1
|
Quezada C, Samhitha SS, Salas A, Ges A, Barraza LF, Blanco-López MC, Solís-Pomar F, Pérez-Tijerina E, Medina C, Meléndrez M. Sensors Based on Molecularly Imprinted Polymers in the Field of Cancer Biomarker Detection: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1361. [PMID: 39195399 DOI: 10.3390/nano14161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Biomarkers play a pivotal role in the screening, diagnosis, prevention, and post-treatment follow-up of various malignant tumors. In certain instances, identifying these markers necessitates prior treatment due to the complex nature of the tumor microenvironment. Consequently, advancing techniques that exhibit selectivity, specificity, and enable streamlined analysis hold significant importance. Molecularly imprinted polymers (MIPs) are considered synthetic antibodies because they possess the property of molecular recognition with high selectivity and sensitivity. In recent years, there has been a notable surge in the investigation of these materials, primarily driven by their remarkable adaptability in terms of tailoring them for specific target molecules and integrating them into diverse analytical technologies. This review presents a comprehensive analysis of molecular imprinting techniques, highlighting their application in developing sensors and analytical methods for cancer detection, diagnosis, and monitoring. Therefore, MIPs offer great potential in oncology and show promise for improving the accuracy of cancer screening and diagnosis procedures.
Collapse
Affiliation(s)
- Camila Quezada
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - S Shiva Samhitha
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Alexis Salas
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Adrián Ges
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Luis F Barraza
- Department of Biological and Chemical Sciences, Faculty of Medicine and Science, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Asturias Biotechnology Institute, University of Oviedo, 33006 Oviedo, Spain
| | - Francisco Solís-Pomar
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Eduardo Pérez-Tijerina
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Carlos Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Manuel Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile
| |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Wang X, Wang M, Wu B, Yu S, Liu Z, Qin X, Xu H, Li W, Luo S, Wang L, Ma C, Liu S. Magnetic molecularly imprinted polymers using ternary deep eutectic solvent as novel functional monomer for hydroxytyrosol separation. Heliyon 2024; 10:e28257. [PMID: 38655314 PMCID: PMC11035953 DOI: 10.1016/j.heliyon.2024.e28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 μL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Mengru Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Bailin Wu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shengyuan Yu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Xuyang Qin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Huijuan Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Lijuan Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
4
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
5
|
Yang M, Dong Q, Guan Y, Zhang Y. Molecularly Imprinted Polymers with Shape-Memorable Imprint Cavities for Efficient Separation of Hemoglobin from Blood. Biomacromolecules 2023; 24:1233-1243. [PMID: 36811910 DOI: 10.1021/acs.biomac.2c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Efficient separation and purification of hemoglobin from blood and other complicated biological fluids still remains a big challenge. Molecularly imprinted polymers (MIPs) of hemoglobin are potential choices; however, they suffer from severe problems including difficult template removal and low imprinting efficiency like other protein-imprinted polymers. Herein, a novel MIP of bovine hemoglobin (BHb) was designed in which a peptide crosslinker (PC), instead of the commonly used crosslinkers, was used. The PC, a random copolymer of lysine and alanine, adopts an α-helical conformation at pH 10 but transits to a random coil conformation at pH 5. The introduction of alanine residues lowers the pH range at which the PC undergoes helix-coil transition. The imprint cavities in the polymers are shape-memorable due to the reversible and precise helix-coil transition of the peptide segments in the polymers. They can be enlarged by lowering pH from 10 to 5, thus allowing complete removal of the template protein under mild conditions. When the pH is adjusted back to 10, their original size and shape will be recovered. Therefore, the MIP binds the template protein BHb with high affinity. Compared with the MIP crosslinked with the commonly used crosslinker, the imprinting efficiency of the PC-crosslinked MIP is significantly improved. In addition, both the maximum adsorption capacity (641.9 mg/g) and imprinting factor (7.2) are much higher than the BHb MIPs reported previously. The new BHb MIP also exhibits high selectivity toward BHb and good reusability. Thanks to the high adsorption capacity and high selectivity of the MIP, when it was applied to extract BHb from bovine blood, BHb in the blood sample was extracted almost completely, and high purity product was obtained.
