1
|
Wang Y, Shen L, Yan Y, Gong B, Chen K, Zhu G, Li Z. Ultrasound assisted upper critical solution temperature type switchable deep eutectic solvent based liquid-liquid microextraction for the determination of triazole in water. Anal Chim Acta 2024; 1328:343172. [PMID: 39266195 DOI: 10.1016/j.aca.2024.343172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The use of pesticides to protect crops has long been an important measure to provide healthy and safe agricultural products, but excess pesticides flow into fields and rivers, causing environmental pollution. Earlier methods utilizing organic solvent liquid-liquid microextraction for pesticide residue detection were not environmentally friendly. Therefore, it is significant to find a greener and more convenient detection method to determine pesticide residues. RESULTS A new method was established to detect three triazole fungicides (TFs), including myclobutanil, epoxiconazole and tebuconazole, in environmental water samples. And the determination was conducted using a high-performance liquid chromatography with the ultraviolet detector (HPLC-UV). The switchable deep eutectic solvent (SDES) can be reversibly switched between hydrophilic and hydrophobic states through temperature modulation. Additionally, the method exhibited excellent linearity for all target analytes within the concentration range of 10-2000 μg L-1, with satisfactory R2 values (≥0.9975). The limits of detection (LODs) ranged from 2.3 to 2.6 μg L-1, and the limits of quantification (LOQs) ranged from 7.8 to 8.7 μg L-1. The accuracy of the method was assessed through intra-day and inter-day precision tests, yielding relative standard deviations (RSDs) in the ranges of 2.8%-6.7% and 2.2%-7.5%, respectively. Density functional theory (DFT) results indicated that hydrogen bonding is a significant factor affecting the binding of DES with triazoles. Three different green assessment tools were used to prove that the SDES-HLLME method had good greenness and broad applicability. SIGNIFICANCE This is a homogeneous liquid-liquid microextraction (HLLME) method based on the upper critical solution temperature (UCST) type switchable deep eutectic solvent program, which can complete the extraction within a few minutes without dispersant. In terms of pesticide detection, the analytical method is simple and more conducive to environmental protection.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingqi Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bincheng Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kexian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guohua Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
3
|
Diab H, Calle A, Thompson J. Rapid and Online Microvolume Flow-Through Dialysis Probe for Sample Preparation in Veterinary Drug Residue Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3971. [PMID: 38931755 PMCID: PMC11207326 DOI: 10.3390/s24123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
A rapid and online microvolume flow-through dialysis probe designed for sample preparation in the analysis of veterinary drug residues is introduced. This study addresses the need for efficient and green sample preparation methods that reduce chemical waste and reagent use. The dialysis probe integrates with liquid chromatography and mass spectrometry (LC-MS) systems, facilitating automated, high-throughput analysis. The dialysis method utilizes minimal reagent volumes per sample, significantly reducing the generation of solvent waste compared to traditional sample preparation techniques. Several veterinary drugs were spiked into tissue homogenates and analyzed to validate the probe's efficacy. A diagnostic sensitivity of >97% and specificity of >95% were obtained for this performance evaluation. The results demonstrated the effective removal of cellular debris and particulates, ensuring sample integrity and preventing instrument clogging. The automated dialysis probe yielded recovery rates between 27 and 77% for multiple analytes, confirming its potential to streamline veterinary drug residue analysis, while adhering to green chemistry principles. The approach highlights substantial improvements in both environmental impact and operational efficiency, presenting a viable alternative to conventional sample preparation methods in regulatory and research applications.
Collapse
Affiliation(s)
| | | | - Jonathan Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
4
|
Wang S, Zhang L, Yang H, Li C, Wang Z, Xiong J, Xv Y, Wang Z, Shen J, Jiang H. The effects of UiO-66 ultrafine particles on the rapid detection of sulfonamides in milk: Adsorption performance and mechanism. Food Chem 2023; 417:135878. [PMID: 36917905 DOI: 10.1016/j.foodchem.2023.135878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Nanoscale MOFs particles possess both excellent adsorption and dispersion properties. In this study, ultrafine particles UiO-66 (UP/UiO-66) with a particle size below 50 nm were synthesised by a template-controlled method. UP/UiO-66 was able to achieve a maximum adsorption capacity of 139.64 mg/g for 5 methoxylated sulfonamides. Adsorption studies showed that UP/UiO-66 adsorption of sulfonamides can be classified as a pseudo-secondary kinetic adsorption model for single molecular layer adsorption. ELISA (validated by Raman and molecular docking) showed that the sulfonamide molecule was still immunoreactive with antibodies after adsorption by UP/UiO-66. In 15 min, UP/UiO-66 could be used directly in the ELISA test for sulfonamides in milk without elution and separation. The LOQ (IC20) of UP/UiO-66-ELISA for sulfonamides in milk was 0.21-2.05 ng/mL. The ultrafine particle strategy of UiO-66 is expected to be applied to other MOFs and used as a general pretreatment material for residue monitoring in complex matrices.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liang Zhang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Huijuan Yang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chenglong Li
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zile Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuliang Xv
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
5
|
Hydrophobic Mesoporous Silica-Coated Solid-Phase Microextraction Arrow System for the Determination of Six Biogenic Amines in Pork and Fish. Foods 2023; 12:foods12030578. [PMID: 36766106 PMCID: PMC9914681 DOI: 10.3390/foods12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, a functionalized mesoporous silica-coated solid-phase microextraction (SPME) Arrow system was developed for the enrichment of six biogenic amines (BAs) from pork and fish samples before gas chromatographic separation with a mass spectrometer as a detector. MCM-41 was utilized as the substrate material and thereby functionalized by titanate and sodium dodecyl sulfate to adjust its surface acidity and hydrophobicity, respectively. The functionalized MCM-41 (named as MCM-T-H) was coated on a bare SPME Arrow using the dipping method and polyacrylonitrile was used as the adhesive. The extraction capacity and selectivity of the MCM-T-H-SPME Arrow for six kinds of derivatized BAs were studied and compared with commercial SPME Arrows. Experimental parameters, e.g., sample volume, derivatization reagent amount, extraction time, and desorption time, which have a dramatic effect on SPME Arrow pretreatment, were optimized. Acidity enhanced MCM-T-H coating showed a much higher affinity to derivatized BAs compared to a commercial SPME Arrow in terms of extraction capacity. In addition, hydrophobicity modification significantly reduced the interference of water molecules on the interaction between MCM-T-H and the derivatized BAs. The MCM-T-H-SPME Arrow showed efficient separation and enrichment capacity for derivatized BAs from complex matrices and therefore, the sample pretreatment time was saved. According to the experimental results, the optimal condition was to add 10 μL derivatization reagent to a 10 mL sample and maintain an agitation speed of 1250 r min-1. The MCM-T-H-SPME showed excellent reproducibility (RSD < 9.8%) and fast adsorption kinetics (30 min) and desorption kinetics (5 min) for derivatized BAs under optimal conditions. In summary, the MCM-T-H-SPME Arrow based method was employed for accurate monitoring of the variations of BAs in pork and fish, and good results were achieved.
