1
|
Li G, Cui Y, Yang X, Xin X, Yan H, Han D. Fabrication of molecularly imprinted carbon nanotubes integrating ionic liquids for efficient detection of perfluoroalkyl carboxylic acid in environmental water. Talanta 2024; 275:126017. [PMID: 38626499 DOI: 10.1016/j.talanta.2024.126017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024]
Abstract
It is extremely significant while challenging to accurately detect low-levels of perfluoroalkyl carboxylic acid compounds (PFCAs) in environmental water. Herein, adopting perfluorotetradecanoic acid as the dummy template, selective molecularly imprinted composites (CNTs@ILs@MIPs) grafted carbon nanotubes integrating hydrophilic ionic liquids were successfully prepared via surface imprinting and dummy-template imprinting techniques. The obtained CNTs@ILs@MIPs were applied as selective extraction adsorbent for specifically extract PFCAs in environmental water coupled with gas chromatography-mass spectrometry quantification. Detailed studies were conducted on the main preparation parameters and extraction conditions. The CNTs@ILs@MIPs displayed excellent adsorptivity, and the established method exhibited low LODs (0.60-1.64 ng L-1), wide linearity with R2 above 0.9994, and satisfactory adsorption recoveries (80.5-112.5%) for seven PFCAs. This proposed method provides a new applicable approach for the detection of targeted pollutants in environmental water by utilizing the high affinity and recognition ability of molecularly imprinted carbon nanotube functional materials modified with ionic liquids.
Collapse
Affiliation(s)
- Gang Li
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Xiaonan Yang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Xuelian Xin
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Huang Y, Zhang Y, Yu Y, Song X, Huang X. One-pot preparation of magnetic molecularly imprinted adsorbent with dual template molecules for simultaneously specific capture of sulfonamides and quinolones in water and milk samples. Food Chem 2024; 434:137412. [PMID: 37696153 DOI: 10.1016/j.foodchem.2023.137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Specific capture is a beneficial tactic in simultaneous monitoring of sulfonamides (SAs) and quinolones (QLs). For this purpose, a new magnetic molecularly imprinted adsorbent based on double-template molecules (DT-MIP@MNA) was facilely prepared by "one-pot" hydrothermal technique and utilized as the adsorbent of magnetic solid-phase extraction (MSPE). Molecular simulation technique was employed to quickly screen functional monomer. The recognition factors of prepared adsorbent towards templates sulfamethazine and nalidixic acid were 5.89 and 2.90, respectively, and the corresponding adsorption capacities were as high as 8.85 mg/g and 8.97 mg/g, respectively. Under the optimized parameters, the proposed DT-MIP@MNA/MSPE was combined with HPLC to simultaneously and selectively monitor trace SAs and QLs residuals in water and milk samples. The achieved limits of detection were 0.012-0.028 μg/L and 0.015-0.032 μg/kg for water and milk samples, respectively. The current supplied a sensitive, reliable and anti-interference method for simultaneously monitoring trace SAs and QLs in food.
Collapse
Affiliation(s)
- Youfang Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yueyue Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yilin Yu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaochong Song
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
4
|
Zhao L, Han S, Sun R, Yan C. UiO66-based molecularly imprinted polymers with water-compatible deep eutectic solvent as functional monomer for purification of lysozyme from egg white. Mikrochim Acta 2023; 191:56. [PMID: 38153508 DOI: 10.1007/s00604-023-06135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein-templated molecularly imprinted polymers have limitations such as poor mass transfer, slow recognition kinetics, and difficulties in isolation and purification due to their large molecular sizes, complex structures, and flexible conformations. To address these limitations and obtain lysozyme (Lyz)-imprinted polymers, a molecularly imprinted polymer (UiO66@DES-MIPs) was prepared for the first time by using Lyz as a template molecule, a metal-organic framework (UiO66-NH2) as a matrix, and a water-compatible deep eutectic solvent (DES) as a functional monomer. The introduction of UiO66-NH2 by the solvothermal method with a large specific surface area and favorable stability and resistance to environmental disturbances into the MIPs can reduce the "embedding" phenomenon and acquire a higher binding capacity and fast mass transfer. In addition, a water-soluble binary DES (1:2 molar ratio of choline chloride to 1,3 dimethylurea) prepared by a hydrothermal method as a functional monomer generates multiple forces with Lyz, increasing the hydrophilicity of UiO66@DES-MIPs and contributing to the formation and stabilization of the imprinted sites. Consequently, UiO66@DES-MIPs exhibited good selectivity, water compatibility, and fast adsorption equilibrium (the adsorption equilibrated at 243.87 ± 4.88 mg g-1 in 90 min). Besides, reusability experiments indicated that the UiO66@DES-MIPs could be recycled six times without obvious loss of adsorption capacity. The imprinting factor of UiO66@DES-MIPs is 3.67. The isolation and purification of Lyz from egg white confirmed the practicability of UiO66@DES-MIPs. The high adsorption capacity and specific recognition make this polymer a promising candidate for the isolation and purification of biological macromolecules.