Collapse
Affiliation(s)
- Mengmeng Yang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiujing Dong
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Xu J, Yang Y, Du J, Lu H, Gao W, Gong H, HanXiao. Deep eutectic solvent-based manganese dioxide nanosheets composites for determination of DNA by a colorimetric method. BMC Chem 2023; 17:15. [PMID: 36907907 PMCID: PMC10010034 DOI: 10.1186/s13065-023-00922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Nucleic acid is the carrier of genetic information and the keymolecule in life science. It is important to establish a simple and feasible method for nucleic acid quantification in complex biological samples. METHODS Four kinds of hydrogen bond acceptors (choline chloride (ChCl), L-carnitine, tetrabutylammonium chloride (TBAC) and cetyltrimethylammonium bromide (CTAB)) were used to synthesize deep eutectic solvents (DESs) with hexafluoroisopropanol (HFIP). DESs based manganese dioxide (MnO2) nanosheets composites was synthesized and characterized. DNA concentration was determined by a UVVis spectrometer. The mechanism of DNA-DES/MnO2 colorimetric system was further discussed. RESULTS The composite composed of DES/MnO2 exhibited excellent oxidase-like activity and could oxidize 3,3',5,5' -tetramethylbenzidine (TMB) to produce a clear blue change with an absorbance maximum at 652 nm. When DNA is introduced, the DNA can interact with the DES by hydrogen bonding and electrostatic interactions, thereby inhibiting the color reaction of DES/MnO2 with TMB. After condition optimization, ChCl/HFIP DES in 1:3 molar ratio was used for the colorimetric method of DNA determination. The linear range of DNA was 10-130 µg/mL and exhibited good selectivity. CONCLUSION A colorimetric method based on DES/MnO2 was developed to quantify the DNA concentration. The proposed method can be successfully used to quantify DNA in bovine serum samples.
Collapse
Affiliation(s)
- Jia Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China.
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Hui Lu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - HanXiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China.
| |
Collapse
|
7
|
Ding LX, Wang YQ, Sun X, Jiang ZQ, Wang XY, Zhou YF, Hou XY. A boronate-affinity magnetic molecularly imprinted polymer for luteolin recognition. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:925-936. [PMID: 36688606 DOI: 10.1039/d2ay02044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, 3-carboxyphenylboronic acid (CP)-functionalized amino-modified Fe3O4 (Fe3O4@NH2-CP, FNC) magnetic molecularly imprinted polymers (FNC@MIPs) were synthesized and applied for the quick identification and selective separation of luteolin (LTL). The structure and morphology were characterized in detail by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and vibrating specimen magnetometry (VSM) methods. The FNC@MIPs had a homogeneous shape, excellent magnetic characteristics, quick binding kinetics, a high adsorption capacity, acceptable selectivity, and stable reusability. The solid-phase extraction parameters and preparation conditions were both optimized. Under optimized conditions, the maximal adsorption capacity was 14.26 mg g-1 and the imprinting factor was 3.62. Furthermore, the experimental kinetics data were best fitted with the pseudo-first-order model (R2 = 0.9877), and the Langmuir model could describe the adsorption process (R2 = 0.9979), suggesting a monolayer covering. The practical application of the sorbent for LTL detection in Lonicera japonica Thunb samples showed recoveries in the range of 84.5-108.7%. Therefore, the strategy offers a fresh avenue for the extraction and purification of LTL.