Collapse
|
6
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
7
|
Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. BIOMATERIALS ADVANCES 2022; 140:213049. [PMID: 35917685 DOI: 10.1016/j.bioadv.2022.213049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.
Collapse
Affiliation(s)
- Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Anum Shahzadi
- Faculty of Pharmacy, The university of Lahore, Lahore, Pakistan
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Izan Hafeez
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ayesha Khalid
- Physics Department, Lahore Garrison University, Lahore, Pakistan
| | - Atif Ashfaq
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Syed Ossama Ali Ahmad
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - S Dilpazir
- Department of Chemistry, Comsats University, 45550, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan.
| | - Ghafar Ali
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Maaz Khan
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Qasim Khan
- Institute of Microscale Optoelectronics, Shenzhen University, Guangdong 518000, China.
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, USA.
| |
Collapse
|
8
|
Li F, Luo J, Zhu B, Liu Z. Pretreatment Methods for the Determination of Antibiotics Residues in Food Samples and Detected by Liquid Chromatography Coupled with Mass Spectrometry Detectors: A Review. J Chromatogr Sci 2022; 60:991-1003. [PMID: 35675650 DOI: 10.1093/chromsci/bmac021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/14/2022]
Abstract
With the increasing use of antibiotics worldwide, antibiotic monitoring has become a topic of concern. After metabolizing of antibiotics in animals, the metabolites enter the environment through excreta or ingested by the human body via food chain that may exacerbate the emergence of antibiotic resistance and then threaten human's life. This article summarized several analytical methods used for the determination of antibiotics in recent 10 years. Due to the complex matrices and low concentration level of antibiotics in the food samples, a reliable analysis method is required to maximize the recovery rate. Several techniques like solid phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and QuEChERS have been frequently used in the pretreatment process for analytes extraction and concentration. After the pretreatment, ultra-high performance liquid chromatography combined with mass spectrometry has been a reliable method for quantitative analysis and is able to determine multiple antibiotics simultaneously. This review also gives an overview about analytical conditions for antibiotics residues in different food samples and their method validation parameters.
Collapse
Affiliation(s)
- Fan Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinwen Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.,Sinopep-Allsino Biopharmaceutical Co., Ltd., Hangzhou, Zhejiang 311121, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhu Liu
- Zhejiang Institute of Food and Drug Control, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
9
|
Moyo B, Tavengwa NT. Enrichment of tetracycline residues from honey samples using carrier-mediated hollow fibre liquid-phase micro-extraction and quantification by LC-Q-TOF/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3204-3212. [PMID: 34791661 DOI: 10.1002/jsfa.11663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In this study, development and validation of a simple, miniaturized and, environmentally friendly carrier-mediated three-phase hollow-fibre liquid-phase micro-extraction (HFLPME) technique was investigated for the enrichment of tetracycline residues in honey samples. The extracts were analysed using UV-visible spectrophotometry and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). Parameters affecting the extraction efficiency of HFLPME such as pH of the donor and acceptor solutions, salt addition, agitation speed and extraction time were optimized. RESULTS The calibration curves showed good linearity, in the range of 1-100 μg kg-1 with correlation coefficients ranging between 0.9943 and 0.9992, under the optimized conditions. Recoveries of blank honey samples at three spiking levels (1, 10 and 20 μg kg-1 ) ranged from 81.2% to 107.5%. Relative standard deviations for the precision of the method were less than 15.0%. Limits of detection and limits of quantification were in the range of 0.0861-0.2628 μg kg-1 and 0.2610-0.7964 μg kg-1 , respectively. Finally, the proposed method was successfully applied in the extraction of five tetracyclines from honey samples. Doxycycline residue detected in one of the commercial honey samples was below the limit of quantification. CONCLUSION Because of the advantages offered by HFLPME, this method can be employed as an alternative to conventional extraction techniques for the clean-up and pre-concentration of antibiotics in complex matrices, including food samples. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
10
|
Yu LD, Li N, Tong YJ, Han J, Qiu J, Ye YX, Chen G, Ouyang G, Zhu F. From exogenous to endogenous: Advances in vivo sampling in living systems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Development of a vortex oscillating clean-up column for high-throughput semi-automatic sample preparation of drug residues in fish muscle tissues. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Determination of Antibiotic Residues in Aquaculture Products by Liquid Chromatography Tandem Mass Spectrometry: Recent Trends and Developments from 2010 to 2020. SEPARATIONS 2022. [DOI: 10.3390/separations9020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The issue of antibiotic residues in aquaculture products has aroused much concern over the last decade. The residues can remain in food and enter the human body through the food chain, posing great risks to public health. For the safety of foods and products, many countries have issued maximum residue limits and banned lists for antibiotics in aquaculture products. Liquid chromatography tandem mass spectrometry (LC/MS/MS) has been widely used for the determination of trace antibiotic residues due to its high sensitivity, selectivity and throughput. However, considering its matrix effects during quantitative measurements, it has high requirements for sample pre-treatment, instrument parameters and quantitative method. This review summarized the application of LC/MS/MS in the detection of antibiotic residues in aquaculture products in the past decade (from 2010 to 2020), including sample pre-treatment techniques such as hydrolysis, derivatization, extraction and purification, mass spectrometry techniques such as triple quadrupole mass spectrometry and high-resolution mass spectrometry as well as status of matrix certified reference materials (CRMs) and matrix effect.