Collapse
Affiliation(s)
- Le Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, China.
| | - Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Chen Yan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
5
|
Hou T, Huang Y, Wang X, Hu X, Guan P. Preparation of lysozyme-imprinted mesoporous Zr-based metal-organic frameworks with remarkable specific recognition. Talanta 2023; 265:124896. [PMID: 37442000 DOI: 10.1016/j.talanta.2023.124896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
The development of high-performance protein-imprinted materials remains challenging due to defects concerning high mass transfer resistance and non-specific binding, which are crucial for protein purification and enrichment. In this paper, lysozyme-imprinted mesoporous Zr-based MOF (mesoUiO-66-NH2@MIPs) with specific and selective recognition of lysozyme (Lyz) were prepared by surface imprinting technology. In particular, the excellent hydrophilicity mesoporous MOFs (mesoUiO-66-NH2) with a pore size of 10 nm was prepared as a carrier for Lyz immobilization by an auxiliary modulation strategy to regulate the microporous structure of UiO-66-NH2 with the propionic acid solution, enabling massive loading of the macromolecular protein Lyz. The mesoUiO-66-NH2@MIPs reached a maximum saturation adsorption of 206.54 mg g-1 on Lyz in 20 min at 25 °C with an imprinting factor of 2.57 and selection factors of 2.02, 2.34, and 2.45 for cytochrome c (Cyt c), bovine serum albumin (BSA) and bovine hemoglobin (BHb), respectively. More importantly, the mesoUiO-66-NH2@MIPs could specifically recognize Lyz from the mixed protein system. The adsorption capacity of Lyz could still reach 78.55% after 5 cycles with good cyclic regeneration performance. This provides a new research option for developing and applying novel porous MOF in biomolecule imprinting technology and the specific separation of biomolecules.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yue Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| |
Collapse
|
6
|
Zhang Y, Huang Y, Huang X. One-pot fabrication of magnetic adsorbent based on polymeric ionic liquid/aminated carbon nanotubes composite for efficient capture of synthetic auxins in complex samples prior to chromatographic analysis. J Sep Sci 2023; 46:e2300250. [PMID: 37357157 DOI: 10.1002/jssc.202300250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Efficient enrichment is a challenging and indispensable step in the quantification of polar synthetic auxins in complex samples. In the current study, a new magnetic adsorbent based on polymeric ionic liquid/aminated carbon nanotube composite was fabricated with a one-pot precipitation copolymerization strategy and employed as the extraction phase of magnetic solid phase extraction of synthetic auxins. Various characterization techniques were utilized to inspect the morphology, structure, magnetic property, and functional groups of the prepared adsorbent. Under the optimal conditions, the obtained adsorbent displayed satisfactory capture performance towards studied auxins through multiple interactions. Adsorption studies evidenced that the adsorption procedure of the developed method towards analytes was fit for the Freundlich adsorption model and pseudo-second-order kinetics. Combining with high-performance liquid chromatography, sensitive and reliable method for the identification and quantification of trace synthetic auxins in environmental water and fruit juice samples was developed. The obtained limits of detection for water and fruit juice samples located in the ranges of 0.0059-0.013 and 0.018-0.031 μg/L, respectively. Recoveries in actual samples with different fortified contents varied from 82.2% to 117%, with satisfactory reproducibility. The results will evidence that the introduced extraction technique is a useful alternative for the entrapment of trace synthetic auxins from complex samples.