Collapse
Affiliation(s)
- Li-Xin Ding
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Yong-Qiang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Xue Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Zhao-Qi Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Xiao-Yu Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Yan-Fen Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Xing-Yu Hou
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| |
Collapse
|
8
|
Deep eutectic solvent-imprinted polymer based on magnetic UiO-66-NH2 for fast and selective removal of benzydamine hydrochloride in environmental samples. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Arora H, Dhiman D, Kumar K, Venkatesu P. Fortification of thermal and structural stability of hemoglobin using choline chloride-based deep eutectic solvents. Phys Chem Chem Phys 2022; 24:29683-29692. [PMID: 36453254 DOI: 10.1039/d2cp03407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of late, DESs have occupied the centre stage due to their eco-friendly and resource-efficient nature and their low toxicity. In this work, we have investigated the structural and thermal stability of hemoglobin (Hb) in two choline chloride ([Ch]Cl)-based DESs namely urea [Ch]Cl-urea (DES1) and [Ch]Cl-glycerol (Gly); (DES 2). Different biophysical techniques reveal that the presence of DESs facilitates the stability of Hb in a concentration-dependent manner and the extent of stability is more pronounced in [Ch]Cl-Gly as compared to [Ch]Cl-urea. Additionally, for a better understanding of the role of DESs in modulating the thermal and structural stability of Hb, studies have been performed on Hb in the presence of individual constituents of DESs, i.e., [Ch]Cl, urea, and Gly. Altogether, it was observed that the effect on the stability of Hb was by the presence of the DESs rather than their individual constituents. For instance, urea itself is a destabilizing co-solvent for biomolecules. However, the harmful effects of urea were surpassed when a DES is formed in the presence of [Ch]Cl. Therefore, overall, it can be concluded that both DESs can be described as potential non-harmful, green, and promising solvents for enhancing the structural and thermal stability of Hb.
Collapse
Affiliation(s)
- Harshita Arora
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India. .,Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
10
|
Peng F, Wang X, Tao W, Chen Y, Ma Y, Ding X. Development of Magnetic Deep Eutectic Solvent-Based Liquid-Liquid Extraction for the Selective Extraction and Separation of RNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10934-10942. [PMID: 36047674 DOI: 10.1021/acs.langmuir.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Four kinds of hydrophobic magnetic deep eutectic solvents (HMDESs) were prepared and applied to RNA extraction. Based on the HMDESs, a mechanical shaking-assisted liquid-liquid extraction (MSLLE) was developed for the extraction of RNA. Factors that influence the extraction, including the extraction time, temperature, volume of HMDES, buffer types, and pH, were evaluated. After the optimization of all conditions, the RNA extraction efficiency was 82.31 ± 0.02%. RNA can be extracted from complex samples and medicinal yeast by the method proposed in this work and can be recovered from the HMDESs after being extracted.
Collapse
Affiliation(s)
- Feixia Peng
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| | - Xuelian Wang
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| | - Wenting Tao
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| | - Yao Chen
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| | - Yani Ma
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| | - Xueqin Ding
- School of Life Sciences, Hunan Normal University, Changsha, China 410081
| |
Collapse
|
11
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
12
|
A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables. Food Chem 2022; 384:132475. [DOI: 10.1016/j.foodchem.2022.132475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
|
13
|
Yadav N, Venkatesu P. Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Phys Chem Chem Phys 2022; 24:13474-13509. [PMID: 35640592 DOI: 10.1039/d2cp00084a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deep eutectic solvents (DESs) have emerged as a new class of green, designer and biocompatible solvents, an alternative to conventional organic solvents and ionic liquids (ILs) which are comparatively toxic and non-biodegradable. DESs are eutectic mixtures that are formed when a hydrogen bond acceptor (HBA) is mixed with a hydrogen bond donor (HBD) at particular molar ratios by mechanical grinding or under mild heating conditions. Very recently, these solvents have been the center of attention for researchers in biotechnology, biomedicine and various scientific applications. These environmentally benign solvents have a close analogy with ILs; however, they offer certain unique merits over traditional ILs. DESs display remarkable properties such as easy preparation, tunable composition, biodegradability, recyclability, inherently low toxicity, sustainability and biocompatibility; these special features validate DESs as new potential solvents/co-solvents for biomolecules. Mechanistically, the biocompatibility and protein friendly nature of DESs depend on various factors, which include the composition of the DES, viscosity and hydration