Collapse
|
15
|
Liu HF, Ye-Tao, Qin XH, Chao-Chen, Huang FP, Zhang XQ, Bian HD. Three-fold interpenetrated metal–organic framework as a multifunctional fluorescent probe for detecting 2,4,6-trinitrophenol, levofloxacin, and l-cystine. CrystEngComm 2022. [DOI: 10.1039/d1ce01590g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A robust Zn(ii) MOF with good chemical and thermal stability, was prepared as an effective fluorescent probe for 2,4,6-trinitrophenol (TNP), levofloxacin (LVX) and l-cystine (l-Cys) with recyclability.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ye-Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Huan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chao-Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiu-Qing Zhang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, P.R. China
| | - He-Dong Bian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, P. R. China
| |
Collapse
|
16
|
Metal organic framework derived Zn/N co-doped hydrophilic porous carbon for efficient solid phase microextraction of polar phenols. Mikrochim Acta 2021; 188:400. [PMID: 34718874 DOI: 10.1007/s00604-021-05060-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
MOF-derived zink and nitrogen co-doped porous carbon (ZNPC) was synthesized through the pyrolysis of MOF-5-NH2 and used as a solid-phase microextraction (SPME) coating material. Coupled with gas chromatography-mass spectrometry (GC-MS), headspace SPME (HS-SPME) based on ZNPC was adopted for the determination of phenols in food samples. The co-existence of N and Zn in ZNPC endows the derived carbon superior hydrophilicity, which is highly beneficial for phenols capture. After optimizing the conditions of extraction and desorption, a sensitive analytical method was established with low limits of detections (LODs, 0.73-2.3 ng g-1) and wide linear ranges (5-5000 ng g-1). Both the intra-fiber repeatability (RSDs from 2.8-7.3%) and inter-fiber reproducibility (RSDs from 9.7-11.7%) were satisfactory. The established method was applied to phenol determination in beef jerky and duck neck with satisfactory recoveries of 81.2-120.4% and RSDs of 2.8-9.9%, which met well with the requirement of practical application.
Collapse
|
17
|
Xu Z, Fan G, Zheng T, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-based electrospun nanofibrous composite coating fiber for specific recognition of ultratrace microcystin in water. J Chromatogr A 2021; 1656:462542. [PMID: 34543883 DOI: 10.1016/j.chroma.2021.462542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 02/01/2023]
Abstract
A novel aptamer@AuNPs@UiO-66-NH2 electrospun nanofibrous coating fiber for specific recognition of microcystin-LR (MC-LR) was proposed by using electrospinning, metal-organic frameworks (MOF) seed growth and AuNPs bridging aptamer strategies. Characterization of morphology, structure and stability of the obtained affinity nanofibrous coating fiber were investigated. High loading of MOFs and aptamers on the nanofibrous fiber were achieved and successfully applied for accurate identification of MC-LR by solid-phase microextraction (SPME) coupled with LC-MS. Highly specific recognition of MC-LR with little interference of analogs was achieved with extremely low LOD (0.004 ng/mL), good precision (CV% < 11.0%) and low relative error (RE% = -1.5% to -10.0%), which was rather better than that of the traditional SPME or SPE protocols. Satisfactory recoveries of MC-LR were obtained in the range of 92.0-96.8% (n = 3) in fortified tap water, raw pond water and river water samples. This work revealed an attractive alternative access to specific recognition and super-sensitive analysis of MC-LR in water.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Guanghui Fan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tuo Zheng
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
18
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
19
|
Meng Y, Liu W, Liu X, Zhang J, Peng M, Zhang T. A review on analytical methods for pharmaceutical and personal care products and their transformation products. J Environ Sci (China) 2021; 101:260-281. [PMID: 33334521 DOI: 10.1016/j.jes.2020.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 05/18/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) and corresponding transformation products have caused widespread concern due to their persistent emissions and potential toxicity. They have wide octanol-water partition coefficients (Kow) and different ionization constants (pKa) resulting in a poor analysis accuracy and efficiency. A suitable analytical method is the first prerequisite for further research on their environmental behavior to prioritize the substances. This study reviewed a full-scale analytical protocol for environmental samples in the recent ten years: from sampling to instrumental methods. Passive sampling techniques were compared and recommended for long-term continuous and scientific observation. A quick and effective sample extraction and clean-up method are highly required. Chromatographic methods coupled to mass spectrometry for determining PPCPs with a wide range of logKow (-7.53 to 10.80) were summed up. High-resolution mass spectrometry was confirmed to be a promising strategy for screening unknown transformation products, which would provide a nanogram level of detection limits and more accurate mass resolution. Screening strategies and mass change principles were summarized in detail. The recovery rate was important in multiple contaminants analysis identification and factors affecting the recovery rate of PPCPs were also discussed in this review, including sample matrix, target compounds characteristics, extraction method and solid-phase adsorbent. This review provides useful information for the selection of appropriate analytical methods and future development directions.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Environmental Science and Engineering, Beijing Environmental Pollution Control and Resource Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiyi Liu
- Department of Environmental Science and Engineering, Beijing Environmental Pollution Control and Resource Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, Beijing Environmental Pollution Control and Resource Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Beijing Environmental Pollution Control and Resource Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Tao Y, Chen L, Jiang E. Layer-by-layer assembly strategy for fabrication of polydopamine-polyethyleneimine hybrid modified fibers and their application to solid-phase microextraction of bioactive molecules from medicinal plant samples followed by surface plasmon resonance biosensor validation. Anal Chim Acta 2021; 1146:155-165. [PMID: 33461711 DOI: 10.1016/j.aca.2020.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