Collapse
Affiliation(s)
- YueYue Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Youfang Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
7
|
Yue B, Wang X, Lian L, Wang Y, Gao W, Zhang H, Zhao J, Lou D. A fiber-packed needle-type extraction device with ionic liquid-based molecularly imprinted polymer as coating for extraction of chlorobenzenes in water samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Preparation and Adsorption Properties of Magnetic Molecularly Imprinted Polymers for Selective Recognition of 17β-Estradiol. SEPARATIONS 2022. [DOI: 10.3390/separations9110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, magnetic molecularly imprinted polymers (MMIPs) were fabricated on the surface of Fe3O4 by surface molecular imprinting technology, which can selectively adsorb 17β-estradiol (E2). The optimized experiments demonstrated that MMIPs possessed the best adsorption capacity when methanol was used as the solvent and MAA was used as the crosslinking agent, with a molar ratio of E2: MMA: EGDMA as 1:4:50. SEM, FTIR, and XRD were employed to investigate the morphologies of MMIPs and the results demonstrated that the MMIPs that can selectively adsorb E2 were successfully prepared on Fe3O4 particles. The adsorption experiments showed that 92.1% of E2 was adsorbed by the MMIPs, which is higher than the magnetic non-molecularly imprinted polymers (MNIPs). The Freundlich isotherm model was more suitable to describe the adsorption process of E2 by MMIPs. Meanwhile, MMIPs had a better recognition ability for E2 and its structural analogs such as estrone and estriol. The MMIPs still had good adsorption performance after methanol regeneration five times. The prepared MMIPs had the advantages of efficient adsorption ability and high reusability, so they can be applied for selective recognition and removal of E2.
Collapse
|
9
|
Hou T, Zhang N, Yan C, Ding M, Niu H, Guan P, Hu X. Curcumin-loaded protein imprinted mesoporous nanosphere for inhibiting amyloid aggregation. Int J Biol Macromol 2022; 221:334-345. [PMID: 36084870 DOI: 10.1016/j.ijbiomac.2022.08.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Some natural variants of human lysozyme are associated with systemic non-neurological amyloidosis that leads to amyloid protein fibril deposition in different tissues. Inhibition of amyloid fibrillation by nanomaterials is considered to be an effective approach to treating amyloidosis. Here, we prepared a targeted, highly loaded curcumin lysozyme-imprinted nanosphere (CUR-MIMS) that could effectively inhibit the aggregation of lysozyme with lysozyme adsorption capacity of 193.57 mg g-1 and the imprinting factor (IF) of 3.72. CUR-MIMS could bind to lysozyme through hydrophobic interactions and effectively reduce the hydrophobicity of the total solvent-exposed surface in lysozyme fibrillation, thus reducing the self-assembly process triggered by hydrophobic interactions. Thioflavin T (ThT) analysis demonstrated that CUR-MIMS inhibited the aggregation of amyloid fibrils in a dose-dependent manner (inhibition efficiency of 56.07 %). Circular dichroism (CD) spectrum further illustrated that CUR-MIMS could significantly inhibit the transition of lysozyme from α-helix structure to β-sheet. More importantly, biological experiments proved the good biocompatibility of CUR-MIMS, which indicated the potential of our system as a future therapeutic platform for amyloidosis.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Nan Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chaoren Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huizhe Niu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
10
|
Montoro-Leal P, Frías IAM, Vereda Alonso E, Errachid A, Jaffrezic-Renault N. A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. BIOSENSORS 2022; 12:bios12090727. [PMID: 36140112 PMCID: PMC9496344 DOI: 10.3390/bios12090727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/21/2022]
Abstract
Lysozyme (LYS) applications encompass anti-bacterial activity, analgesic, and anti-inflammatory effects. In this work, a porous framework that was based on the polymerization of pyrrole (PPy) in the presence of multi-functional graphene oxide/iron oxide composite (GO@Fe3O4) has been developed. Oxygen-containing and amine groups that were present in the nanocomposite were availed to assembly LYS as the molecularly imprinted polymer (MIP) template. The synthesized material (MIPPy/GO@Fe3O4) was electrodeposited on top of a gold microelectrode array. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to confirm the adequate preparation of GO@Fe3O4, and the characterization of the resulting molecularly imprinted electrochemical sensor (MIECS) was carried out by electrochemical impedance spectrometry (EIS), FT-IR analysis, and scanning electron microscopy (SEM). The impedimetric responses were analyzed mathematically by fitting to a Q(Q(RW)) equivalent circuit and quantitative determination of LYS was obtained in a linear range from 1 pg/mL to 0.1 µg/mL, presenting good precision (RSD ≈ 10%, n = 5) and low limit of detection (LOD = 0.009 pg/mL). The fabrication of this device is relatively simple, scalable, rapid, and economical, and the sensor can be used up to nine times without disintegration. The MIECS was successfully applied to the determination of LYS in fresh chicken egg white sample and in a commercial drug, resulting in a straightforward platform for the routine monitoring of LYS.
