1
|
Pateraki A, Psillakis E. Vacuum-assisted headspace solid phase microextraction for monitoring ripening-induced changes in tomato volatile profile. J Chromatogr A 2025; 1740:465556. [PMID: 39626334 DOI: 10.1016/j.chroma.2024.465556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
This work proposes, for the first time, the use of vacuum-assisted headspace solid phase microextraction (Vac-HS-SPME) for studying the free volatiles in tomato fruits. Initially, a comparative optimization between Vac-HS-SPME and regular HS-SPME was conducted, examining the effects of sampling time (15-60 min) and temperature (40 and 60°C) on the extraction of 29 target compounds from tomato puree samples. Compared to regular HS-SPME, sampling under vacuum resulted in the detection of nine additional analytes at 40°C, and an extra three at 60°C. The optimized methods (45 minutes sampling with Vac-HS-SPME at 40°C and regular HS-SPME at 60°C) were then successfully applied for the semi-quantitative comparison of free volatiles during on-plant ripening. These studies revealed an increase in volatiles across the six ripening stages considered (mature green, breaker, turning, pink, light red and red ripe) that was dominated by aldehydes. Compared to HS-SPME, the optimized Vac-HS-SPME showed substantial improvement in extraction efficiencies, and enabled the detection of key volatiles at earlier ripening stages, such as the breaker and turning stages. Overall, compared to the regular method, this study demonstrated that Vac-HS-SPME is a powerful approach that provides additional insights on free volatiles in fruits, even when sampling at lower temperatures.
Collapse
Affiliation(s)
- Angeliki Pateraki
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece.
| |
Collapse
|
2
|
Dugheri S, Cappelli G, Fanfani N, Squillaci D, Rapi I, Venturini L, Vita C, Gori R, Sirini P, Cipriano D, Sajewicz M, Mucci N. Vacuum-Assisted MonoTrap TM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024; 29:4943. [PMID: 39459311 PMCID: PMC11510596 DOI: 10.3390/molecules29204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating in no vacuum- or vacuum-assistance mode, were then analyzed following an automated thermal desorption (TD) step. We took advantage of the theoretical formulation to reach some conclusions on the relationship between the physical characteristics of the monolithic material and uptake rates. A total of 35 odor-active volatile compounds, determined by gas chromatography-mass spectrometry/olfactometry analysis, contributed as key odor compounds for HMA, consisting mainly of aldehydes, alcohols, and ketones. Chemometric analysis revealed that MonoTrapTM RGC18-TD was the better coating in terms of peak area and equilibrium time. A comparison of performance showed that Vac/no-Vac ratios increased, about an order of magnitude, as the boiling point of target analytes increased. The innovative hybrid adsorbent of silica and graphite carbon monolith technology, having a large surface area bonded with octadecylsilane, showed effective adsorption capability, especially to polar compounds.
Collapse
Affiliation(s)
- Stefano Dugheri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Niccolò Fanfani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Ilaria Rapi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Lorenzo Venturini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Chiara Vita
- PIN—University Center “Città di Prato” Educational and Scientific Service, University of Florence, 59100 Prato, Italy;
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | - Piero Sirini
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | | | | | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| |
Collapse
|
3
|
Creydt M, Fischer M. Food profiling goes green: Sustainable analysis strategies for food authentication. Electrophoresis 2024. [PMID: 39140227 DOI: 10.1002/elps.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Omics technologies, such as genomics, proteomics, metabolomics, isotopolomics, and metallomics, are important tools for analytical verification of food authenticity. However, in many cases, their application requires the use of high-resolution technological platforms as well as careful consideration of sample collection, storage, preparation and, in particular, extraction. In this overview, the individual steps and disciplines are explained against the background of the term "Green Chemistry," and the various instrumental procedures for the respective omics disciplines are discussed. Furthermore, new approaches and developments are presented on how such analyses can be made sustainable in the future.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Mascrez S, Aspromonte J, Spadafora ND, Purcaro G. Vacuum-assisted and multi-cumulative trapping in headspace solid-phase microextraction combined with comprehensive multidimensional chromatography-mass spectrometry for profiling virgin olive oil aroma. Food Chem 2024; 442:138409. [PMID: 38237298 DOI: 10.1016/j.foodchem.2024.138409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
In the present work vacuum (Vac) and multiple cumulative trapping (MCT) headspace solid phase microextraction (HS-SPME) were evaluated as alternative or combined techniques for the volatile profiling. A higher extraction performance for semi-volatiles was shown by all three techniques. Synergic combination of Vac and MCT showed up to 5-times extraction power for less volatile compounds. The hyphenation of said techniques with comprehensive two-dimensional gas chromatography (GC × GC) enabled a comprehensive analysis of the volatilome. Firstly, 18 targeted quality markers, previously defined by means of classical HS-SPME, were explored for their ability to classify commercial categories. The applicability of such markers proved to be limited with the alternative sampling techniques. An untargeted approach enables the selection of specific features for each technique showing a better classification capacity of the commercial categories. No misclassifications were observed, except for one extra virgin olive oil classified as virgin olive oil in 3 × 10 min Vac-MCT-HS-SPME.
