1
|
Yang S, Zhan X, Yuan L, Lamy de la Chapelle M, Fu W, Yang X. Entropy driven-based catalytic biosensors for bioanalysis: From construction to application-A review. Anal Chim Acta 2025; 1338:343549. [PMID: 39832843 DOI: 10.1016/j.aca.2024.343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The rapid advancement of precision medicine and the continuous emergence of novel pathogens have presented new challenges for biosensors, necessitating higher requirements. Target amplification technology serves as the core component in biosensor construction. Enzyme-based amplification methods are often sensitive and selective but involve relatively complex operational steps, whereas enzyme-free amplification methods offer simplicity but frequently fail to meet both sensitivity and selectivity simultaneously. Existing research has confirmed that entropy-driven catalyst (EDC) biosensors not only fulfills the demands for sensitivity and selectivity concurrently but also offers ease of operation and flexibility in construction. In this review, we summarize the key advantages of EDC, explore how to construct DNA nanomachines based on these advantages to achieve intracellular detection and simultaneous detection of multiple targets, as well as point-of-care testing (POCT) to address practical issues in clinical diagnosis and treatment. We also anticipate potential challenges, propose corresponding solutions, and outline future development directions for EDC-based biosensors in practical clinical applications. We firmly believe that EDC sensors will emerge as a crucial branch within the realm of biosensor development.
Collapse
Affiliation(s)
- Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Army 953rd Hospital (Shigatse Branch, Xinqiao Hospital), Third Military Medical University, Shigatse, 857000, China
| | - Xinyu Zhan
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China
| | - Lijia Yuan
- Emergency Department, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Marc Lamy de la Chapelle
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Institut des Molécules et Matériaux Du Mans (IMMM UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Weiling Fu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China.
| | - Xiang Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China.
| |
Collapse
|
2
|
Cui S, Wang F, Yang W, Yu Y, Li Y. Protein-Templated Click Ligation Reaction Triggered by Protein-Split Aptamer Interactions. Anal Chem 2024. [PMID: 39264850 DOI: 10.1021/acs.analchem.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
DNA-templated reactions have found wide applications in sensing and drug discovery. However, this strategy has been limited to the use of nucleic acids as templating elements to direct the proximity effect. Herein, we describe a versatile protein-templated split aptamer click ligation reaction (PT-SpA-CLR) in which the protein template-induced covalent proximity ligation of split aptamer elements enables translating protein/aptamer binding events into the output of ligated DNA products. A ligation yield of >80% is observed for three model protein templates, including VEGF165, PDGF-BB, and SARS-CoV-2 S1. The ligation reaction compensates for the weakness of reduced binding affinity resulting from splitting the aptamer, as evidenced by an approximately 2-fold lower dissociation constant than the non-ligated system. This newly developed PT-SpA-CLR strategy is further integrated with colorimetric or fluorescent reporting mechanisms to achieve easy-to-use and low-cost biosensors utilizing ligation to produce a fully active G-quadruplex or an RNA-cleaving DNAzyme to report protein binding. Both assays can achieve specific detection of an intended protein target with a limit of detection at the picomolar level even when challenged in biological samples. The combined PT-SpA-CLR and versatile sensing strategies offer attractive universal platforms for efficient detection of protein biomarkers.
Collapse
Affiliation(s)
- Susu Cui
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Wang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weiwei Yang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Yongsheng Yu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
3
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
4
|
Wu J, Mei X, Zhan X, Liu F, Liu D. Proximity hybridization based "turn-on" DNA tweezers for accurate and enzyme-free small extracellular vesicle analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38699853 DOI: 10.1039/d4ay00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Small extracellular vesicles (sEVs) are a type of extracellular vesicle that carries many types of molecular information. The identification of sEVs is essential for the non-invasive detection and treatment of illnesses. Hence, there is a significant need for the development of simple, sensitive, and precise methods for sEV detection. Herein, a DNA tweezers-based assay utilizing a "turn-on" mechanism and proximity ligation was suggested for the efficient and rapid detection of sEVs through amplified fluorescence. The target facilitates the proximity combination of the C1 probe and C2 probe, resulting in the formation of a complete extended sequence. The elongated sequence can cyclically initiate the hairpin probe (HP), leading to the activation of DNA tweezers. An excellent linear correlation was achieved, with a limit of detection of 57 particles per μL. Furthermore, it has been effectively employed to analyze sEVs under intricate experimental conditions, demonstrating a promising and pragmatic prospect for future applications. Given that the identification of sEVs was successfully accomplished using a single-step method that exhibited exceptional sensitivity and strong resistance to interference, the proposed technique has the potential to provide a beneficial platform for accurate recognition of sEVs and early detection of diseases.