A solid-phase microextraction method is introduced to overcome limitations of classical phytochemical pattern of identifying bioactive compounds, including tedious and time-consuming separation and purification step and consumption of large amounts of organic solvents, which was non-environmentally- friendly. In this proposed method for solid-phase microextraction, polyvinylidene fluoride fibers@polydopamine@polyethyleneimine@receptor as a solid part of the extractors were pushed into sample solution of medicinal plants, and the procedure was followed by stirring and easily dissociation of receptor binding ligands in organic solvent through pulling out of the functionalized fibers. Xanthine oxidase was chosen as the model receptor, while isoacteoside was selected as the model inhibitor. Several effecting parameters were optimized by experimental design, including temperature, ion strength and pH. Nine bioactive components were obtained from extract of Plantago depressa by using the established solid-phase micro-extraction method. The limit of detection and limit of quantification of the nine components ranged from 0.0008 to 0.03 mg mL-1 and from 0.001 to 0.016 mg mL-1, respectively. The RSD values of intra-day and inter-day precisions ranged from 0.24% to 2.19% and 0.62%-2.84%, respectively. The average recoveries of the nine components were from 95.06 to 104.03% with relative standard deviation (RSD) values from 1.02 to 2.90% for Plantago depressa. The RSD values of stability of the nine components ranged from 1.36% to 2.74%, which satisfied the requirements of an analytical method. In addition, surface plasmon resonance biosensor was utilized to corroborate the binding affinity between these compounds and receptor. The avidity values of these ligands corresponded well with their IC50 values. The results confirmed that polydopamine and polyethyleneimine hybrid modified polyvinylidene fluoride fibers based solid-phase microextraction method was successfully utilized for locating bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Enci Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
21
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Ma W, Row KH. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zhang X, Li Z, Wu H, Wang J, Zhao H, Ji X, Xu Y, Li R, Zhang H, Yang H, Qian M. High-throughput method based on a novel thin-film microextraction coating for determining macrolides and lincosamides in honey. Food Chem 2020; 346:128920. [PMID: 33387836 DOI: 10.1016/j.foodchem.2020.128920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
A high-throughput method using a new ZIF-8@GO thin-film microextraction coating was established for determining macrolides and lincosamides in honey. The coating preparation parameters (ZIF-8@GO synthesis conditions, coating material proportions, dipping time) and analysis parameters (sample diluent solvent, adsorption and desorption conditions using the ZIF-8@GO coating) were optimized. The optimized parameters were: diluent solvent sodium carbonate/sodium bicarbonate buffer solution (pH 9), adsorption time 45 min, desorption time 5 min, desorption solvent 45:40:15 v/v/v methanol/acetonitrile/water. The extracted targets were determined by ultra-high performance liquid chromatography tandem mass spectrometry. The recoveries of 10 analytes were 67.5-107.2% and the detection and quantification limits were 0.1-0.4 and 0.4-1.4 μg/kg, respectively. The method could analyze 96 samples per run. The minimal manual time and effort is required since the bulk of the sample processing is fully automated. It was a useful and efficient method for monitoring drug residues and was successfully used to analyze real samples.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Huizhen Wu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Jianmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Xiaofeng Ji
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Yan Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Rui Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Hu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Hua Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| | - Mingrong Qian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
24
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
25
|
Golkarieh AM, Nasirizadeh N, Jahanmardi R. Fabrication of an electrochemical sensor with Au nanorods-graphene oxide hybrid nanocomposites for in situ measurement of cloxacillin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111317. [PMID: 33254958 DOI: 10.1016/j.msec.2020.111317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 11/27/2022]
Abstract
In recent years, considering the increasing use of antibiotics, and their continued entry into the environment, extensive research has been conducted on the impact of antibiotics on human health, water resources, and the environment. In this study, a suitable method has been proposed for detecting and elimination the trace amounts of the antibiotic cloxacillin in aqueous. For identify trace amounts of cloxacillin in solution, a new electrochemical nanosensor based on a screen printed carbon electrode (SPCE) modified with gold nanorods/graphene oxide was proposed. This nanosensor, which was prepared by self-assembling method, was capable of measuring cloxacillin in the 5.0-775.0 nM with a detection limit of 1.6 nM. In order to reduce the amount of antibiotics in the environment, a novel carbon nanocomposite based on sol-gel method was prepared and its application as a high-capacity adsorbent for the removal of cloxacillin was studied. In the antibiotic removal experiments, the effect of pH, contact time, different mass ratios of SWCNT and amount of nanocomposite adsorbent were also optimized by response surface methodology (RSM). The prepared nanosensor and synthesized carbon nanocomposites were then characterized by commonly identical techniques involve SEM, EDAX, BET and FT-IR. The presented nanosensor was successfully used for the in situ determination of Clox in adsorptive tests with reliable recovery. As well, the AuNR/GO/SPC electrode presented well stability, repeatability and reproducibility. In addition, good performance and high adsorption capacity make developed adsorbent as a suitable case for the removal of water-soluble pharmaceutical contaminants.