level. Therefore, it becomes an essential task to bring together all the studies related to protein behaviour in DESs to unlock their biomolecular proficiency. This review specifically highlights recent insights into the biomacromolecular functionality in DESs, including outlines of the solubilization and stabilization of proteins, long term protein packaging, different extraction methods and enzyme activation in the presence of DESs. A literature survey reveals that DESs act as green media in which the protein structure and activity are retained. In some cases, proteins refolded and enzymatic activity was enhanced several fold in the presence of DESs. Furthermore, we have reviewed the possible mechanistic behaviour behind protein stabilization, refolding and activation in DESs. Overall, the main objective of this review is to explicate the advantages of the introduction of DESs for biomolecules and to demonstrate the versatility of these eco-friendly solvents for future bio-based applications.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | |
Collapse
|
14
|
Chai MH, Zhang X, Zhao L, Hao WJ, Huang YP, Liu ZS. Combination of deep eutectic solvent and organic–inorganic hybrid monomer to prepare monolith for improvement of hydrophilic protein extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Han S, Yao A, Ding Y, Leng Q, Teng F, Zhao L, Sun R, Bu H. A dual-template imprinted polymer based on amino-functionalized zirconium-based metal-organic framework for delivery of doxorubicin and phycocyanin with synergistic anticancer effect. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Gheybalizadeh H, Hejazi P. Influence of hydrophilic and hydrophobic functional monomers on the performance of magnetic molecularly imprinted polymers for selective recognition of human insulin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
|
18
|
Phosiri P, Burakham R. Deep eutectic solvent-modified mixed iron hydroxide-silica: Application in magnetic solid-phase extraction for enrichment of organochlorine pesticides prior to GC-MS analysis. J Sep Sci 2021; 44:3636-3645. [PMID: 34355518 DOI: 10.1002/jssc.202100329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023]
Abstract
A new type of magnetic material based on silica-coated mixed iron hydroxides functionalized with deep eutectic solvent was utilized for the magnetic solid-phase extraction of organochlorine pesticides prior to gas chromatography-mass spectrometry analysis. Choline chloride and phenol were selected as the hydrogen bond acceptor and donor, respectively, for preparing the deep eutectic solvent-modified magnetic surface. The modified surface possessed superior enrichment capability for organochlorine pesticides. Under optimal extraction conditions, viz., 10 mg sorbent, 5 mL sample solution, and 200 μL acetone (desorption solvent), linearity was obtained in the range 0.005-200 μg/L, with coefficients of determination greater than 0.997. The limits of detection and quantification were as low as 0.6-10 and 5-60 ng/L, respectively, whereas the enrichment factors were in the range of 31-100. The precisions evaluated in terms of the relative standard deviations of the intra- and inter-day experiments were <4.9 and 7.6%, respectively. The developed method was successfully applied for determining the organochlorine residues in agricultural products. Satisfactory recoveries in the range of 71.2-110.3% were obtained, with a relative standard deviation of <8.0%. The proposed material is a promising sorbent for the preconcentration of organochlorine residues.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Rodjana Burakham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Guo B, Bi S, Zhang B, Tong Y, Chen X, Tian M. Synthesis of nanoparticles with a combination of metal chelation and molecular imprinting for efficient and selective extraction of glycoprotein. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Han S, Yao A, Ding Y, Leng Q, Teng F. A molecularly imprinted polymer based on MOF and deep eutectic solvent for selective recognition and adsorption of bovine hemoglobin. Anal Bioanal Chem 2021; 413:5409-5417. [PMID: 34235569 DOI: 10.1007/s00216-021-03520-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023]
Abstract
In this study, a novel kind of imprinted polymers based on metal-organic frameworks (MOF@DES-MIPs) was prepared, using bovine hemoglobin (BHb) as template molecules and deep eutectic solvents (DES) as functional monomers for selective recognition and adsorption of BHb. MOF were used as the substrates to improve the accessibility of imprinted sites and DES as the functional monomers to produce different forces for BHb to help the formation of imprinted sites. Imprinted polymer films were taken to provide analyte selectivity. The MOF@DES-MIPs prepared were characterized and evaluated by scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectrometer. We also investigated the influences of BHb concentration and adsorption time on the performance of MOF@DES-MIPs. The maximal adsorption capacity of MOF@DES-MIPs to BHb reached 151.28 mg g-1, and the MOF@DES-MIPs showed good selectivity and fast adsorption equilibrium, which might offer a novel method for the preparation and research of molecularly imprinted polymers of biomacromolecules. In addition, MOF@DES-MIPs were successfully applied in the selective recognition of BHb from a real bovine blood sample. Graphical abstract.