Collapse
Affiliation(s)
- Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, 1900 La Plata, Argentina
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
5
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
Thomas SL, Myers C, Herrington JS, Schug KA. Investigation of operational fundamentals for vacuum-assisted headspace high-capacity solid-phase microextraction and gas chromatographic analysis of semivolatile compounds from a model solid sample. J Sep Sci 2024; 47:e2300779. [PMID: 38682835 DOI: 10.1002/jssc.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Vacuum-assisted headspace solid-phase microextraction (Vac-HS-SPME) is a technique used to enhance SPME sampling of semi-volatile organic compounds. Here, it was combined with a high-capacity SPME Arrow, which features a larger volume of extraction phase and a more rugged configuration than traditional extraction fibers. An in-depth assessment of the critical parameters was conducted to achieve optimal extraction of representative compounds from a model solid sample matrix (Ottawa sand). Operational fundamentals investigated included the types of seals needed to create a leak-free environment under vacuum conditions; the magnitude of the vacuum applied and time needed to activate the Vac kinetics; order of sample vial preparation methods (VPMs); and other standard variables associated with extract analysis by gas chromatography-mass spectrometry. When exploring the limits of sample VPMs, results indicated an ideal workflow requires the solid sample to be spiked before sealing the vial, allow the sample to rest overnight, then apply vacuum at a pressure of -677 mbar (out of -789 mbar maximum possible vacuum with pump and compressor used), exerted on the vial for 90 s. This work provides the necessary workflow for the optimization of Vac-HS-SPME sampling of analytes from solid matrices.
Collapse
Affiliation(s)
- Shannon L Thomas
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Colton Myers
- Restek Corporation, Bellefonte, Pennsylvania, USA
| | | | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
7
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
8
|
Eggermont D, Spadafora ND, Aspromonte J, Pellegrino R, Purcaro G. Exploring different high-capacity tools and extraction modes to characterize the aroma of brewed coffee. Anal Bioanal Chem 2023:10.1007/s00216-023-04654-2. [PMID: 37041278 DOI: 10.1007/s00216-023-04654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/13/2023]
Abstract
In the present work, the potential benefit of using multi-cumulative trapping headspace extraction was explored by comparing the results using solid-phase microextraction (SPME) coated with divinylbenzene/carboxen/polydimethylsiloxane and a probe-like tool coated with polydimethylsiloxane. The efficiency of a single 30-min extraction, already explored in previous work, was compared with that of multiple shorter extractions. We evaluated three different conditions, i.e., three repeated extractions for 10 min each from different sample vials (for both the probe-like tool and SPME) or from the same vial (for SPME) containing brewed coffee. The entire study was performed using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The two-dimensional plots were aligned and integrated using a tile-sum approach before any statistical analysis. A detailed comparison of all the tested conditions was performed on a set of 25 targeted compounds. Although a single 30-min extraction using the probe-like tool provided a significantly higher compound intensity than SPME single extraction, the use of multiple shorter extractions with SPME showed similar results. However, multiple extractions with the probe-like tool showed a greater increase in the number of extracted compounds. Furthermore, an untargeted cross-sample comparison was performed to evaluate the ability of the two tested tools and the different extraction procedures in differentiating between espresso-brewed coffee samples obtained from capsules made of different packaging materials (i.e., compostable capsules, aluminum capsules, aluminum multilayer pack). The highest explained variance was obtained using the probe-like tool and multiple extractions (91.6% compared to 83.9% of the single extraction); nevertheless, SPME multiple extractions showed similar results with 88.3% of variance explained.
Collapse
Affiliation(s)
- Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación Y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), 1900, La Plata, Argentina
| | - Rocío Pellegrino
- Laboratorio de Investigación Y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), 1900, La Plata, Argentina
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium.
| |
Collapse
|
9
|
Nakhodchi S, Alizadeh N. Dynamic headspace solid-phase extraction at room temperature: a theoretical model, method, and application for propofol analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1478-1484. [PMID: 36876859 DOI: 10.1039/d2ay02099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, a simple dynamic headspace solid-phase extraction (DHS-SPE) process at room temperature was used for a material that is sensitive to increase in the temperature. A proposed method was implemented to rapidly extract propofol (PF) from a complex matrix before fluorescence spectroscopy analysis, within a short sampling time without involving a hot plate or stirrer. A mini diaphragm pump was used to circulate the headspace gas. As the headspace gas flows over the sample solution surface, bubbles form and release analytes from the liquid into the headspace. During the extraction process, the headspace gas passes through the coated metal foam as a sorbent that is placed in a homemade glass vessel and analytes are trapped from the gas phase. A theoretical model of DHS-SPE based on the consecutive first-order process is proposed in this study. A mathematical solution for the dynamic process of mass transfer was obtained by correlating the variation in analyte concentration in the headspace and adsorber with the pump speed and amount of analyte extracted to the solid phase. Using electrochemically Nafion-doped polypyrrole (PPy-Naf) film on nickel foam as the solid-phase coupled to fluorescence detection, a linear dynamic range over the concentration range of 100-500 nM with a detection limit of 15 nM was obtained. This method was applied successfully for PF determination in human serum sample matrices without the interference of co-administered drugs, such as cisatracurium, which have significant emission spectrum overlap. The developed method can lead to a new idea for sample pretreatment, which is compatible with many analytical techniques and has been successfully combined with fluorescence spectroscopy in this work. This format of sampling simplifies the transfer of analytes from complex matrices to the headspace for the extraction and preconcentration process, eliminating the heating step and the need for expensive equipment.
