1
|
He P, Du G, Qin X, Li Z. Reduced energy metabolism contributing to aging of skeletal muscle by serum metabolomics and gut microbiota analysis. Life Sci 2023; 323:121619. [PMID: 36965523 DOI: 10.1016/j.lfs.2023.121619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
AIMS Sarcopenia is an age-related syndrome characterized by a gradual loss of the muscle mass, strength, and function. It is associated with a high risk of adverse consequences such as poorer quality of life, falls, disability and mortality among the elderly. The aim in this study is to investigate the pathological mechanism of sarcopenia. MAIN METHODS The aging of skeletal muscle was investigated by the D-galactose induced accelerated aging model combining with constrained motion. After 10 weeks, muscle function and gastrocnemius muscle index, and morphology of muscle fibers were evaluated, and myostatin, IGF-1 and ATP in skeletal muscle were also determined. Then the mechanism of aging-related skeletal muscle dysfunctions was investigated based on untargeted serum metabolomics and 16S rRNA gene sequencing. Four key metabolites were validated by the D-galactose-induced C2C12 senescent cell model in vitro. KEY FINDINGS Results showed that gastrocnemius muscle mass was decreased significantly, morphology of muscle fibers was altered, and muscle function was damaged in the aged group. Furthermore, increased MSTN, and decreased IGF-1 and ATP were also observed in the aging skeletal muscle. Importantly, alteration of the key pathways including riboflavin biosynthesis and energy metabolism contributed to the aging of skeletal muscle. Four key metabolites, including riboflavin, α-ketoglutaric acid and two dicarboxylic acids, which were involved in these metabolic pathways, could promote the proliferation of C2C12 cells. SIGNIFICANCE These findings provide novel insights into pathological mechanism of sarcopenia, and will facilitate the development of therapeutic and preventive strategies for sarcopenia.
Collapse
Affiliation(s)
- Pan He
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China; Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
2
|
Wang Z, Mo C, Awad K, Bonewald L, Brotto M. Mass Spectrometry Approaches for Detection and Determination of Prostaglandins from Biological Samples. Methods Mol Biol 2023; 2625:299-311. [PMID: 36653652 DOI: 10.1007/978-1-0716-2966-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Accurate determination of prostaglandins (PGs) from biological samples is critical for understanding their biological functions and interactions during physiological and pathological processes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a highly sensitive, accurate, and high-throughput approach for simultaneous detection of ultra-trace PGs from a single biological sample. Here we describe LC-MS/MS techniques and related sample pretreatment methods including both off-line and on-line SPE for the determination of PGs in biological samples.
Collapse
Affiliation(s)
- Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Lynda Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University Medical School, Indianapolis, IN, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
3
|
Saedi AA, Wang Z, Shah A, Brotto M, Duque G. Comparative Analysis of Fat Composition in Marrow, Serum, and Muscle from Aging C57BL6 mice. Mech Ageing Dev 2022; 206:111690. [PMID: 35752298 DOI: 10.1016/j.mad.2022.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Osteosarcopenia is an age-related condition characterized by fragile bone and low muscle mass and function. Fat infiltration concomitantly contributes to age-related bone and muscle decline. Fat-secreted factors could be locally secreted in the muscle and bone marrow milieu affecting cell function and survival. However, the specific fat-related secretory factors that may simultaneously affect those tissues remain unknown. Using targeted-lipidomics approach, we comprehensively quantified fat composition (lipid mediators [LMs]) in bone marrow flush, gastrocnemius and serum obtained from 6-, 24- and 42-week-old C57BL6 mice. Compared to young mice (6wks), all tissues in older mice showed significantly higher levels of arachidonic acid (AA) and AA-derived eicosanoids, PGA 2, TXB 2, and 11,12-EET, which are known to affect muscle and bone function. Moreover, Lipoxin B4, another AA product and an enhancer of bone turnover and negative regulator for muscle, showed significantly lower values in older mice compared to young mice in both genders. Furthermore, eicosapentaenoic acid and docosahexaenoic acid autoxidation products (20-HDoHE, 11-HDoHE, 7-HDoHE and 4-HDoHE), and omega-3 fatty acids that negatively regulate bone and muscle health, were significantly higher in older mice. In conclusion, these results suggest that LMs could play a role in modulating musculoskeletal function during aging.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas-Arlington, Arlington, TX 76019, USA
| | - Anup Shah
- Monash Bioinformatics Platform and Monash Proteomics & Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas-Arlington, Arlington, TX 76019, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
4
|
Asche-Godin SL, Graham ZA, Israel A, Harlow LM, Huang W, Wang Z, Brotto M, Mobbs C, Cardozo CP, Ko FC. RNA-sequencing Reveals a Gene Expression Signature in Skeletal Muscle of a Mouse Model of Age-associated Postoperative Functional Decline. J Gerontol A Biol Sci Med Sci 2022; 77:1939-1950. [PMID: 35172336 PMCID: PMC9536457 DOI: 10.1093/gerona/glac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