Collapse
Affiliation(s)
- Jinlin Wu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xi Mei
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xiaoqin Zhan
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Fang Liu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
5
|
Chen Y, Wen Y, Wang L, Huo Y, Tao Q, Song Y, Xu L, Yang X, Guo R, Cao C, Yan J, Li L, Liu G. Triblock PolyA-Mediated Protein Biosensor Based on a Size-Matching Proximity Hybridization Analysis. Anal Chem 2024; 96:6692-6699. [PMID: 38632948 DOI: 10.1021/acs.analchem.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The antibodies in the natural biological world utilize bivalency/multivalency to achieve a higher affinity for antigen capture. However, mimicking this mechanism on the electrochemical sensing interface and enhancing biological affinity through precise spatial arrangement of bivalent aptamer probes still pose a challenge. In this study, we have developed a novel self-assembly layer (SAM) incorporating triblock polyA DNA to enable accurate organization of the aptamer probes on the interface, constructing a "lock-and-key-like" proximity hybridization assay (PHA) biosensor. The polyA fragment acts as an anchoring block with a strong affinity for the gold surface. Importantly, it connects the two DNA probes, facilitating one-to-one spatial proximity and enabling a controllable surface arrangement. By precisely adjusting the length of the polyA fragment, we can tailor the distance between the probes to match the molecular dimensions of the target protein. This design effectively enhances the affinity of the aptamers. Notably, our biosensor demonstrates exceptional specificity and sensitivity in detecting PDGF-BB, as confirmed through successful validation using human serum samples. Overall, our biosensor presents a novel and versatile interface for proximity assays, offering a significantly improved surface arrangement and detection performance.
Collapse
Affiliation(s)
- Yuru Chen
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; Shanghai Engineering Research Center of Aquatic-Product Process & Preservation; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Lele Wang
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Yinbo Huo
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Qing Tao
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Yanan Song
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; Shanghai Engineering Research Center of Aquatic-Product Process & Preservation; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Xu
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xue Yang
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ruiyan Guo
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Chengming Cao
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; Shanghai Engineering Research Center of Aquatic-Product Process & Preservation; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanying Li
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| |
Collapse
|
6
|
Shi C, Yang D, Ma X, Pan L, Shao Y, Arya G, Ke Y, Zhang C, Wang F, Zuo X, Li M, Wang P. A Programmable DNAzyme for the Sensitive Detection of Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202320179. [PMID: 38288561 DOI: 10.1002/anie.202320179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 02/17/2024]
Abstract
Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.
Collapse
Affiliation(s)
- Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanchuan Shao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
7
|
Ali MM, Mukherjee M, Radford K, Patel Z, Capretta A, Nair P, Brennan JD. A Rapid Sputum-based Lateral Flow Assay for Airway Eosinophilia using an RNA-cleaving DNAzyme Selected for Eosinophil Peroxidase. Angew Chem Int Ed Engl 2023; 62:e202307451. [PMID: 37477970 DOI: 10.1002/anie.202307451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Manali Mukherjee
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Katherine Radford
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Zil Patel
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| |
Collapse
|
8
|
Zhu Y, Wu J, Zhou Q. Functional DNA sensors integrated with nucleic acid signal amplification strategies for non-nucleic acid targets detection. Biosens Bioelectron 2023; 230:115282. [PMID: 37028002 DOI: 10.1016/j.bios.2023.115282] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
In addition to carrying and transmitting genetic material, some DNA molecules have specific binding ability or catalytic function. DNA with this special function is collectively referred to as functional DNA (fDNA), such as aptamer, DNAzyme and so on. fDNA has the advantages of simple synthetic process, low cost and low toxicity. It also has high chemical stability, recognition specificity and biocompatibility. In recent years, fDNA biosensors have been widely investigated as signal recognition elements and signal transduction elements for the detection of non-nucleic acid targets. However, the main problem of fDNA sensors is their limited sensitivity to trace targets, especially when the affinity of fDNA to the targets is low. To further improve the sensitivity, various nucleic acid signal amplification strategies (NASAS) are explored to improve the limit of detection of fDNA. In this review, we will introduce four NASAS (hybridization chain reaction, entropy-driven catalysis, rolling circle amplification, CRISPR/Cas system) and the corresponding design principles. The principle and application of these fDNA sensors integrated with signal amplification strategies for detection of non-nucleic acid targets are summarized. Finally, the main challenges and application prospects of NASAS integrated fDNA biosensing system are discussed.