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China. .,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, China.
| | - Aixin Yao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yuxin Ding
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Qiuxue Leng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Fu Teng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
21
|
Abstract
The review describes the development of batch solid phase extraction procedures based on dispersive (micro)solid phase extraction with molecularly imprinted polymers (MIPs) and magnetic MIPs (MMIPs). Advantages and disadvantages of the various MIPs for dispersive solid phase extraction and dispersive (micro)solid phase extraction are discussed. In addition, an effort has also been made to condense the information regarding MMIPs since there are a great variety of supports (magnetite and magnetite composites with carbon nanotubes, graphene oxide, or organic metal framework) and magnetite surface functionalization mechanisms for enhancing MIP synthesis, including reversible addition-fragmentation chain-transfer (RAFT) polymerization. Finally, drawbacks and future prospects for improving molecularly imprinted (micro)solid phase extraction (MIMSPE) are also appraised.
Collapse
|
22
|
He X, Wang Y, Li H, Chen J, Liu Z, Xu F, Zhou Y. Specific recognition of protein by deep eutectic solvent-based magnetic β-cyclodextrin molecularly imprinted polymer. Mikrochim Acta 2021; 188:232. [PMID: 34137917 DOI: 10.1007/s00604-021-04887-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
A magnetic β-cyclodextrin (MCD) surface molecularly imprinted polymer (MIP) based on deep eutectic solvents (DESs) as cross-linker and functional monomer (MCD@DES-MIP) was successfully synthesized for the specific recognition of bovine hemoglobin (BHb). The adsorption behavior of MCD@DES-MIP for BHb was investigated by adsorption thermodynamics, adsorption kinetics, and pH control experiments. The maximum adsorption capacity of MCD@DES-MIP for BHb under the optimized conditions was 195.94 mg g-1 and the imprinting factor was 4.68. In addition, the competitive adsorption experiments demonstrated that MCD@DES-MIP showed excellent selective extraction ability for BHb in the binary mixture of BHb and bovine serum albumin (BSA). The actual sample analysis manifested that MCD@DES-MIP effectively separated BHb from complex samples. The results of circular dichroism spectra proved that the secondary structure of BHb did not change during elution. The result indicated that MCD@DES-MIP can be used as a new imprinting material for the separation and purification of BHb.Graphical abstract Magnetic imprinted microspheres (MCD@DES-MIP) were prepared by free radical polymerization using magnetic β-cyclodextrin (MCD) as carrier, deep eutectic solvents (DESs) as functional monomer and cross-linker. MCD@DES-MIP show high adsorption capacity and excellent selectivity for BHb.
Collapse
Affiliation(s)
- Xiyan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Heqiong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
23
|
Fabrication of a novel bio-sorbent based on magnetic β-cyclodextrin composites modified by polymeric deep eutectic solvent for the efficient separation of Ovalbumin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Hao Y, Gao Y, Song H, Niu Y, Chen X, Liu X, Gao R, Wang S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe 3O 4-Cu for specific recognition of bovine hemoglobin. Talanta 2021; 233:122496. [PMID: 34215114 DOI: 10.1016/j.talanta.2021.122496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
In this work, a synergistic imprinting strategy combined with metal coordination based on ligand-free Fe3O4-Cu was proposed to fabricate molecularly imprinted polymers (MIPs) for the recognition and isolation of bovine hemoglobin (BHb) specifically in biological samples. Copper doped magnetic microspheres prepared solvothermally in a one-pot pathway act as both magnetic core and metal affinity substrate. Upon anchoring BHb to Fe3O4-Cu through metal coordination, the imprinted layer was formed via dopamine self-polymerization. Profiting from the synergistic effect, the obtained imprinted microspheres exhibited an enhanced adsorption performance with the adsorption capacity of 400.86 mg g-1, imprinting factor of 11.88, selectivity coefficient above 5.8, superior to most of other reported BHb-MIPs. Furthermore, kinetic adsorption analyses pointed to a chemisorption-limited process as described by the pseudo-second-order model, and the isothermal adsorption analyses implied monolayer adsorption, as described by the Langmuir model. In addition, the resultant magnetic MIPs can be used at least six adsorption-desorption cycles without re-incubation in the metallic salt solution, avoiding secondary environmental pollution. Furthermore, the well-defined materials showed selectivity both in individual protein samples and bovine serum, providing a promising potential in bioseparation.