This study aimed to characterize the effects of laparotomy on postoperative physical function and skeletal muscle gene expression in male C57BL/6N mice at 3, 20, and 24 months of age to investigate late-life vulnerability and resiliency to acute surgical stress. Pre and postoperative physical functioning was assessed by forelimb grip strength on postoperative day (POD) 1 and 3 and motor coordination on POD 2 and 4. Laparotomy-induced an age-associated postoperative decline in forelimb grip strength that was the greatest in the oldest mice. While motor coordination declined with increasing age at baseline, it was unaffected by laparotomy. Baseline physical function as stratified by motor coordination performance (low functioning vs high functioning) in 24-month-old mice did not differentially affect postlaparotomy reduction in grip strength. RNA sequencing of soleus muscles showed that laparotomy-induced age-associated differential gene expression and canonical pathway activation with the greatest effects in the youngest mice. Examples of such age-associated, metabolically important pathways that were only activated in the youngest mice after laparotomy included oxidative phosphorylation and NRF2-mediated oxidative stress response. Analysis of lipid mediators in serum and gastrocnemius muscle showed alterations in profiles during aging and confirmed an association between such changes and functional status in gastrocnemius muscle. These findings demonstrate a mouse model of laparotomy which recapitulated some features of postoperative skeletal muscle decline in older adults, and identified age-associated, laparotomy-induced molecular signatures in skeletal muscles. Future research can build upon this model to study molecular mechanisms of late-life vulnerability and resiliency to acute surgical stress.
Collapse
Affiliation(s)
- Samantha L Asche-Godin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary A Graham
- Research Service, Birmingham VA Medical Center, Birmingham, Alabama, USA,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, USA
| | - Adina Israel
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Lauren M Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Charles Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA,Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Fred C Ko
- Address correspondence to: Fred C. Ko, MD, Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1070, New York, NY 10029, USA. E-mail:
| |
Collapse
|
5
|
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
He B, Zhang W, Guled F, Harms A, Ramautar R, Hankemeier T. Analytical techniques for biomass-restricted metabolomics: An overview of the state-of-the-art. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021; 762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Volumetric muscle loss (VML) following a severe trauma or injury is beyond the intrinsic regenerative capacity of muscle tissues, and hence interventional therapy is required. Extensive muscle loss concomitant with damage to neuromuscular components overwhelms the muscles' remarkable regenerative capacity. The loss of nervous and vascular tissue leads to further damage and atrophy, so a combined treatment for neuromuscular junction (NMJ) along with the volumetric muscle regeneration is important. There have been immense advances in the field of tissue engineering for skeletal muscle tissue and peripheral nerve regeneration, but very few address the interdependence of the tissues and the need for combined therapies to repair and regenerate fully functional muscle tissue. This review addresses the problem and presents an overview of the biomaterials that have been studied for tissue engineering of neuromuscular tissues associated with skeletal muscles.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the need for new biomarkers for the diagnosis and treatment of musculoskeletal disorders, especially osteoporosis and sarcopenia. These conditions are characterized by loss of bone and muscle mass, respectively, leading to functional deterioration and the development of disabilities. Advances in high-resolution lipidomics platforms are being used to help identify new lipid biomarkers for these diseases. RECENT FINDINGS It is now well established that bone and muscle have important endocrine functions, including the release of bioactive factors in response to mechanical and biochemical stimuli. Bioactive lipids are a prominent set of these factors and some of these lipids are directly related to the mass and function of bone and muscle. Recent lipidomics studies have shown significant dysregulation of lipids in aged muscle and bone, including alterations in diacylglycerols and ceramides. Studies have shown that alterations in some types of plasma lipids are associated with aging including reduced bone mineral density and the occurrence of osteoporosis. Musculoskeletal disorders are a major burden in our society, especially for older adults. The development and application of new lipidomics methods is making significant advances in identifying new biomarkers for these diseases. These studies will not only lead to improved detection, but new mechanistic insights that could lead to new therapeutic targets and interventions.