Collapse
Affiliation(s)
- Sarah Nakhodchi
- Department of Chemistry, Factually of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Naader Alizadeh
- Department of Chemistry, Factually of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
10
|
Fu Q, Murray CI, Karpov OA, Van Eyk JE. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. MASS SPECTROMETRY REVIEWS 2023; 42:873-886. [PMID: 34786750 PMCID: PMC10339360 DOI: 10.1002/mas.21750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Sample preparation for mass spectrometry-based proteomics has many tedious and time-consuming steps that can introduce analytical errors. In particular, the steps around the proteolytic digestion of protein samples are prone to inconsistency. One route for reliable sample processing is the development and optimization of a workflow utilizing an automated liquid handling workstation. Diligent assessment of the sample type, protocol design, reagents, and incubation conditions can significantly improve the speed and consistency of preparation. When combining robust liquid chromatography-mass spectrometry with either discovery or targeted methods, automated sample preparation facilitates increased throughput and reproducible quantitation of biomarker candidates. These improvements in analysis are also essential to process the large patient cohorts necessary to validate a candidate biomarker for potential clinical use. This article reviews the steps in the workflow, optimization strategies, and known applications in clinical, pharmaceutical, and research fields that demonstrate the broad utility for improved automation of sample preparation in the proteomic field.
Collapse
Affiliation(s)
- Qin Fu
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
11
|
Aspromonte J, Lancioni C, Purcaro G. Solid-Phase Microextraction-Gas Chromatography Analytical Strategies for Pesticide Analysis. Methods Protoc 2022; 5:82. [PMID: 36287054 PMCID: PMC9609045 DOI: 10.3390/mps5050082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Due to their extensive use and the globalized commerce of agricultural goods, pesticides have become a global concern. Despite the undoubtful advantages of their use in agricultural practices, their misuse is a threat to the environment and human health. Their analysis in environmental samples and in food products continues to gain interest in the analytical chemistry community as they are challenging matrices, and legal concentration limits are particularly low (in the order of ppb). In particular, the use of solid-phase microextraction (SPME) has gained special attention in this field thanks to its potential to minimize the matrix effect, while enriching its concentration, allowing very low limits of detection, and without the need of a large amount of solvents or lengthy procedures. Moreover, its combination with gas chromatography (GC) can be easily automated, making it a very interesting approach for routine analysis. In this review, advances and analytical strategies for the use of SPME coupled with GC are discussed and compared for the analysis of pesticides in food and environmental samples, hopefully encouraging its further development and routine application in this field.
Collapse
Affiliation(s)
- Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, La Plata 1900, Argentina
| | - Carlina Lancioni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, La Plata 1900, Argentina
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Crucello J, Medeiros Junior I, Mesquita de Carvalho R, Wang Hantao L. Profiling organic acids in produced water samples using vacuum-assisted sorbent extraction and gas chromatography coupled to Fourier transform Orbitrap mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Hu C, Zhang Y, Zhou Y, Liu ZF, Feng XS. Unsymmetrical dimethylhydrazine and related compounds in the environment: Recent updates on pretreatment, analysis, and removal techniques. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128708. [PMID: 35344890 DOI: 10.1016/j.jhazmat.2022.128708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Unsymmetrical dimethylhydrazine (1,1-Dimethylhydrazine, UDMH) has been widely used as aerospace fuel in many countries. The launch of space vehicles can cause the release and leakage of UDMH into the environment, posing serious threats to ecology system and human population. Even worse, the health risks are also pertinent to its numerous classes of transformation products including N-Nitrosodimethylamine (NDMA), because most of them display carcinogenic and mutagenic properties. Recently, there has been an intense ongoing development of simple, fast, green, and effective techniques for determining and removing these hazardous substances. This review summarizes the latest research progress regarding the sources, fates, pretreatment, analysis, and removal techniques of UDMH and related products in the environment. Sample preparation methods mainly include pressurized liquid extraction, liquid-phase microextraction techniques, solid-phase extraction, headspace-solid-phase microextraction, and supercritical fluid extraction. Detection and identification methods mainly include high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS), gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), and sensors. Removal methods mainly include advanced oxidation processes, adsorption, biodegradation techniques. The advantages/disadvantages, applications, and trends of the proposed approaches are thoroughly discussed to provide a valuable reference for further studies.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Zhakupbekova A, Baimatova N, Psillakis E, Kenessov B. Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33645-33656. [PMID: 35028834 DOI: 10.1007/s11356-021-17844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Quantification of unsymmetrical dimethylhydrazine transformation products in solid samples is an important stage in monitoring of environmental pollution caused by heavy rockets launches. The new method for simultaneous quantification of unsymmetrical dimethylhydrazine transformation products in sand samples using vacuum-assisted headspace solid-phase microextraction without addition of water followed by gas chromatography-mass spectrometry is proposed. Decreasing air evacuation time from 120 to 20 s at 23 °C resulted in increased responses of analytes by 25-46% and allowed obtaining similar responses as after evacuation at -30 °C. The best combination of responses of analytes and their relative standard deviations (RSDs) was achieved after air evacuation of a sample (m = 1.00 g) for 20 s at 23 °C, incubation for 30 min at 40 °C, and 30-min extraction at 40 °C by Carboxen/polydimethylsiloxane (Car/PDMS) fiber. The method was validated in terms of linearity (R2=0.9912-0.9938), limits of detection (0.035 to 3.6 ng g-1), limits of quantification (0.12-12 ng g-1), recovery (84-97% with RSDs 1-11%), repeatability (RSDs 3-9%), and reproducibility (RSDs 7-11%). It has a number of major advantages over existing methods based on headspace solid-phase microextraction-lower detection limits, better accuracy and precision at similar or lower cost of sample preparation. The developed method was successfully applied for studying losses of analytes from open vials with model sand spiked with unsymmetrical dimethylhydrazine transformation products. It can be recommended for analysis of trace concentrations of unsymmetrical dimethylhydrazine transformation products when studying their transformation, migration and distribution in contaminated sand.
Collapse
Affiliation(s)
- Aray Zhakupbekova
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan
- UNESCO Chair for Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nassiba Baimatova
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan.
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Bulat Kenessov
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan
| |
Collapse
|
15
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rocha SM, Costa CP, Martins C. Aroma Clouds of Foods: A Step Forward to Unveil Food Aroma Complexity Using GC × GC. Front Chem 2022; 10:820749. [PMID: 35300387 PMCID: PMC8921485 DOI: 10.3389/fchem.2022.820749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
The human senses shape the life in several aspects, namely well-being, socialization, health status, and diet, among others. However, only recently, the understanding of this highly sophisticated sensory neuronal pathway has gained new advances. Also, it is known that each olfactory receptor cell expresses only one type of odorant receptor, and each receptor can detect a limited number of odorant substances. Odorant substances are typically volatile or semi-volatile in nature, exhibit low relative molecular weight, and represent a wide variety of chemical families. These molecules may be released from foods, constituting clouds surrounding them, and are responsible for their aroma properties. A single natural aroma may contain a huge number of volatile components, and some of them are present in trace amounts, which make their study especially difficult. Understanding the components of food aromas has become more important than ever with the transformation of food systems and the increased innovation in the food industry. Two-dimensional gas chromatography and time-of-flight mass spectrometry (GC × GC-ToFMS) seems to be a powerful technique for the analytical coverage of the food aromas. Thus, the main purpose of this review is to critically discuss the potential of the GC × GC-based methodologies, combined with a headspace solvent-free microextraction technique, in tandem with data processing and data analysis, as a useful tool to the analysis of the chemical aroma clouds of foods. Due to the broad and complex nature of the aroma chemistry subject, some concepts and challenges related to the characterization of volatile molecules and the perception of aromas will be presented in advance. All topics covered in this review will be elucidated, as much as possible, with examples reported in recent publications, to make the interpretation of the fascinating world of food aroma chemistry more attractive and perceptive.
Collapse
Affiliation(s)
- Sílvia M. Rocha
- LAQV-REQUIMTE and Departamento de Química, Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
| | | | | |
Collapse
|
17
|
Delbecque N, Mascrez S, Psillakis E, Purcaro G. Sub-ambient temperature sampling of fish volatiles using vacuum-assisted headspace solid phase microextraction: Theoretical considerations and proof of concept. Anal Chim Acta 2022; 1192:339365. [DOI: 10.1016/j.aca.2021.339365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
18
|
Yiantzi E, Murtada K, Terzidis K, Pawliszyn J, Psillakis E. Vacuum-assisted headspace thin-film microextraction: Theoretical formulation and method optimization for the extraction of polycyclic aromatic hydrocarbons from water samples. Anal Chim Acta 2022; 1189:339217. [PMID: 34815047 DOI: 10.1016/j.aca.2021.339217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 11/01/2022]
Abstract