Collapse
Affiliation(s)
- Pablo Montoro-Leal
- Department of Analytical Chemistry, Faculty of Sciences, University of Málaga, 29016 Málaga, Spain
| | - Isaac A. M. Frías
- Institut des Sciences Analytiques, University of Lyon, 69100 Villeurbanne, France
| | - Elisa Vereda Alonso
- Department of Analytical Chemistry, Faculty of Sciences, University of Málaga, 29016 Málaga, Spain
- Correspondence:
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, University of Lyon, 69100 Villeurbanne, France
| | | |
Collapse
|
11
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
12
|
Construction of ionic liquid-crosslinked magnetic surface-imprinted polymers for selective recognition of lysozyme. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen Y, Tang Y, Liu Y, Zhao F, Zeng B. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128907. [PMID: 35452985 DOI: 10.1016/j.jhazmat.2022.128907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Oxytetracycline (OTC) residue in food and environment has potential threats to ecosystem and human health, thus its sensitive monitoring and effective elimination are very important. In this work, a new molecularly imprinted polymer (MIP) composite was prepared through atom transfer radical polymerization by using OTC as template, gold nanoparticles modified carbon nanospheres (Au-CNS) as supporter, ionic liquids (IL) as functional monomer and cross-linking agent. The obtained MIP-IL@Au-CNS composite was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It displayed high imprinting factor (5.50) and adsorption capacity (56.7 mg g-1), and could achieved the adsorption equilibrium in short time (about 15 min). Results also illustrated that the adsorption process basically conformed to the quasi-second-order kinetic model and Freundlich model, and MIP-IL@Au-CNS could be recycled at least 5 times. Furthermore, a sensitive OTC electrochemical sensor was developed by combining MIP-IL@Au-CNS with IL-modified carbon nanocomposites (IL@N-rGO-MWCNT). The resulting sensor demonstrated a linear response to OTC in the wide range of 0.02-20 μM, and the detection limit was down to 5 nM. It also had the advantages of high selectivity, fast elution/regeneration and simple construction procedure. The sensor had been applied to the detection of real samples, and acceptable recovery (96.4%-106%) and RSD (3.2%-6.2%) were obtained. This work expands the application of IL-based MIP in pollutant monitoring and enriching.
Collapse
Affiliation(s)
- Yanran Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
14
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
15
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
16
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Ji Y, Zhao J, Zhao L. Fabrication and characterization of magnetic molecularly imprinted polymer based on deep eutectic solvent for specific recognition and quantification of vanillin in infant complementary food. Food Chem 2021; 374:131720. [PMID: 34896948 DOI: 10.1016/j.foodchem.2021.131720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/08/2023]
Abstract
A magnetic molecularly imprinted polymer based on deep eutectic solvent was synthesized for specific identification and quantification of vanillin. Fe3O4@SiO2-CC and deep eutectic solvent were applied as the carrier of magnetic material and functional monomer, respectively. According to composition and morphology characterizations and adsorption kinetics, the imprinted polymer had excellent advantages on adsorption capacity and identification specificity for vanillin compared with non-imprinted polymer, while its reusability still remained stable. According to the high-performance liquid chromatography, the detection method based on imprinted polymer produced satisfactory analytical results. The limit of quantification was 0.2 μg·mL-1. The mean spiked recoveries for vanillin ranged from 91.2% to 100.2% with intra- and inter-day precision were both less than 7.2%. Compared to traditional extraction methods, this method presented best adsorption and extraction performances. In summary, the method could be further applied to the specific separation and quantification of vanillin in infant complementary food.
Collapse
Affiliation(s)
- Yinghe Ji
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
18
|
Guo B, Bi S, Zhang B, Tong Y, Chen X, Tian M. Synthesis of nanoparticles with a combination of metal chelation and molecular imprinting for efficient and selective extraction of glycoprotein. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Wang Z, Zhang Z, Yan R, Fu X, Wang G, Wang Y, Li Z, Zhang X, Hou J. Facile fabrication of snowman-like magnetic molecularly imprinted polymer microspheres for bisphenol A via one-step Pickering emulsion polymerization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Ejeromedoghene O, Oderinde O, Adewuyi S. Advances in polymeric ionic liquids-based smart polymeric materials: emerging fabrication strategies. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Polymeric ionic liquids (PILs) are a class of materials characterized by fascinating physicochemical properties as well as tunable functionality that are quite interesting for the fabrication of materials. They have attracted tremendous attention because they are easy to prepare and can be manipulated into a polymeric matrix via covalent and noncovalent linkage/interactions to form new intelligent/smart polymeric materials with improved properties and multiple functionalities for application in many fields. These new materials are specially designed to change their performance properties when subjected to external environmental stimuli including pH, temperature, light, chemicals and electromagnetic fields. Therefore, this chapter presents the progress in the preparation of PILs via different polymerization reactions and highlights the emerging advances in the fabrication of PILs-based smart polymeric materials.