Collapse
Affiliation(s)
- Chenglin Mo
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA.
| | - Yating Du
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Shochat C, Wang Z, Mo C, Nelson S, Donaka R, Huang J, Karasik D, Brotto M. Deletion of SREBF1, a Functional Bone-Muscle Pleiotropic Gene, Alters Bone Density and Lipid Signaling in Zebrafish. Endocrinology 2021; 162:5929645. [PMID: 33068391 PMCID: PMC7745669 DOI: 10.1210/endocr/bqaa189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Through a genome-wide analysis of bone mineral density (BMD) and muscle mass, identification of a signaling pattern on 17p11.2 recognized the presence of sterol regulatory element-binding factor 1 (SREBF1), a gene responsible for the regulation of lipid homeostasis. In conjunction with lipid-based metabolic functions, SREBF1 also codes for the protein, SREBP-1, a transcription factor known for its role in adipocyte differentiation. We conducted a quantitative correlational study. We established a zebrafish (ZF) SREBF1 knockout (KO) model and used a targeted customized lipidomics approach to analyze the extent of SREBF1 capabilities. For lipidomics profiling, we isolated the dorsal muscles of wild type (WT) and KO fishes, and we performed liquid chromatography-tandem mass spectrometry screening assays of these samples. In our analysis, we profiled 48 lipid mediators (LMs) derived from various essential polyunsaturated fatty acids to determine potential targets regulated by SREBF1, and we found that the levels of 11,12 epoxyeicosatrienoic acid (11,12-EET) were negatively associated with the number of SREBF1 alleles (P = 0.006 for a linear model). We also compared gene expression between KO and WT ZF by genome-wide RNA-sequencing. Significantly enriched pathways included fatty acid elongation, linoleic acid metabolism, arachidonic acid metabolism, adipocytokine signaling, and DNA replication. We discovered trends indicating that BMD in adult fish was significantly lower in the KO than in the WT population (P < 0.03). These studies reinforce the importance of lipidomics investigation by detailing how the KO of SREBF1 affects both BMD and lipid-signaling mediators, thus confirming the importance of SREBF1 for musculoskeletal homeostasis.
Collapse
Affiliation(s)
- Chen Shochat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Sarah Nelson
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | | | - Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Correspondence: David Karasik, Azrieli Faculty of Medicine, Bar-Ilan university, Safed, 1311502, Israel. E-mail:
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| |
Collapse
|
10
|
Bobrich M, Schwarz R, Ramer R, Borchert P, Hinz B. A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122371. [DOI: 10.1016/j.jchromb.2020.122371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
|
11
|
Armstrong M, Manke J, Nkrumah-Elie Y, Shaikh SR, Reisdorph N. Improved quantification of lipid mediators in plasma and tissues by liquid chromatography tandem mass spectrometry demonstrates mouse strain specific differences. Prostaglandins Other Lipid Mediat 2020; 151:106483. [PMID: 32998074 DOI: 10.1016/j.prostaglandins.2020.106483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
A liquid chromatography tandem mass spectrometry-based method for the quantitation of 39 lipid mediators in four sample types and in two mouse strains is described. The method builds upon existing methodologies for analysis of lipid mediators by A) utilizing a bead homogenization step for tissue samples; this eliminates the need for homogenization glassware and improves homogenization consistency, B) optimizing the isolation and purification of lipid mediators with polymeric reverse phase SPE columns with lower sorbent masses; this results in lower solvent elution volumes without loss of recovery and C) utilizing an on-column enrichment method to improve analyte focusing before chromatographic separation. The method is linear from 0.25-250 pg on column for low level lipid mediators and from 5-5000 pg on column for high level lipid mediators. The addition of a methyl formate elution step to a previously published method dramatically improved precision and recovery for the cysteinyl leukotrienes. Accuracy and precision for 4 different sample types including human plasma, mouse lung, mouse spleen and mouse liver is demonstrated. Liver samples had extremely high levels of a tentatively identified bile acid which interfered with quantitation of resolvin E1, 11B-prostaglandin F2a and thromboxane A2. Results from 2 different tissue sources from untreated mice (C57BL/6 versus BALB/c) showed dramatically different concentrations of lipid mediators.