The thin films used in headspace thin-film microextraction (HS-TFME) enable higher sensitivity and superior extraction rates compared to other microextraction approaches, largely due to their greater surface area-to-volume ratio and extraction-phase volume. Nonetheless, analytes exhibiting a low affinity for the headspace and/or large partitioning between the extraction phase and headspace will still require more time to reach equilibrium. In this paper, we detail the development of a new method, termed as vacuum-assisted HS-TFME (Vac-HS-TFME), and we demonstrate how its use of vacuum conditions can accelerate the extraction kinetics of analytes with long equilibration times. The pressure-dependence of the extraction process was formulated and related to improvements in gas-phase diffusivity when lowering the total pressure. Four low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) were used to experimentally verify the improvements in extraction efficiencies enabled by Vac-HS-TFME (vs. HS-TFME). To this end, the effects of temperature and extraction time on Vac-HS-TFME were investigated, with the results being compared to those obtained via regular HS-TFME. Furthermore, the use of a high-capacity sorbent in TFME allowed the positive effects of temperature and vacuum conditions to be combined successfully. Extraction-time profiles constructed at 30 and 50 °C revealed substantial acceleration in the overall extraction kinetics when sampling under vacuum conditions. At 50 °C, all of the analytes extracted via Vac-HS-TFME reached equilibrium within 45 min, whereas only two reached this state under atmospheric pressure. Vac-HS-TFME's analytical performance was evaluated under optimized conditions, and the results were compared to those obtained with regular HS-TFME. The findings revealed that for the two lighter PAHs, the performance of the two methods was similar since they were extracted close or at equilibrium. However, the calibration models for the two heavier PAHs tested here were linear over a wider concentration range (50-10000 ng L-1) when using Vac-HS-TFME, had superior intra-day repeatability (7.4% and 6.7% vs. 11% and 9.3% with regular HS-TFME), and the limits of detection were lower compared to regular HS-TFME (15 and 11 ng L-1 compared to 136 to 100 ng L-1 with regular HS-TFME). Finally, the analysis of spiked wastewater effluent samples showed that the matrix did not affect extraction. The proposed Vac-HS-TFME approach combines the advantages of low-pressure sampling and high-capacity sorbent, and has a great potential for future applications in food, flavour, environmental, and biological analyses.
Collapse
Affiliation(s)
- Evangelia Yiantzi
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Khaled Murtada
- Department of Chemistry, University of Waterloo, N2L3G1, Waterloo, Ontario, Canada
| | - Konstantinos Terzidis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, N2L3G1, Waterloo, Ontario, Canada
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece.
| |
Collapse
|
19
|
Jeong S, Noulorsaytour X, Valdez JE, Chung DS. Single bubble in-tube microextraction coupled with capillary electrophoresis. Electrophoresis 2021; 43:456-463. [PMID: 34661921 DOI: 10.1002/elps.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022]
Abstract
Headspace (HS) extraction is a sample pretreatment technique for volatile and semivolatile organic compounds in a complex matrix. Recently, in-tube microextraction (ITME) coupled with CE using an acceptor plug placed in the capillary inlet was developed as a simple but powerful HS extraction method. Here, we present single bubble (SB) ITME using a bubble hanging to the capillary inlet immersed in a sample donor solution as a HS of submicroliter volume (∼200 nL). The analytes evaporated to the bubble were extracted into the acceptor phase through the capillary opening, then electrophoresis of the enriched extract was carried out. Since the bubble volume was much smaller than a conventional HS volume (∼1 mL), it was filled with the evaporated analytes rapidly and the analytes could be enriched much faster compared to conventional HS-ITME. Owing to the high surface-to-volume ratio of the SB, 5 min SB-ITME yielded the enrichment factor values similar to those of 10 min HS-ITME. When 5 min SB-ITME at room temperature was applied to a tap water sample, the enrichment factors of 2,4,6-trichlorophenol (TCP), 2,3,6-TCP, and 2,6-dichlorophenol were 53, 41, and 60, respectively, and the LOQs obtained by monitoring the absorbance at 214 nm were 5.6-8.3 ppb, much lower than 200 ppb, the World Health Organization guideline for the maximum permissible concentration of 2,4,6-TCP in drinking water.
Collapse
Affiliation(s)
- Sunkyung Jeong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | | | - Joseph E Valdez
- Department of Chemistry, Seoul National University, Seoul, Korea.,Department of Natural Sciences, College of Arts and Sciences, Nueva Vizcaya State University, Bayombong, Philippines
| | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Derikvand A, Ghiasvand A, Dalvand K, Haddad PR. Fabrication and evaluation of a portable low-pressure headspace solid-phase microextraction device for on-site analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zhu W, Qin P, Han L, Zhang X, Li D, Li M, Wang Y, Zhang X, Lu M, Cai Z. Gas-cycle-assisted headspace solid-phase microextraction coupled with gas chromatography for rapid analysis of organic pollutants. Chem Commun (Camb) 2021; 57:8810-8813. [PMID: 34382969 DOI: 10.1039/d1cc02771a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new gas-cycle-assisted (GCA) headspace solid-phase microextraction (HS-SPME) device was designed to rapidly extract organic pollutants with high Kow and boiling points, which have difficulty in volatilization from matrix to headspace. Organic pollutants, including three polycyclic aromatic hydrocarbons (PAHs), four polychlorinated biphenyls (PCBs), and five phthalate esters (PAEs), were selected to evaluate the performance of GCA HS-SPME. Compared with conventional HS-SPME, the equilibrium times of GCA HS-SPME for extraction of PAHs, PCBs, and PAEs were greatly shortened from 70-90 to 5-11 min. Moreover, the limits of detection for analysis of PAHs were achieved at pg mL-1 level by GCA HS-SPME coupled with gas chromatography-flame ionization detection.