Collapse
Affiliation(s)
- Amir-Mohammad Golkarieh
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Reza Jahanmardi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
26
|
Asgari S, Bagheri H, Es-Haghi A. Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater. J Chromatogr A 2020; 1631:461576. [PMID: 33002706 DOI: 10.1016/j.chroma.2020.461576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/19/2022]
Abstract
A cryogel-based semi-interpenetrating polymer network (Cryo-SIPN) was prepared in which conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) were formed within the super porous network of acrylic acid cryogel. For completion of cryo-polymerization, all the constituent solutions were severely mixed and placed into the plastic straws and kept at -20°C and then the synthesized cyrogels were cut into the 1-cm length and freeze dried after washing with water. The Cryo-SIPN polymeric composite was applied in micro solid phase extraction (µSPE) of some selected antibiotic residues from various samples. The µSPE method combined with a high performance liquid chromatography-ultraviolet (HPLC-UV) system allowed trace quantification of antibiotic residues in the honey and water samples while the significant variables were optimized using a central composite design (CCD) to find optimum conditions. The method performance was satisfactory with recovery ranges from 70.0 to 109%. The limits of detection (S/N = 3) and quantification (S/N = 10) for all samples were within the 17-50 μg kg-1 and 47-140 μg kg-1 range, respectively. The relative standard deviation was less than 10 % for antibiotics in the foodstuff and water samples. The validated Cryo-SIPN-µSPE in conjunction with HPLC-UV, proved to be versatile, efficient and robust while its capability toward the trace determination of drugs residues in real-life samples is demonstrated in this work.
Collapse
Affiliation(s)
- Sara Asgari
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
27
|
Lai H, Li G, Zhang Z. Advanced materials on sample preparation for safety analysis of aquatic products. J Sep Sci 2020; 44:1174-1194. [DOI: 10.1002/jssc.202000955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Huasheng Lai
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Zhuomin Zhang
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
28
|
Moyo B, Gitari M, Tavengwa NT. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1865-1880. [PMID: 33000997 DOI: 10.1080/19440049.2020.1802069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotic residues have become a major concern worldwide as food contaminants due to the risk that they may pose to human health. The presence of these residues in food is due to improper veterinary practices. Consequently, rapid and cost-effective clean-up methods prior to analysis for these residues in food matrices are increasingly becoming necessary in order to ensure food safety. Miniaturised extraction and pre-concentration techniques have been developed as alternatives to conventional extraction procedures in recent years. Furthermore, the current trends in analytical sample preparation favour extraction techniques that comply with the principles of green analytical chemistry. Solid phase micro-extraction, stir bar sorptive extraction, stir cake sorptive extraction and fabric phase sorptive extraction methods are very promising sorbent-based sorptive micro-extraction techniques, and they are compliant to the principles of green chemistry. This review critically discusses the application of these techniques in the extraction and pre-concentration of antibiotic residues from food samples in the years 2015 to 2020.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| | - Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda , Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
29
|
Pacheco-Fernández I, Rentero M, Ayala JH, Pasán J, Pino V. Green solid-phase microextraction fiber coating based on the metal-organic framework CIM-80(Al): Analytical performance evaluation in direct immersion and headspace using gas chromatography and mass spectrometry for the analysis of water, urine and brewed coffee. Anal Chim Acta 2020; 1133:137-149. [PMID: 32993866 DOI: 10.1016/j.aca.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
A new solid-phase microextraction (SPME) fiber coating was prepared by the immobilization of the metal-organic framework (MOF) CIM-80(Al) on nitinol wires by a green in situ growth approach, using an aqueous synthetic approach, and without the need of any additional material to ensure the attachment of the MOF to the nitinol support. The coating was used for the development of headspace (HS) and direct immersion (DI) SPME methods in combination with gas chromatography and mass spectrometry (GC-MS) for the determination of polycyclic aromatic hydrocarbons (PAHs) as model compounds. Both methods were optimized and validated using the MOF-based fiber together with the commercial polydimethylsiloxane (PDMS) fiber. The MOF extraction phase exhibited superior analytical performance for most of the PAHs in HS-SPME mode (and particularly for less volatiles), while the PDMS fiber presented better results in the DI-SPME method. The analytical performance of the MOF sorbent coating in HS- and DI-SPME methods was also evaluated in urine and brewed coffee samples, without requiring any pretreatment step apart from dilution for DI-SPME experiments, thus showing suitability of the novel coatings for the analysis of complex samples. The proposed CIM-80(Al) fiber was efficient and biocompatible (for using a low cytotoxic sorbent and a biocompatible core support), and it also demonstrated stability and robustness, with inter-fiber (and inter-day) relative standard deviation values lower than 19%, and reusability for more than 80 extraction cycles using 280 °C as desorption temperature.