Collapse
Affiliation(s)
- Michael Armstrong
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States
| | - Jonathan Manke
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States
| | - Yasmeen Nkrumah-Elie
- Chromadex Inc., Chromadex External Research Program (CERP), Longmont, Colorado, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nichole Reisdorph
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States.
| |
Collapse
|
12
|
Biguetti CC, Couto MCR, Silva ACR, Shindo JVTC, Rosa VM, Shinohara AL, Andreo JC, Duarte MAH, Wang Z, Brotto M, Matsumoto MA. New Surgical Model for Bone-Muscle Injury Reveals Age and Gender-Related Healing Patterns in the 5 Lipoxygenase (5LO) Knockout Mouse. Front Endocrinol (Lausanne) 2020; 11:484. [PMID: 32849277 PMCID: PMC7431610 DOI: 10.3389/fendo.2020.00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Signaling lipid mediators released from 5 lipoxygenase (5LO) pathways influence both bone and muscle cells, interfering in their proliferation and differentiation capacities. A major limitation to studying inflammatory signaling pathways in bone and muscle healing is the inadequacy of available animal models. We developed a surgical injury model in the vastus lateralis (VL) muscle and femur in 129/SvEv littermates mice to study simultaneous musculoskeletal (MSK) healing in male and female, young (3 months) and aged (18 months) WT mice compared to mice lacking 5LO (5LOKO). MSK defects were surgically created using a 1-mm punch device in the VA muscle followed by a 0.5-mm round defect in the femur. After days 7 and 14 post-surgery, the specimens were removed for microtomography (microCT), histopathology, and immunohistochemistry analyses. In addition, non-injured control skeletal muscles along with femur and L5 vertebrae were analyzed. Bones were microCT phenotyped, revealing that aged female WT mice presented reduced BV/TV and trabecular parameters compared to aged males and aged female 5LOKO mice. Skeletal muscles underwent a customized targeted lipidomics investigation for profiling and quantification of lipid signaling mediators (LMs), evidencing age, and gender related-differences in aged female 5LOKO mice compared to matched WT. Histological analysis revealed a suitable bone-healing process with osteoid deposition at day 7 post-surgery, followed by woven bone at day 14 post-surgery, observed in all young mice. Aged WT females displayed increased inflammatory response at day 7 post-surgery, delayed bone matrix maturation, and increased TRAP immunolabeling at day 14 post-surgery compared to 5LOKO females. Skeletal muscles of aged animals showed higher levels of inflammation in comparison to young controls at day 14 post-surgery; however, inflammatory process was attenuated in aged 5LOKO mice compared to aged WT. In conclusion, this new model shows that MSK healing is influenced by age, gender, and the 5LO pathway, which might serve as a potential target to investigate therapeutic interventions and age-related MSK diseases. Our new model is suitable for bone-muscle crosstalk studies.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Maira Cristina Rondina Couto
- Department of Health Sciences, Universidade Do Sagrado Coração, Bauru, Brazil
- Bauru School of Dentistry, University of São Paulo, FOB-USP, São Paulo, Brazil
| | | | | | - Vinicius Mateus Rosa
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Jesus Carlos Andreo
- Bauru School of Dentistry, University of São Paulo, FOB-USP, São Paulo, Brazil
| | | | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
13
|
Marrelli MT, Wang Z, Huang J, Brotto M. The skeletal muscles of mice infected with Plasmodium berghei and Plasmodium chabaudi reveal a crosstalk between lipid mediators and gene expression. Malar J 2020; 19:254. [PMID: 32664933 PMCID: PMC7362477 DOI: 10.1186/s12936-020-03332-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
Background Malaria is one of the most prevalent infectious disease in the world with 3.2 billion humans at risk. Malaria causes splenomegaly and damage in other organs including skeletal muscles. Skeletal muscles comprise nearly 50% of the human body and are largely responsible for the regulation and modulation of overall metabolism. It is essential to understand how malaria damages muscles in order to develop effective preventive measures and/or treatments. Using a pre-clinical animal model, the potential molecular mechanisms of Plasmodium infection affecting skeletal muscles of mice were investigated. Methods Mouse Signal Transduction Pathway Finder PCR Array was used to monitor gene expression changes of 10 essential signalling pathways in skeletal muscles from mice infected with Plasmodium berghei and Plasmodium chabaudi. Then, a new targeted-lipidomic approach using liquid chromatography with tandem mass spectrometry (LC–MS/MS) to profile 158 lipid signalling mediators (LMs), mostly eicosanoids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was applied. Finally, 16 key LMs directly associated with inflammation, oxidative stress, and tissue healing in skeletal muscles, were quantified. Results The results showed that the expression of key genes altered by Plasmodium infection is associated with inflammation, oxidative stress, and atrophy. In support to gene profiling results, lipidomics revealed higher concentrations of LMs in skeletal muscles directly related to inflammatory responses, while on the levels of LMs crucial in resolving inflammation and tissue repair reduced significantly. Conclusion The results provide new insights into the molecular mechanisms of malaria-induced muscle damage and revealed a potential mechanism modulating inflammation in malarial muscles. These pre-clinical studies should help with future clinical studies in humans aimed at monitoring of disease progression and development of specific interventions for the prevention and mitigation of long-term chronic effects on skeletal muscle function.