Collapse
Affiliation(s)
- Wenli Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Louw S. Recent trends in the chromatographic analysis of volatile flavor and fragrance compounds: Annual review 2020. ANALYTICAL SCIENCE ADVANCES 2021; 2:157-170. [PMID: 38716458 PMCID: PMC10989567 DOI: 10.1002/ansa.202000158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The chromatographic analysis of volatile flavor and fragrance compounds is performed routinely in several industries and in many fields of scientific research. Typical applications include food-, environmental-, essential oil- and cosmetics analysis. Even though the analysis of flavors and fragrances have become increasingly standardized during the past decade, there are still a large variety of techniques that can be used for their extraction, chemical analysis, and sensory analysis. Moreover, there are certain less commonly used techniques that are now being used with increased frequency and that are showing the potential of being used as alternatives to the existing standard techniques. In this annual review, the techniques that were most commonly used in 2020 for the investigation of these volatile compounds are discussed. In addition, a number of emerging trends are discussed, notably the use of solvent assisted flavor evaporation (SAFE) for extraction, GC ion mobility spectrometry (IMS) for volatile compound analysis and electronic senses, that is, E-noses and E-tongues, for sensory analysis. Miscellaneous hyphenated techniques, advances in stationary phase chemistry and a number of interesting applications are also highlighted.
Collapse
Affiliation(s)
- Stefan Louw
- Department of Chemistry and BiochemistryUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
24
|
Reichel S, Carvalho DO, Santos JR, Bednar P, Rodrigues JA, Guido LF. Profiling the volatile carbonyl compounds of barley and malt samples using a low-pressure assisted extraction system. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
26
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
27
|
Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Advances in Solid-Phase Microextraction. SEPARATIONS 2020. [DOI: 10.3390/separations7020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Analysis imposes substantial challenges, especially when dealing with analytes present at trace levels in complex matrices [...]
Collapse
|
30
|
The effect of vacuum: an emerging experimental parameter to consider during headspace microextraction sampling. Anal Bioanal Chem 2020; 412:5989-5997. [PMID: 32524370 DOI: 10.1007/s00216-020-02738-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
The effect of vacuum is an emerging experimental parameter to consider during optimization of a variety of headspace microextraction methodologies. The positive effect of vacuum was initially demonstrated for headspace solid-phase microextraction and was recently expanded to single-drop microextraction and higher capacity sorbents i.e. stir bar sorptive extraction. In all cases, sampling under vacuum greatly accelerated the extraction kinetics of analytes exhibiting long equilibration times under atmospheric pressure. At the same time, the extraction of analytes that reached equilibrium fast was not affected. In all optimized methods, extraction times were greatly reduced and/or sampling temperatures were lower to those reported with the standard methodology under atmospheric pressure. This work succinctly overviews the effect of vacuum on the different headspace microextraction technologies reported so far. The fundamental concepts describing the pressure dependence of each methodology are pulled together and presented in a simplified manner. The latest findings on the combined effects of vacuum and several selected experimental parameters typically examined during method optimization are then presented and the practical aspects of past outcomes are highlighted. The discussion also includes the air-evacuation step and the analysis of complex matrices. This article is intended for readers who are either new to the field of vacuum headspace microextraction sampling or its use and want to exploit this powerful approach. Graphical abstract.
Collapse
|
31
|
Beiranvand M, Ghiasvand A. Design and optimization of the VA-TV-SPME method for ultrasensitive determination of the PAHs in polluted water. Talanta 2020; 212:120809. [DOI: 10.1016/j.talanta.2020.120809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
32
|
Carbon dots based solid phase microextraction of 2-nitroaniline followed by fluorescence sensing for selective early screening and sensitive gas chromatography-mass spectrometry determination. Anal Chim Acta 2020; 1111:147-154. [DOI: 10.1016/j.aca.2020.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022]
|
33
|
Mascrez S, Purcaro G. Exploring multiple‐cumulative trapping solid‐phase microextraction for olive oil aroma profiling. J Sep Sci 2020; 43:1934-1941. [DOI: 10.1002/jssc.202000098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Steven Mascrez
- Gembloux Agro‐Bio TechUniversity of Liège Gembloux Belgium
| | | |
Collapse
|
34
|
Capetti F, Rubiolo P, Bicchi C, Marengo A, Sgorbini B, Cagliero C. Exploiting the versatility of vacuum‐assisted headspace solid‐phase microextraction in combination with the selectivity of ionic liquid‐based GC stationary phases to discriminate
Boswellia
spp. resins through their volatile and semivolatile fractions. J Sep Sci 2020; 43:1879-1889. [DOI: 10.1002/jssc.202000084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Francesca Capetti
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| |
Collapse
|
35
|
Mascrez S, Psillakis E, Purcaro G. A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Anal Chim Acta 2020; 1103:106-114. [DOI: 10.1016/j.aca.2019.12.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
|
36
|
Rodinkov OV, Bugaichenko AS, Moskvin LN. Static Headspace Analysis and Its Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482001013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Vacuum-assisted headspace sorptive extraction: Theoretical considerations and proof-of-concept extraction of polycyclic aromatic hydrocarbons from water samples. Anal Chim Acta 2020; 1096:100-107. [DOI: 10.1016/j.aca.2019.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
|
38
|
Santos JR, Rodrigues JA. Characterization of volatile carbonyl compounds in defective green coffee beans using a fan assisted extraction process. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Application of vacuum solid-phase microextraction for the analysis of semi-hard cheese volatiles. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03426-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractSolid-phase microextraction (SPME) is a well-established technique in the analysis of food volatile compounds, usually performed for qualitative analysis. This paper presents an elaboration of conditions for SPME analysis of main volatile compounds in hard cheese and an evaluation of suitability of vacuum to improve the transfer of volatile compounds towards SPME fiber. Compounds representing the main groups of hard cheese volatiles were investigated: 1-pentanol, butanoic acid, 2,3-butanedione and 2-heptanone. Parameters for SPME extraction (temperature, water, sodium carbonate addition, time, vacuum) were evaluated. Application of vacuum had a positive effect on all analytes when extraction was performed from water, but in the cheese matrix the effect was significant only for butanoic acid. Extraction time was the most significant factor for extraction efficiency in examined cheeses, while temperature had a minor effect on the amount of extracted volatiles. The method was applied on Edam, Emmentaler, Gouda and Maasdam cheeses obtained from the market.