Collapse
Affiliation(s)
- Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuan Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yingying Niu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoyi Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
25
|
Sustainable green solvents for microextraction techniques: Recent developments and applications. J Chromatogr A 2021; 1640:461944. [PMID: 33556679 DOI: 10.1016/j.chroma.2021.461944] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
The development and application of alternative green solvents in analytical techniques consist of trends in sample preparation, since this subject represents an important step toward sustainability in experimental procedures. This review is focused on the main theoretical aspects related to deep eutectic solvents (DES), switchable hydrophilicity solvents (SHS) and supramolecular solvents (SUPRAS). Recent applications are highlighted, particularly for the extraction of different analytes from environmental, biological and food matrices. Moreover, novel configurations are emphasized, aiming for efficient, automated and high-throughput procedures. This review also provides some critical points regarding the use of these solvents and their green aspects.
Collapse
|
26
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
27
|
Liu J, Liu Y, Liang Y, Ma F, Bai Q. Poly- l-lysine-functionalized magnetic graphene for the immobilized metal affinity purification of histidine-rich proteins. NEW J CHEM 2021. [DOI: 10.1039/d1nj00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal affinity-poly-l-lysine functionalization on a magnetic graphene substrate for simultaneously improving the adsorption selectivity toward histidine-rich proteins and inhibiting the non-specific adsorption.
Collapse
Affiliation(s)
- Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yingying Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yixun Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
28
|
Tan L, Li QY, Li YJ, Ma RR, He JY, Jiang ZF, Yang LL, Wang CZ, Luo L, Zhang QH, Yuan CS. Specific adsorption and determination of aspartame in soft drinks with a zein magnetic molecularly imprinted modified MGCE sensor. RSC Adv 2021; 11:13486-13496. [PMID: 35423884 PMCID: PMC8697574 DOI: 10.1039/d0ra10824c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the synthesis procedure of ZDM-MIPs.
Collapse
|
29
|
Hydrophilic magnetic molecularly imprinted nanobeads for efficient enrichment and high performance liquid chromatographic detection of 17beta-estradiol in environmental water samples. Talanta 2020; 220:121367. [DOI: 10.1016/j.talanta.2020.121367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
|
30
|
Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: Application for extraction of pesticides. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
32
|
Tan L, Zhou LD, Jiang ZF, Ma RR, He JY, Xia ZN, Zhang QH, Wang CZ, Yuan CS. Selective separation and inexpensive purification of paclitaxel based on molecularly imprinted polymers modified with ternary deep eutectic solvents. J Pharm Biomed Anal 2020; 192:113661. [PMID: 33053507 DOI: 10.1016/j.jpba.2020.113661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022]
Abstract
Paclitaxel (PTX) is a powerful anticancer natural product, with its separation and purification having been widely studied. In this work, new molecular imprinted polymers (MIPs) using deep eutectic solvents (DESs) with different molar ratios were prepared as functional monomers. These were then used as adsorbents in solid phase extraction (SPE) for the separation of PTX from its structural analogs. The polymers were characterized by energy disperive X-rays (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FT-IR). The results suggested that the formative regular DES-MIPs had an even pore-size distribution and a large specific surface area. The dynamic adsorption and static adsorption showed that the DES-MIPs had excellent adsorption performance, with a maximum adsorption capacity and optimum adsorption time of 87.08 mg/g and 180 min, respectively. The selective adsorption experiments showed that the material had outstanding selectivity, and the maximum selectivity factor was 6.20. For stability, after six consecutive adsorption and desorption cycles, the DES-MIPs maintained the perfect stability and reusability. Furthermore, the fabricated SPE column was successfully utilized for extracting and eluting PTX. This study provides a reliable protocol for the separation and purification PTX from its structural analogs and the DES-MIPs materials have excellent potential application value in pharmaceutical industry.