Collapse
Affiliation(s)
- Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo 715, São Paulo, SP, 01246-904, Brazil. .,Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA.
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| | - Jian Huang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX, 76010, USA
| |
Collapse
|
14
|
Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun Biol 2020; 3:39. [PMID: 31969651 PMCID: PMC6976694 DOI: 10.1038/s42003-020-0766-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a highly prevalent chronic aging-related disease that frequently is only detected after fracture. We hypothesized that aminobutyric acids could serve as biomarkers for osteoporosis. We developed a quick, accurate, and sensitive screening method for aminobutyric acid isomers and enantiomers yielding correlations with bone mineral density (BMD) and osteoporotic fracture. In serum, γ-aminobutyric acid (GABA) and (R)-3-aminoisobutyric acid (D-BAIBA) have positive associations with physical activity in young lean women. D-BAIBA positively associated with hip BMD in older individuals without osteoporosis/osteopenia. Lower levels of GABA were observed in 60–80 year old women with osteoporotic fractures. Single nucleotide polymorphisms in seven genes related to these metabolites associated with BMD and osteoporosis. In peripheral blood monocytes, dihydropyrimidine dehydrogenase, an enzyme essential to D-BAIBA generation, exhibited positive association with physical activity and hip BMD. Along with their signaling roles, BAIBA and GABA might serve as biomarkers for diagnosis and treatments of osteoporosis. Wang et al. develop an LC/MS based screening method to separate and quantify aminobutyric acids isoforms. Applying it to osteoporosis clinical studies, their method yields important correlations with bone mineral density and osteoporotic fracture and highlight the role of γ-aminobutyric acid and β-aminoisobutyric acid as biomarkers for osteoporosis.
Collapse
|
15
|
Zhao Q, Shen H, Su KJ, Tian Q, Zhao LJ, Qiu C, Garrett TJ, Liu J, Kakhniashvili D, Deng HW. A joint analysis of metabolomic profiles associated with muscle mass and strength in Caucasian women. Aging (Albany NY) 2019; 10:2624-2635. [PMID: 30318485 PMCID: PMC6224264 DOI: 10.18632/aging.101574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Both loss of muscle mass and strength are important sarcopenia-related traits. In this study, we investigated both specific and shared serum metabolites associated with these two traits in 136 Caucasian women using a liquid chromatography-mass spectrometry method. A joint analysis of multivariate traits was used to examine the associations of individual metabolites with muscle mass measured by the body mass index-adjusted appendicular lean mass (ALM/BMI) and muscle strength measured by hand grip strength (HGS). After adjusting for multiple testing, nine metabolites including two amino acids (aspartic acid and glutamic acid) and an amino acid derive (pipecolic acid), one peptide (phenylalanyl-threonine), one carbohydrate (methyl beta-D-glucopyranoside), and four lipids (12S-HETRE, arachidonic acid, 12S-HETE, and glycerophosphocholine) were significant in the joint analysis. Of them, the two amino acids (aspartic acid and glutamic acid) and two lipids (12S-HETRE and 12S-HETE) were associated with both ALM/BMI and HGS, and the other five were only associated with ALM/BMI. The pathway analysis showed the amino acid metabolism pathways (aspartic acid and glutamic acid) might play important roles in the regulation of muscle mass and strength. In conclusion, our study identified novel metabolites associated with sarcopenia-related traits, suggesting novel metabolic pathways for muscle regulation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hui Shen
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Kuan-Jui Su
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Lan-Juan Zhao
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics Core, University of Florida, Gainesville, FL 32610, USA
| | - Jiawang Liu
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hong-Wen Deng
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
16
|
Determination of anandamide in cerebrospinal fluid samples by disposable pipette extraction and ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121809. [PMID: 31669634 DOI: 10.1016/j.jchromb.2019.121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/21/2022]
Abstract