Collapse
|
9
|
Sun Y, Qi S, Dong X, Qin M, Ding N, Zhang Y, Wang Z. Colorimetric aptasensor for fumonisin B 1 detection based on the DNA tetrahedra-functionalized magnetic beads and DNA hydrogel-coated bimetallic MOFzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130252. [PMID: 36327850 DOI: 10.1016/j.jhazmat.2022.130252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The toxicity and incidence of fumonisin B1 (FB1) pose a major challenge to public health and the environment, prompting the development of alternative quantitative strategies for FB1. Herein, a colorimetric aptasensor was constructed based on DNA tetrahedra-functionalized magnetic beads (MBs) and DNA hydrogel-coated Mn-Zr bimetallic metal-organic frameworks-based nanozyme (MOFzyme). Initially, MBs functionalized by DNA tetrahedra demonstrated excellent capturing capability for FB1. Along with the capture of FB1, catalyst DNA (C) was released into the supernatant. Aided by fuel DNA (F), C can trigger continuous cleavage of the main chains and cross-linking points of the DNA hydrogel through an entropy-driven DNA circuit integrated into the hydrogel coating. Subsequently, the bimetallic MOFzyme encapsulated inside the DNA hydrogel was exposed and exerted its superb peroxidase-like activity, producing a colorimetric signal whose intensity was positively dependent on the amount of FB1. The developed aptasensor exhibited good linearity in the range of 5 × 10-4 to 50 ng mL-1 with a limit of detection (LOD) of 0.38 pg mL-1, and reasonable specificity in different matrices. Furthermore, the aptasensor was successfully applied to quantify FB1 in actual samples with recoveries fell within 92.25 %- 108.00 %, showing its great potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
11
|
Fan Z, Yao B, Ding Y, Xu D, Zhao J, Zhang K. Rational engineering the DNA tetrahedrons of dual wavelength ratiometric electrochemiluminescence biosensor for high efficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and bipedal DNA walker amplification strategy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 427:131686. [PMID: 34400874 PMCID: PMC8349740 DOI: 10.1016/j.cej.2021.131686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/06/2023]
Abstract
Fast and effective detection of epidemics is the key to preventing the spread of diseases. In this work, we constructed a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on entropy-driven and bipedal DNA walker cycle amplification strategies for detection of the RNA-dependent RNA polymerase (RdRp) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The entropy-driven cyclic amplification reaction was started by the SARS-CoV-2 RdRp gene to generate a bandage. The bandage could combine with two other single-stranded S1 and S2 to form a bipedal DNA walker to create the following cycle reaction. After the bipedal DNA walker completed the walking process, the hairpin structures at the top of the DNA tetrahedrons (TDNAs) were removed. Subsequently, the PEI-Ru@Ti3C2@AuNPs-S7 probes were used to combine with the excised hairpin part of TDNAs on the surface of Au-g-C3N4, and the signal change was realized employing electrochemiluminescence resonance energy transfer (ECL-RET). By combining entropy-driven and DNA walker cycle amplification strategy, the ratiometric ECL biosensor exhibited a limit of detection (LOD) as low as 7.8 aM for the SARS-CoV-2 RdRp gene. As a result, detecting the SARS-CoV-2 RdRp gene in human serum still possessed high recovery so that the dual-wavelength ratiometer biosensor could be used in early clinical diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Bo Yao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
12
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang Z, Mei M, Yao J, Ye T, Quan J, Liu J. An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification. Analyst 2021; 145:6868-6874. [PMID: 32820297 DOI: 10.1039/d0an01054e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article, we report a novel dual on/off thrombin fluorescence aptasensor by combining the energy driven target induced strand displacement reaction and a non-enzyme catalyst recycling DNA machine. Firstly, the specific binding of an aptamer strand and thrombin induce the release of a catalyst which was used as a DNA machine trigger. Subsequently, the catalyst as the trigger initiated the DNA machine through nucleic acid hybridization and branch migration of the DNA