Collapse
Affiliation(s)
- Idaira Pacheco-Fernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Manuel Rentero
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| |
Collapse
|
30
|
Li S, Zhang Q, Chen M, Zhang X, Liu P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Chen
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Crit Rev Food Sci Nutr 2020; 61:3361-3382. [DOI: 10.1080/10408398.2020.1798349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical and Food Control, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
32
|
Xu G, Dong X, Hou L, Wang X, Liu L, Ma H, Zhao RS. Room-temperature synthesis of flower-shaped covalent organic frameworks for solid-phase extraction of quinolone antibiotics. Anal Chim Acta 2020; 1126:82-90. [DOI: 10.1016/j.aca.2020.05.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
|
33
|
Villa CC, Galus S, Nowacka M, Magri A, Petriccione M, Gutiérrez TJ. Molecular sieves for food applications: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Qin G, Wang J, Li L, Yuan F, Zha Q, Bai W, Ni Y. Highly water-stable Cd-MOF/Tb 3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime. Talanta 2020; 221:121421. [PMID: 33076058 DOI: 10.1016/j.talanta.2020.121421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/02/2023]
Abstract
Two-dimensional Cd-MOF/Tb3+ (Cd-MOF = [Cd (μ-2,3-pdc) (H2O)3]n (2,3-pdc = 2,3-pyridine dicarboxylic acid)) fluorescent nanosheets with the thickness of 1.4 nm were successfully synthesized by a simple solution route with subsequent ultrasonic exfoliation at room temperature. It was found that as-obtained Cd-MOF/Tb3+ ultrathin nanosheets could be homogeneously dispersed in aqueous system to form a sol with excellent stability. Also, the fluorescence intensity of nanosheets remarkably increased to almost 12 times higher than that of Cd-MOF/Tb3+ microsheets before exfoliation. Further investigations uncovered that the above strong fluorescence of Cd-MOF/Tb3+ nanosheets could be highly sensitively quenched by Cefixime antibiotic in aqueous solution without interference from other antibiotics, amino acids and pesticides. Hence, the as-obtained ultrathin Cd-MOF/Tb3+ nanosheets could be prepared as a highly selective and sensitive fluorescence probe for the detection of Cefixime in aqueous system. Compared with the bulk Cd-MOF/Tb3+ sensor, the Cd-MOF/Tb3+ ultrathin nanosheets sensor exhibited a far lower detection limit down to 26.7 nM for CFX. Also, the as-obtained nanosheets sensor presented satisfactory recovery ranging from 98.07% to 103.01% and acceptable repeatability (RSD < 6.29%, n = 6) for the detection of CFX in domestic water. Furthermore, the sensing mechanism studies revealed that the high selection of the present fluorescent probe for detection of CFX should be attributed to the cooperation of the photoinduced electron transfer and the inner filter effect.
Collapse
Affiliation(s)
- Guoxu Qin
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China; College of Chemistry and Materials Engineering, Chaohu University, Bantang Road, Chaohu, 238000, PR China
| | - Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China
| | - Lei Li
- College of Chemistry and Materials Engineering, Chaohu University, Bantang Road, Chaohu, 238000, PR China
| | - Feifei Yuan
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China
| | - Qingqing Zha
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China
| | - Wenbo Bai
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu, 241002, PR China.
| |
Collapse
|
35
|
Wu G, Ma J, Wang S, Chai H, Guo L, Li J, Ostovan A, Guan Y, Chen L. Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122556. [PMID: 32224376 DOI: 10.1016/j.jhazmat.2020.122556] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
A novel kind of cationic metal-organic framework(MOF) based mixed-matrix membrane(MMM) namely cationic MOF-MMM was firstly designed and used for simultaneous dispersive membrane extraction(DME) of six phenoxy carboxylic acid(PCA) herbicides from water samples followed by determination using ultrahigh-performance liquid chromatography tandem mass spectrometry. The cationic MOF-MMM was synthesized by soaking the zirconium-based MOFs in a polyvinylidene fluoride(PVDF) solution and further functionalization with quaternary amine groups, viz., UiO-66-NMe3+ MMM. The well-prepared UiO-66-NMe3+ MMM was characterized by FT-IR, SEM, XRD, XPS, NMR and etc. Several main variables influencing the MMM based DME efficiency were investigated and optimized in detail, such as dosage ratio of MOF/PVDF, solution pH, extraction time, coexistent anions and ionic strength. Electrostatic interactions dominated adsorption mechanism between anionic PCAs and cationic UiO-66-NMe3+ MMM, along with ππ conjugation and cation-π bonding, leading to better adsorption performance. Low limits of detection in the range of 0.03-0.59 ng/L and satisfactory recoveries within 80.06-117.40 % for all the PCAs are a reliable witness to demonstrate supreme sensitivity and the applicability of the developed method. By relying on the obtained results, the present work implied cationic MOF-MMM based DME can be a versatile and worthy utility for extraction of pollutants from different water samples with high throughput.
Collapse
Affiliation(s)
- Gege Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Huining Chai
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Liang Guo
- Qingdao Junray Intelligent Instrument Co., Ltd., Qingdao, 266000, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
36
|
Zhang L, Jiang R, Li W, Muir DCG, Zeng EY. Development of a solid-phase microextraction method for fast analysis of cyclic volatile methylsiloxanes in water. CHEMOSPHERE 2020; 250:126304. [PMID: 32120150 DOI: 10.1016/j.chemosphere.2020.126304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Cyclic volatile methylsiloxanes (cVMS) are widely used in consumer products and commonly detected in the environment. There are challenges in the analysis of cVMS because of their ubiquitous use which can introduce high background contamination. The current study introduces a sample preparation method based on headspace of solid-phase microextraction (SPME) for monitoring the cVMS in waters. Efforts were made to reduce the background contamination during sample preparation and instrument analysis. A laboratory prepared MIL-101 coating was prepared using polysulfone instead of polydimethylsiloxane as adhesive to avoid the contamination. The extraction performance of the MIL-101 fiber was optimized and evaluated. The optimized extraction time and temperature were 60 min and 40 °C, respectively. The method quantification limits of the MIL-101 fiber for octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecylcyclohexasiloxane (D6) in water were 0.15 ng mL-1, 0.14 ng mL-1, and 0.27 ng mL-1, respectively. The extraction efficiency of the proposed MIL-101 fiber was comparable to the commercial polydimethylsiloxane/divinylbenzene fiber. The developed method was applied to analyze the cVMS in wastewater treatment plant and the concentrations in the barscreen and in the aeration tank ranged from 0.73 to 3.3 ng mL-1 and 7.74-85.1 ng mL-1, respectively. The MIL-101 fiber was also applied to study the photodegradation of the cVMS in water under simulated sunlight. Approximately 25%, 20%, and 45% of D4, D5, and D6, respectively, were degraded after 10 h exposure.