This work describes the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry method that uses disposable pipette extraction (DPX-UHPLC-MS/MS) to determine the endocannabinoid anandamide (AEA) in cerebrospinal fluid samples (CSF). The DPX parameters sorption equilibrium time, sample volume, number of draw-eject cycles, washing solvent volume, and elution solvent volume were optimized by design of experiments (DOE) techniques. The simple DPX protocol proposed herein required a reduced amount of CSF sample and organic solvent. The DPX-UHPLC-MS/MS method presented linear range from 0.10 ng mL-1 (LLOQ) to 3.0 ng mL-1, inter- and intra-assay accuracy with EPR values varying from -8.2% to 9.6%, inter- and intra-assay precision with CV values ranging from 1.3% to 14.8% (except for the LLOQ), and no significant matrix effect. The innovative DPX-UHPLC-MS/MS method was successfully applied to determine AEA in CSF samples from Parkinson's disease (PD) patients and should therefore be used in clinical studies.
Collapse
|
17
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. Int J Mol Sci 2019; 20:ijms20184326. [PMID: 31487817 PMCID: PMC6769623 DOI: 10.3390/ijms20184326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
Collapse
|
19
|
Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Anal Chim Acta 2018; 1044:12-28. [DOI: 10.1016/j.aca.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
|
20
|
Schlotterbeck J, Kolb A, Lämmerhofer M. Free fatty acid profiling in marine algae extract by LC-MS/MS and isolation as well as quantification of the ω-3 fatty acid hexadeca-4,7,10,13-tetraenoic acid. J Sep Sci 2018; 41:4286-4295. [PMID: 30307116 DOI: 10.1002/jssc.201800780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 01/29/2023]
Abstract
Undaria pinnatifida (Wakame) alga contains high amounts of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid which was reported to decrease the efficiency of cisplatin chemotherapeutics. To obtain a fatty acid enriched extract of this ω-3 poly-unsaturated fatty acid as an analytical standard, Wakame was used as source material for its extraction. A two-step extraction protocol consisting of a liquid-liquid extraction followed by solid-phase extraction with 3-aminopropyl silica in accordance to a normal-phase elution mode was developed. An ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method based on sequential windowed acquisition of all theoretical fragment ion mass spectra allowed a simultaneous comprehensive group selective fatty acids profiling in untargeted manner and quantitative analysis of the targeted fatty acid. Hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was identified using high-resolution product ion spectra. The quantitative method was based on d5-deuterated hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid which was employed as surrogate calibrant. Preliminary method validation was performed by evaluating detection and quantification limits, linear range, intra-assay and inter-day precision. Finally, a concentration of 421.2 ± 14.9 ng/mL (4% CV) of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was determined in the extract which was further used as analytical standard.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Agnes Kolb
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Schlotterbeck J, Cebo M, Kolb A, Lämmerhofer M. Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal Bioanal Chem 2018; 411:479-491. [PMID: 30460390 DOI: 10.1007/s00216-018-1468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
Polyunsaturated fatty acids are important signaling molecules. A recent study reported hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid, 12-oxo-5Z,8E,10E-heptadecatrienoic acid, and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid as chemotherapy resistance-inducing factors when tumor cells were treated with cisplatin. Marine-based food supplements like fish oil or algae extracts are rich in polyunsaturated fatty acids and can contain large amounts of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid. Thus, it was concluded that oral uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid might induce chemoresistance as shown in a mouse model. Cancer patients tend to consume food supplements containing polyunsaturated fatty acids on a regular basis. The uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid should be controlled, because even low concentrations of 0.5 ng mL-1 showed chemoresistance-inducing effects in animal experiments. For accurate analysis of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid a validated method was developed by using ultrahigh-performance liquid chromatography hyphenated to quadrupole time of flight mass spectrometry via electrospray ionization and sample preparation by solid-phase extraction (SPE) with 3-aminopropyl silica. A combined targeted/untargeted approach was utilized using MS/MS by data-independent acquisition with SWATH and applied to commercial food supplements (refined fish oil, fish oil capsules, algae oil capsules, and flaxseed capsules). Accurate quantification of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid on the MS/MS level with simultaneous untargeted fatty acid screening revealed additional information. The LODs for hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid were 0.036 ng mL-1 and 0.054 ng mL-1, respectively. Since hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was present in the samples in large amounts and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic was not expected to be present in high concentrations, two calibration ranges, namely, 0.5-20 ng mL-1 and 5-200 ng mL-1, were validated. An untargeted screening identified 18-39 free fatty acids being present in the lipid extracts of the food supplement samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Malgorzata Cebo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Agnes Kolb