machine, resulting in the DNA substrate melting and re-hybridization. In such a working model, the DNA machine achieved cooperative control of the circular strand displacement reaction, realizing catalyst recycling and dual-amplification. The fluorescence signal change of FAM and ROX accumulation had a good linear relationship with the thrombin concentration in the range of 1 fM to 1 nM. On account of catalyst recycling and dual recognition, the detection limit for thrombin was determined to be as low as 0.45 fM (S/N = 3).This biosensor also showed good selectivity for thrombin without being affected by some other proteins, such as PSA, lysozyme etc. Moreover, this assay can be applied to the detection of thrombin in diluted human serum.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | | | | | | | | | | |
Collapse
|
14
|
Wu G, Li Y, Zhang J, Yun W, Xiong Z, Yang L. Simultaneous and ultra-sensitive detection of Cu 2+ and Mg 2+ in wine and beer based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. Food Chem 2021; 358:129835. [PMID: 33933951 DOI: 10.1016/j.foodchem.2021.129835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Simultaneous and ultra-sensitive detection strategy of Cu2+ and Mg2+ in wine and beer was developed based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. The dual DNAzyme can simultaneously respond to two kinds of metal ions and cause two kinds of "turn-on" fluorescent signals. The working principle of this strategy was indirectly proven. In addition, some key experimental parameters were also optimized. Under the optimum conditions, the limit of detection was 10 pM for Cu2+ and 2 nM for Mg2+ respectively which was significantly improved by entropy driven amplification. This strategy also showed good selectivity and specificity. It was successfully used to detect of Cu2+ and Mg2+ in wine and beer with 5.26% to 9.12% of relative standard deviation and 90.4% to 110.5% of recoveries.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuting Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
15
|
Li Y, Luo Z, Zhang C, Sun R, Zhou C, Sun C. Entropy driven circuit as an emerging molecular tool for biological sensing: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
|
17
|
Xiong Z, Wang Q, Xie Y, Li N, Yun W, Yang L. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem 2020; 338:128122. [PMID: 33091999 DOI: 10.1016/j.foodchem.2020.128122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
a dual DNA tweezers nanomachine was developed for one-step simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples. The dual DNA tweezers are locked by the aptamers of mycotoxins, resulting the "turn off" of fluorescent signal. In the presence of AFB1 and OTA, the aptamers can bind with their corresponding targets, resulting the "open" of DNA tweezers and the "turn on" of the fluorescent signals. The limits of detections were 3.5 × 10-2 ppb for AFB1 and 0.1 ppb for OTA. Moreover, the applicability of the method was further demonstrated by conducting a limited survey on 5 samples collected from various sources. The recoveries of this method change from 90.0% to 110.0% for simultaneous detection of AFB1 or OTA and the RSDs vary from 4.1% to 9.2%. Detection uncertainties were within 5% (with a 95% confidence level).
Collapse
Affiliation(s)
- Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China; Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea
| | - Qiang Wang
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Yuejie Xie
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Ning Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
18
|
Xiong Z, Liu Q, Yun W, Hu Y, Wang X, Yang L. Dual-entropy-driven catalytic amplification reaction for ultra-sensitive and visible detection of Hg2+ in water based on thymine–Hg2+–thymine coordination chemistry. Analyst 2019; 144:5143-5149. [DOI: 10.1039/c9an00882a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An ultra-sensitive and visible Hg2+ detection strategy was established.
Collapse
Affiliation(s)
- Zhengwei Xiong
- School of Biological and Chemical Engineering
- Chongqing University of Education
- Chongqing
- China
| | - Qiulin Liu
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing
- China
| | - Yuan Hu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing
- China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing
- China
| | - Lizhu Yang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|