Collapse
|
40
|
Psillakis E, Koutela N, Colussi AJ. Vacuum-assisted headspace single-drop microextraction: Eliminating interfacial gas-phase limitations. Anal Chim Acta 2019; 1092:9-16. [DOI: 10.1016/j.aca.2019.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 10/26/2022]
|
41
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
42
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
43
|
Kenessov B, Derbissalin M, Koziel JA, Kosyakov DS. Modeling solid-phase microextraction of volatile organic compounds by porous coatings using finite element analysis. Anal Chim Acta 2019; 1076:73-81. [DOI: 10.1016/j.aca.2019.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/15/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
|
44
|
Trujillo-Rodríguez MJ, Anderson JL, Dunham SJB, Noad VL, Cardin DB. Vacuum-assisted sorbent extraction: An analytical methodology for the determination of ultraviolet filters in environmental samples. Talanta 2019; 208:120390. [PMID: 31816753 DOI: 10.1016/j.talanta.2019.120390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Vacuum-assisted sorbent extraction (VASE) has been applied in combination with gas chromatography-mass spectrometry for the determination of UV filters in water samples. VASE is a variant of headspace extraction which was developed in conjunction with the sorbent pen (SP) technology. This technique combines the advantages of both stir-bar assisted extraction and headspace solid-phase microextraction. The SP traps allowed both reduced pressure in-vial extraction and direct thermal desorption via a unique gas chromatographic injection port. The main parameters that affect the performance of VASE, including both extraction and desorption conditions, were extensively optimized. Under optimum conditions, extraction required 10 mL of sample within 40 mL vials, pH 3.5, ~30 s of air-evacuation, 14 h incubation at 70 °C, stirring at 200 rpm, and a final water management step conducted at ~ -17 °C for 15 min. Optimal thermal desorption required preheating at 260 °C for 2 min followed by desorption at 300 °C for 2 min. The beneficial effect of reduced-pressure extraction was demonstrated by comparing the UV filter extraction time profiles collected using VASE to an analogous atmospheric pressure procedure, resulting in up to a 3-fold improvement under optimized conditions. The VASE methodology enabled simultaneous extractions using different SPs without compromising the method reproducibility, which increases the overall sample throughput. The method was characterized by low limits of detection, from 0.5 to 80 ng L-1, and adequate reproducibility, with inter-SP and inter-day relative standard deviation lower than 14%. Tap and lake water was successfully analyzed with the proposed methodology, resulting in relative recoveries of spiked samples ranging between 70.0 and 120%.
Collapse
Affiliation(s)
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | |
Collapse
|
45
|
Reyes-Garcés N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Vakinti M, Mela SM, Fernández E, Psillakis E. Room temperature and sensitive determination of haloanisoles in wine using vacuum-assisted headspace solid-phase microextraction. J Chromatogr A 2019; 1602:142-149. [PMID: 30961964 DOI: 10.1016/j.chroma.2019.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/03/2023]
Abstract
Headspace solid-phase microextraction (HSSPME) is a widespread technique used to extract trace amounts of haloanisoles from wine samples. A major challenge to overcome is the high ethanol content in wines that affects the solubilities of haloanisoles and reduces their headspace abundance. To overcome this obstacle and meet sensitivity requirements, reported HSSPME procedures typically suggest heating the wine samples and/or sampling for extended times. The present work proposes the use of vacuum-assisted HSSPME (Vac-HSSPME) to accelerate the extraction kinetics whilst sampling at room temperature. Although ethanol affected the physico-chemical properties of the target analytes, these changes were not sufficient to prevent the positive effect of vacuum on HSSPME sampling. To demonstrate the benefits of adopting the vacuum approach, Vac-HSSPME and regular HSSPME methods were independently optimized and the results were compared at all times. The effect of ethanol under each pressure condition was also discussed. Under the optimum conditions found, Vac-HSSPME sampling for 30 min at room temperature at 25 °C yielded lower detection limits (0.13 to 0.19 ng L-1) than those obtained with regular HSSPME sampling for 30 min at 55 °C (0.26 to 0.76 ng L-1). The proposed Vac-HSSPME method was successfully applied to quantify haloanisoles in bottled red wines and a discussion on the effect of wine volatiles was included. The standard addition method was used to minimize matrix effects. The increase in total pressure due to the presence of ethanol and other volatile wine components did not reduce the positive effect of vacuum on HSSPME. Nonetheless, in accordance to past HSSPME methods, the limits of detection and quantification were affected due to the noise level increase and analyte interaction with matrix. The proposed Vac-HSSPME procedure was applied to twelve bottled red wines and one sample was found positive on 2,4,6-trichloronanisole.