Collapse
Affiliation(s)
- Lifang Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Derek C G Muir
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S1A1, Canada
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
37
|
Wang Y, Jie Y, Hu Q, Yang Y, Ye Y, Zou S, Xu J, Ouyang G. A polymeric solid-phase microextraction fiber for the detection of pharmaceuticals in water samples. J Chromatogr A 2020; 1623:461171. [PMID: 32505277 DOI: 10.1016/j.chroma.2020.461171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A novel disposable styrene based solid-phase microextraction (SPME) fiber was synthesized for the detection of lipid-lowering and antihypertensive drugs in real aquatic environment. Styrene and poly(ethylene glycol) diacrylate were co-polymerized on quartz fibers by thermal polymerization in capillary molds. The polymeric fiber possessed a homogeneous, dense as well as porous surface, showing excellent chemical and mechanical stability. The performance of the fiber was evaluated through the extraction of seven pharmaceuticals by coupling SPME with high performance liquid chromatography-tandem mass spectrometry under the optimized extraction conditions. The extraction efficiency of the fiber was up to 278 times of PDMS fiber and the enrichment factors ranged from 55 to 1183. The limits of detection were in the range from 1.7 ng L-1 to 11.7 ng L-1, with good reproducibility. Moreover, the fiber was used in the real water samples of the Pearl River Delta. The recoveries of the target analytes from river water and sea water samples at different spiked concentrations were in the range from 84.1% to 133.4% and from 81.5% to 105.5%, respectively.
Collapse
Affiliation(s)
- Yuwei Wang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Yuwang Jie
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Qingkun Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China.
| | - Yuxin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
38
|
Recent advances in applications of metal–organic frameworks for sample preparation in pharmaceutical analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213235] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
40
|
Zhang QC, Xia GP, Liang JY, Zhang XL, Jiang L, Zheng YG, Wang XY. NH 2-MIL-53(Al) Polymer Monolithic Column for In-Tube Solid-Phase Microextraction Combined with UHPLC-MS/MS for Detection of Trace Sulfonamides in Food Samples. Molecules 2020; 25:E897. [PMID: 32085411 PMCID: PMC7070345 DOI: 10.3390/molecules25040897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/20/2023] Open
Abstract
In this study, a novel monolithic capillary column based on a NH2-MIL-53(Al) metal-organic framework (MOF) incorporated in poly (3-acrylamidophenylboronic acid/methacrylic acid-co-ethylene glycol dimethacrylate) (poly (AAPBA/MAA-co-EGDMA)) was prepared using an in situ polymerization method. The characteristics of the MOF-polymer monolithic column were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. The prepared MOF-polymer monolithic column showed good permeability, high extraction efficiency, chemical stability, and good reproducibility. The MOF-polymer monolithic column was used for in-tube solid-phase microextraction (SPME) to efficiently adsorb trace sulfonamides from food samples. A novel method combining MOF-polymer-monolithic-column-based SPME with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was successfully developed. The linear range was from 0.015 to 25.0 µg/L, with low limits of detection of 1.3-4.7 ng/L and relative standard deviations (RSDs) of < 6.1%. Eight trace sulfonamides in fish and chicken samples were determined, with recoveries of the eight analytes ranging from 85.7% to 113% and acceptable RSDs of < 7.3%. These results demonstrate that the novel MOF-polymer-monolithic-column-based SPME coupled with UHPLC-MS/MS is a highly sensitive, practical, and convenient method for monitoring trace sulfonamides in food samples previously extracted with an adequate solvent.
Collapse
Affiliation(s)
- Qian-Chun Zhang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China; (G.-P.X.); (J.-Y.L.); (X.-L.Z.); (L.J.); (Y.-G.Z.)
| | | | | | | | | | | | - Xing-Yi Wang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China; (G.-P.X.); (J.-Y.L.); (X.-L.Z.); (L.J.); (Y.-G.Z.)
| |
Collapse
|
41
|
Vardali SC, Manousi N, Barczak M, Giannakoudakis DA. Novel Approaches Utilizing Metal-Organic Framework Composites for the Extraction of Organic Compounds and Metal Traces from Fish and Seafood. Molecules 2020; 25:E513. [PMID: 31991663 PMCID: PMC7036755 DOI: 10.3390/molecules25030513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
The determination of organic and inorganic pollutants in fish samples is a complex and demanding process, due to their high protein and fat content. Various novel sorbents including graphene, graphene oxide, molecular imprinted polymers, carbon nanotubes and metal-organic frameworks (MOFs) have been reported for the extraction and preconcentration of a wide range of contaminants from fish tissue. MOFs are crystalline porous materials that are composed of metal ions or clusters coordinated with organic linkers. Those materials exhibit extraordinary properties including high surface area, tunable pore size as well as good thermal and chemical stability. Therefore, metal-organic frameworks have been recently used in many fields of analytical chemistry including sample pretreatment, fabrication of stationary phases and chiral separations. Various MOFs, and especially their composites or hybrids, have been successfully utilized for the sample preparation of fish samples for the determination of organic (i.e., antibiotics, antimicrobial compounds, polycyclic aromatic hydrocarbons, etc.) and inorganic pollutants (i.e., mercury, palladium, cadmium, lead, etc.) as such or after functionalization with organic compounds.
