectivity for genotoxic 2-aminopyridine in water, based on magnetic chitosan (CTs) and β-cyclodextrin (β-CD), the magnetic molecularly imprinted polymers (MMIPs) of Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP were synthesized by a molecular imprinting technique using 2-aminopyridine as a template. The selective adsorption experiments for 2-aminopyridine were performed by four analogues including pyridine, aniline, 2-amino-5-chloropyridine and phenylenediamine. Results showed the target 2-aminopyridine could be selectively adsorbed and quickly separated by the synthesized MMIPs in the presence of the above structural analogues. The coexisting ions including Na+, K+, Mg2+, Ca2+, Cl− and SO42− showed little effect on the adsorption of 2-aminopyridine. The maximum adsorption capacity of 2-aminopyridine on Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP was 39.2 mg·g−1 and 46.5 mg·g−1, respectively, which is much higher than values in previous reports. The comparison result with commercial activated carbon showed the obtained MMIPs had higher adsorption ability and selectivity for 2-aminopyridine. In addition, the synthesized MMIPs exhibited excellent performance of regeneration, which was used at least five times with little adsorption capacity loss. Therefore, the synthesized MMIPs are potential effective materials in applications for selective removal and analysis of the genotoxic compound aminopyridine from environmental water.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
29
|
Sun Y, Li J, Wang Y, Ding C, Lin Y, Sun W, Luo C. A chemiluminescence biosensor based on the adsorption recognition function between Fe 3O 4@SiO 2@GO polymers and DNA for ultrasensitive detection of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:1-7. [PMID: 28147299 DOI: 10.1016/j.saa.2017.01.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10-12-2.5×10-11mol/L. The detection limit was 1.7×10-12mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
30
|
Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J Chromatogr A 2017; 1489:29-38. [DOI: 10.1016/j.chroma.2017.02.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
|
31
|
Meng N, Su Y, Zhou N, Zhang M, Shao M, Fan Y, Zhu H, Yuan P, Chi C, Xiao Y. Carboxylated graphene oxide functionalized with β-cyclodextrin—Engineering of a novel nanohybrid drug carrier. Int J Biol Macromol 2016; 93:117-122. [DOI: 10.1016/j.ijbiomac.2016.08.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 11/30/2022]
|
32
|
Recent Advance in Chemiluminescence Assay and Its Biochemical Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60981-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Wu X, Yang M, Zeng H, Xi X, Zhang S, Lu R, Gao H, Zhou W. Effervescence-assisted dispersive solid-phase extraction using ionic-liquid-modified magnetic β-cyclodextrin/attapulgite coupled with high-performance liquid chromatography for fungicide detection in honey and juice. J Sep Sci 2016; 39:4422-4428. [PMID: 27670749 DOI: 10.1002/jssc.201600596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/15/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022]
Abstract
In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving.
Collapse
Affiliation(s)
- Xiaoling Wu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Miyi Yang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haozhe Zeng
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Xuefei Xi
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Sanbing Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Vasilescu A, Nunes G, Hayat A, Latif U, Marty JL. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1863. [PMID: 27827963 PMCID: PMC5134522 DOI: 10.3390/s16111863] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface.
Collapse
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6, 060101 Bucharest, Romania.
| | - Gilvanda Nunes
- Technological Chemistry Department, Federal University of Maranhão, CCET/UFMA, Av. Portugueses, Cidade Universitária do Canga, 65080-040 São Luis, MA, Brazil.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT), 54000 Lahore, Pakistan.
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT), 54000 Lahore, Pakistan.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| |
Collapse
|
35
|
Zarnegar Z, Safari J. Magnetic carbon nanotube-supported imidazolium cation-based ionic liquid as a highly stable nanocatalyst for the synthesis of 2-aminothiazoles. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zohre Zarnegar
- Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry and Biochemistry; University of Kashan; PO Box 87317-51167 Kashan IR Iran
| | - Javad Safari
- Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry and Biochemistry; University of Kashan; PO Box 87317-51167 Kashan IR Iran
| |
Collapse
|