Collapse
Affiliation(s)
- Ling Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Zhuang-Fei Jiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Rong-Rong Ma
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Liu Z, Wang Y, Xu F, Wei X, Chen J, Li H, He X, Zhou Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal Chim Acta 2020; 1129:49-59. [DOI: 10.1016/j.aca.2020.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
|
34
|
Wang D, Luo X, Huang Y, Wang M, Xia Z. Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Development and applications of deep eutectic solvent derived functional materials in chromatographic separation. J Sep Sci 2020; 44:1098-1121. [DOI: 10.1002/jssc.202000523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023]
|
36
|
Enhancement anti-interference ability of photoelectrochemical sensor via differential molecularly imprinting technique demonstrated by dopamine determination. Anal Chim Acta 2020; 1125:201-209. [DOI: 10.1016/j.aca.2020.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
|
37
|
Zhang JW, He JY, Wang CZ, Yang FQ, Zhou LD, Zhang QH, Xia ZN, Yuan CS. Simultaneous extraction of several targets by using non-toxic dual template molecularly imprinted polymers in vivo and in vitro. Talanta 2020; 219:121283. [PMID: 32887173 DOI: 10.1016/j.talanta.2020.121283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023]
Abstract
In this report, a non-toxic Dual Template Molecularly Imprinted Polymers (DMIPs) was synthesized with quercetin and schisandrin b as template molecules, using deep-eutectic solvents as functional monomers for the first time. The DMIPs were used to efficiently and simultaneously enrich quercetin and schisandrin b from the mixed crude extracts of penthorum and schisandra. The results indicated that the DMIPs exhibited rapid adsorption kinetics (80 min for adsorption equilibrium) and high selectivity. The largest adsorbing capacities to quercetin and schisandrin b were 23.58 mg/g and 41.64 mg/g, respectively. After presaturation with quercetin and schisandrin b, the nontoxic saturated DMIPs were fed to the mice. Blood samples of the mice were taken and both quercetin and schisandrin b were successfully detected. The pharmacokinetics of quercetin and schisandrin b were similar to reports in the literature where mice were directly fed with botanicals. Our study provides a reliable protocol such that DMIPs can be used to separate and enrich several target molecules simultaneously from complex biological systems. Our findings suggested that the DMIPs have potential application as a drug delivery system of compound herbal formulas.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
38
|
A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH 2) for solid-phase extraction of RNA. Mikrochim Acta 2019; 187:58. [PMID: 31848727 DOI: 10.1007/s00604-019-4040-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
A cactus-shaped magnetic composite was prepared for solid-phase extraction of RNA. It is composed of the metal organic framework UiO-66-NH2 that was modified with Fe3O4 nanoparticles. The composite was then dispersed in a lactic acid-based deep eutectic solvent (DES, Fe3O4-COOH@UiO-66-NH2@DES). The structures of the sorbents were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry and thermogravimetric analysis. The extraction performance of sorbents was optimized and the maximum extraction capacity reached 246 mg·g-1. Extraction is shown to mainly rely on chelation interaction, electrostatic interaction, hydrophobic interaction and hydrogen bonding interaction. The sorbent can selectively extract RNA over DNA, bovine hemoglobin and amino acids. Regeneration studies indicated that the sorbent can be re-used (after regenreation with DES) several times without obvious change of the extraction capacity. The successful extraction of RNA from yeast testified the practical application of the sorbent. Graphical abstractSchematic representation of the fabrication Fe3O4-COOH@UiO-66-NH2@DES, and its application in the magnetic solid phase extraction of RNA.