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
22
|
Kalu Appulage D, Wang EH, Figard BJ, Schug KA. An integrated multipath liquid chromatography-mass spectrometry system for the simultaneous preparation, separation, and detection of proteins and small molecules. J Sep Sci 2018; 41:2702-2709. [PMID: 29676850 DOI: 10.1002/jssc.201800298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/08/2022]
Abstract
A multipath liquid chromatography with mass spectrometry instrument was constructed with the help of restricted access media to online segregate small and large molecules. This liquid chromatography system was custom built with five pumps and three two-position six-port valves to control the flow in a multipath system for the simultaneous analysis of small molecules and proteins. On separate chromatographic channels, small molecules trapped and proteins excluded from the online restricted access media were analyzed downstream using high-efficiency columns and a triple quadrupole mass spectrometer. A model sample, which included five proteins and 22 small molecules with different physicochemical properties, was used to evaluate the system. Following injection, the complete multipath separation and detection was performed in 22 min. Protein exclusion by the restricted access media was not quantitative. Four commercial trap columns were evaluated for their exclusion efficiency toward the proteins. Exclusion efficiency varied from <50% to only a maximum of 75% exclusion across the trap columns tested. An attempt was made to optimize the exclusion efficiency using different flow rates, flow rate gradients, and different additives both in the sample and the mobile phases. Protein exclusion was still erratic and generally nonquantitative.
Collapse
Affiliation(s)
- Dananjaya Kalu Appulage
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Evelyn H Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
23
|
Das UN. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 2018; 11:67-79. [PMID: 30034877 PMCID: PMC6052661 DOI: 10.1016/j.jare.2018.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing is inevitable. Recent studies suggest that it could be delayed. Low-grade systemic inflammation is seen in type 2 diabetes mellitus, hypertension and endothelial dysfunction that are common with increasing age. In all these conditions, an alteration in arachidonic acid (AA) metabolism is seen in the form of increased formation of pro-inflammatory eicosanoids and decreased production of anti-inflammatory lipoxins, resolvins, protectins and maresins and decreased activity of desaturases. Calorie restriction, exercise and parabiosis delay age-related changes that could be related to enhanced proliferation of stem cells, decrease in inflammation and transfer of GDF-11 (growth differentiation factor-11) and other related molecules from the young to the old, increase in the formation of lipoxin A4, resolvins, protectins and maresins, hydrogen sulfide (H2S) and nitric oxide (NO); inhibition of ageing-related hypothalamic or brain IKK-β and NF-kB activation, decreased gonadotropin-releasing hormone (GnRH) release resulting in increased neurogenesis and consequent decelerated ageing. This suggests that hypothalamus participates in ageing process. N-acylethanolamines (NAEs) and lipid-derived signalling molecules can be tuned favorably under dietary restriction to extend lifespan and/or prevent advanced age associated diseases in an mTOR dependent pathway manner. Sulfur amino acid (SAA) restriction increased hydrogen sulfide (H2S) production and protected tissues from hypoxia and tissue damage. Anti-inflammatory metabolites formed from AA such as LXA4, resolvins, protectins and maresins enhance production of NO, CO, H2S; suppress NF-kB expression and alter mTOR expression and thus, may aid in delaying ageing process. Dietary restriction and exercise enhance AA metabolism to form LXA4, resolvins, protectins and maresins that have anti-inflammatory actions. AA and their metabolites also influence stem cell biology, enhance neurogenesis to improve memory and augment autophagy to prolong life span. Thus, AA and other PUFAs and their anti-inflammatory metabolites inhibit inflammation, augment stem cell proliferation, restore to normal lipid-derived signaling molecules and NO and H2S production, enhance autophagy and prolong life span.
Collapse
|