Collapse
Affiliation(s)
- Sofia C. Vardali
- Institute of Biological Marine Resources, Hellenic Center of Marine Research, Agios Kosmas, Hellenikon, 16777 Athens, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mariusz Barczak
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | | |
Collapse
|
42
|
Abstract
In vivo solid-phase microextraction (SPME) has been recently proposed for the extraction, clean-up and preconcentration of analytes of biological and clinical concern. Bioanalysis can be performed by sampling exo- or endogenous compounds directly in living organisms with minimum invasiveness. In this context, innovative and miniaturized devices characterized by both commercial and lab-made coatings for in vivo SPME tissue sampling have been proposed, thus assessing the feasibility of this technique for biomarker discovery, metabolomics studies or for evaluating the environmental conditions to which organisms can be exposed. Finally, the possibility of directly interfacing SPME to mass spectrometers represents a valuable tool for the rapid quali- and quantitative analysis of complex matrices. This review article provides a survey of in vivo SPME applications focusing on the extraction of tissues, cells and simple organisms. This survey will attempt to cover the state-of- the-art from 2014 up to 2019.
Collapse
|
43
|
Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
45
|
Abstract
Metal–organic frameworks (MOFs) have attracted recently considerable attention in analytical sample preparation, particularly when used as novel sorbent materials in solid-phase microextraction (SPME). MOFs are highly ordered porous crystalline structures, full of cavities. They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers connected by covalent coordination bonds. Depending on the ratio of such precursors and the synthetic conditions, the characteristics of the resulting MOF vary significantly, thus drifting into a countless number of interesting materials with unique properties. Among astonishing features of MOFs, their high chemical and thermal stability, easy tuneability, simple synthesis, and impressive surface area (which is the highest known), are the most attractive characteristics that makes them outstanding materials in SPME. This review offers an overview on the current state of the use of MOFs in different SPME configurations, in all cases covering extraction devices coated with (or incorporating) MOFs, with particular emphases in their preparation.
Collapse
|
46
|
Yu H, Wang Z, Wu R, Chen X, Chan TWD. Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J Chromatogr A 2019; 1601:27-34. [DOI: 10.1016/j.chroma.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
|
47
|
Liang F, Chen D, Liu H, Liu W, Xian M, Feng D. One-Pot Synthesis of 5-Hydroxymethylfurfural from Glucose by Brønsted Acid-Free Bifunctional Porous Coordination Polymers in Water. ACS OMEGA 2019; 4:9316-9323. [PMID: 31460021 PMCID: PMC6648545 DOI: 10.1021/acsomega.9b00882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Efficient synthesis of 5-hydroxymethylfurfural (HMF) using glucose (Glc) as a starting material represents an important process in biomass transformation. In this study, novel bifunctional porous coordination polymer (PCP) catalysts [PCP(Cr)-NH2-x (CH3) x ; x = 0, 1, or 2] containing Lewis acidic and Lewis basic sites have been synthesized and utilized as solid-phase catalysts for HMF synthesis starting from a Glc-in-water system. PCP(Cr)-NH2 was found as the optimal catalyst, with an HMF yield of 65.9% and Glc conversion of 99.9% in a water/tetrahydrofuran (THF) system. Compared with PCP(Cr), amino groups in PCP(Cr)-NH2 catalysts play a vital role in Glc isomerization and subsequent dehydration-cyclization process to obtain the highly selective and effective fructose-to-HMF conversion. High yield and chemoselectivity are ascribed to concurrent extraction of HMF into the THF layer just upon its formation in water. The mechanism of Lewis acid-base synergistic catalysis was deduced by means of infrared spectroscopy, and catalysts could be reused after simple washing procedure with high reproducibility.
Collapse
Affiliation(s)
- Fengbing Liang
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Dawei Chen
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
| | - Huizhou Liu
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
| | - Weimin Liu
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
| | - Mo Xian
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Dexin Feng
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, P. R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|
48
|
Mondal S, Jiang J, Li Y, Ouyang G. Carbon and Tin-Based Polyacrylonitrile Hybrid Architecture Solid Phase Microextraction Fiber for the Detection and Quantification of Antibiotic Compounds in Aqueous Environmental Systems. Molecules 2019; 24:E1670. [PMID: 31035407 PMCID: PMC6539674 DOI: 10.3390/molecules24091670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, the detection and quantification of multiple classes of antibiotics in water matrices are proposed using a lab-made solid phase microextraction (SPME) fiber coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The lab-made fiber was prepared using a graphene oxide (G), carbon nanotubes (C), and titanium dioxide (T) composite, namely GCT, with polyacrylonitrile (PAN) as supporting material. The detected antibiotics were enrofloxacin, sulfathiazole, erythromycin, and trimethoprim. The custom-made fiber was found to be superior compared with a commercial C18 fiber. The excellent reproducibility and lower intra-fiber relative standard deviations (RSDs 1.8% to 6.8%) and inter-fiber RSDs (4.5% to 8.8%) made it an ideal candidate for the detection of traces of antibiotics in real environmental samples. The proposed validated method provides a satisfactory limit of detection and good linear ranges with higher (>0.99) coefficient of determination in the aqueous system. Application of the method was made in different real water systems such as river, pond and tap water using the standard spiking method. Excellent sensitivity, reproducibility, lower amount of sample detection and higher recovery was found in a real water sample. Therefore, the extraction method was successfully applied to the detection and quantification of multiple classes of antibiotics in different aqueous systems with satisfactory results.
Collapse
Affiliation(s)
- Sandip Mondal
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jialing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yin Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|