Collapse
|
39
|
Chen J, Wang Y, Wei X, Ni R, Meng J, Xu F, Liu Z. A composite prepared from MnO 2 nanosheets and a deep eutectic solvent as an oxidase mimic for the colorimetric determination of DNA. Mikrochim Acta 2019; 187:7. [PMID: 31797063 DOI: 10.1007/s00604-019-4021-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
A composite was fabricated from deep eutectic solvent and MnO2 nanosheets (DES/MnO2) and is shown to be a viable oxidase mimic. The property, morphology and composition of DES/MnO2 was characterized. DES/MnO2 displays oxidase-like activity and can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form a blue product (oxTMB) with an absorption maximum at 652 nm. Due to the presence of the DES, the polyanionic and negatively charged DNA is easily adsorbed on the surface of the composite by hydrogen bonding and electrostatic interactions. This leads to the inhibition of the oxidase-mimicking activity of DES/MnO2. This finding was used to design a colorimetric method for the determination of DNA. The assay work in the 10-100 μg mL-1 DNA concentration range and has a detection limit of 0.37 μg mL-1. The inhibiting mechanism was further studied by zeta potential measurements, dynamic light scattering and transmission electron microscopy. The selectivity study shows the DES/MnO2-TMB system to be highly selective for DNA when compared with many proteins, carbohydrates, salts and amino acid. RNA, on the other hand, interferes. The real sample analysis result illustrates that the new method can be used for the detection of DNA in bovine whole blood. Graphical abstractA novel oxidase mimic based on deep eutectic solvent-functionalized MnO2 nanosheets was synthesized, which can directly catalyze oxidation of 3,3',5,5'-tetramethylbenzidine (TMB, colorless) to oxTMB (blue). A sensitive and convenient colorimetric strategy for visual detection of DNA was established through DES/MnO2-TMB sensing system.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
- College of Material and Chemical Engineering, Tongren University, Tongren, 554300, People's Republic of China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xiaoxiao Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Rui Ni
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiaojiao Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
40
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
41
|
Zhao L, Li L, Zhu C, Ghulam M, Qu F. pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins. Anal Chim Acta 2019; 1097:161-168. [PMID: 31910956 DOI: 10.1016/j.aca.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022]
Abstract
A new adsorbent based on pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles was developed for specific recognition and efficient adsorption of proteins. Arising from the synergistic effect of specific affinity of apatamer on protein and tunable hydrophobic/hydrophilic property of pH-responsive polymer, the adsorbent exhibited excellent adsorption capacity for target protein. Notably, because of the pH-responsive property of the polymer, the adsorption and desorption process could be regulated through varying environmental pH. The resultant adsorbent that immobilized with lysozyme binding aptamer was successfully applied in specific recognition and efficient adsorption of lysozyme in egg white samples and good recovery results in the range of 95.2-103.2% were obtained. Moreover, the adsorbent immobilized with cytochrome C binding aptamer also exhibited satisfactory adsorption to cytochrome C. The synergistic effect of pH-responsive polymer and aptamer promoted the recognition selectivity and adsorption capacity to target protein, illustrating a facile way for construction of more specific protein adsorbents.
Collapse
Affiliation(s)
- Liping Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Chao Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Murtaza Ghulam
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
42
|
Huang Y, Pan J, Liu Y, Wang M, Deng S, Xia Z. A SPE Method with Two MIPs in Two Steps for Improving the Selectivity of MIPs. Anal Chem 2019; 91:8436-8442. [DOI: 10.1021/acs.analchem.9b01453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yike Huang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingmiao Pan
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Yi Liu
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Min Wang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Suya Deng
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
43
|
Roda A, Matias AA, Paiva A, Duarte ARC. Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers (Basel) 2019; 11:polym11050912. [PMID: 31117221 PMCID: PMC6572283 DOI: 10.3390/polym11050912] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The green and versatile character of deep eutectic solvents (DES) has turned them into significant tools in the development of green and sustainable technologies. For this purpose, their use in polymeric applications has been growing and expanding to new areas of development. The present review aims to summarize the progress in the field of DES applied to polymer science and engineering. It comprises fundamentals studies involving DES and polymers, recent applications of DES in polymer synthesis, extraction and modification, and the early developments on the formulation of DES–polymer products. The combination of DES and polymers is highly promising in the development of new and ‘greener’ materials. Still, there is plenty of room for future research in this field.
Collapse
Affiliation(s)
- Ana Roda
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Ana A Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Alexandre Paiva
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Ana Rita C Duarte
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
44
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Qiao L, Zhao L, Liang C, Du K. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. J Mater Chem B 2019; 7:5510-5519. [DOI: 10.1039/c9tb01157a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorbents with synchronously high protein adsorption performance and a facile synthetic route are highly desired in protein separation.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Chao Liang
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|