Collapse
Affiliation(s)
- Maria Vakinti
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Sofia-Maria Mela
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Elena Fernández
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece.
| |
Collapse
|
47
|
Medina S, Perestrelo R, Silva P, Pereira JA, Câmara JS. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
49
|
Belinato JR, Dias FFG, Caliman JD, Augusto F, Hantao LW. Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics - A review. Anal Chim Acta 2018; 1040:1-18. [PMID: 30327098 DOI: 10.1016/j.aca.2018.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Microextractions have become an attractive class of techniques for metabolomics. The most popular technique is solid-phase microextraction that revolutionized the field of modern sample preparation in the early nineties. Ever since this milestone, microextractions have taken on many principles and formats comprising droplets, fibers, membranes, needles, and blades. Sampling devices may be customized to impart exhaustive or equilibrium-based characteristics to the extraction method. Equilibrium-based approaches may rely on additional methods for calibration, such as diffusion-based or on-fiber kinetic calibration to improve bioanalysis. In addition, microextraction-based methods may enable minimally invasive sampling protocols and measure the average free concentration of analytes in heterogeneous multiphasic biological systems. On-fiber derivatization has evidenced new opportunities for targeted and untargeted analysis in metabolomics. All these advantages have highlighted the potential of microextraction techniques for in vivo and on-site sampling and sample preparation, while many opportunities are still available for laboratory protocols. In this review, we outline and discuss some of the most recent applications using microextractions techniques for comprehensive two-dimensional gas chromatography-based metabolomics, including potential research opportunities.
Collapse
Affiliation(s)
- João R Belinato
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fernanda F G Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Jaqueline D Caliman
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Leandro W Hantao
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
50
|
Giakisikli G, Anthemidis AN. Automatic pressure-assisted dual-headspace gas-liquid microextraction. Lab-in-syringe platform for membraneless gas separation of ammonia coupled with fluorimetric sequential injection analysis. Anal Chim Acta 2018; 1033:73-80. [PMID: 30172334 DOI: 10.1016/j.aca.2018.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
A novel pressure-assisted dual-headspace lab-in-syringe microextraction technique is presented as an alternative approach for automatic on-line membraneless gas separation of volatile compounds. The developed gas-liquid microextraction procedure is based on the lab-in-syringe (LIS) concept by using two independent micro-syringe pumps which are connected to each other for the application of negative and positive pressure inside the common headspace area of the syringe barrels. The adoption of reduced and increased pressure conditions is facilitated by the programmable LIS strategy resulting in increased extraction rates. The analytical process includes the in-situ ammonia vapor generation in the headspace of the first microsyringe, under reduced pressure environment, and its subsequent transportation into the headspace of the second microsyringe. Then, positive pressure is applied inside the second microsyringe enabling the ammonia vapor dissolution into the extraction solution to produce a fluorescent product (isoindol-1-sulfonat). The reaction is time and temperature affected, thus after an optimized time of delay inside the thermostated syringe barrel at 60 °C, it is delivered into the flow-cell of the miniSIA system where it is quantified at 425 nm (excitation wavelength, 365 nm). The proposed preconcentration system has been fully tested and optimized regarding the relevant parameters affecting the generation of gaseous ammonia, its effective transportation into the headspace of the second syringe barrel and its quantitative dissolution and reaction with the extraction solution. For a sample volume of 3000 μL, the sample frequency is 8 h-1, the precision expressed as relative standard deviation (RSD) is 3.6 (at 5.0 μg L-1) and a detection limit (3s) of 0.05 μg L-1 for ammonium is obtained. The detection is linear in the concentration range of 0.15 and 10.0 μg L-1 with a correlation coefficient of 0.9987. The accuracy of the proposed method has been evaluated by analyzing a standard reference material (relative error: 3.8%) as well as using the Certified Method (relative error < 5.5%) for ammonium determination. The potential of this novel schema has been demonstrated for ammonia determination in natural water samples.
Collapse
Affiliation(s)
- Georgia Giakisikli
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece
| | - Aristidis N Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece.
| |
Collapse
|