Collapse
Affiliation(s)
- Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
- Department of Chemistry , College of Physical Sciences, Federal University of Agriculture , PMB 2240 , Abeokuta , Ogun State , Nigeria
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering, Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
| | - Sheriff Adewuyi
- Department of Chemistry , College of Physical Sciences, Federal University of Agriculture , PMB 2240 , Abeokuta , Ogun State , Nigeria
| |
Collapse
|
21
|
Fang X, Wang Z, Sun N, Deng C. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker. Talanta 2021; 226:122143. [DOI: 10.1016/j.talanta.2021.122143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
22
|
Kang X, Deng L, Quan T, Gao M, Zhang K, Xia Z, Gao D. Selective extraction of quinolizidine alkaloids from Sophora flavescens Aiton root using tailor-made deep eutectic solvents and magnetic molecularly imprinted polymers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Wang Y, Wei Y, Gao P, Sun S, Du Q, Wang Z, Jiang Y. Preparation of Fe 3O 4@PMAA@Ni Microspheres towards the Efficient and Selective Enrichment of Histidine-Rich Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11166-11176. [PMID: 33635047 DOI: 10.1021/acsami.0c19734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic material is considered to as a major concern material for the enrichment of histidine-rich proteins (His-proteins) via metal-ion affinity. In this work, magnetic polymer microspheres with core-shell structure (Fe3O4@PMAA@Ni) were successfully prepared via reflux-precipitation polymerization followed by in situ reduction and growth of Ni2+. The obtained Ni nanofoams with flower-like structure and uniform pore size (3.34 nm) provided numerous binding sites for His-proteins. The adsorption performance of Fe3O4@PMAA@Ni microspheres for His-proteins was estimated via selectively separating bovine hemoglobin (BHb) and bovine serum albumin (BSA) from a matrix composed of BHb, BSA, and lysozyme (LYZ). The results indicated that Fe3O4@PMAA@Ni microspheres could efficiently and selectively separate His-proteins from the matrix, with a maximum adsorption capacity of ∼2660 mg/g for BHb. Moreover, Fe3O4@PMAA@Ni microspheres exhibited good stability and recyclability for BHb separation over seven cycles. Therefore, this work reported a novel and facile strategy to prepare core-shell Fe3O4@PMAA@Ni microspheres, which was promising for practical applications of His-protein separation and purification in proteomics.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingying Wei
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Pengcheng Gao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Si Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
24
|
Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Liu H, Jin P, Zhu F, Nie L, Qiu H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
A deep eutectic solvent modified magnetic β-cyclodextrin particle for solid-phase extraction of trypsin. Anal Chim Acta 2020; 1137:125-135. [DOI: 10.1016/j.aca.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
|
27
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
28
|
Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Anal Bioanal Chem 2020; 412:7227-7236. [PMID: 32803301 DOI: 10.1007/s00216-020-02855-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 01/23/2023]
Abstract
A molecularly imprinted polymer and metal organic framework were combined to prepare protein imprinted material. MOF-74(Ni) was used as a matrix to prepare surface-imprinted material with lysozyme as a template and polydopamine as an imprinting polymer. MOF-74(Ni) not only provides a large surface area (150.0 m2/g) to modify the polymer layer with more recognition sites (Wt (Ni) = 42.24%), but also facilitates the immobilization of lysozyme by using the chelation between Ni2+ of the MOF-74(Ni) and protein. The thin polydopamine layer (10 nm) of the molecularly imprinted material (named MOF@PDA-MIP) enables surface imprinting. Benefiting from the thin polymer layer, MOF@PDA-MIP reached adsorption equilibrium within 10 min. The maximum adsorption capacity reaches 313.5 mg/g with the highest imprinting factor (IF) of 7.8. The specific recognition sites can distinguish target lysozyme from other proteins such as egg albumin (OVA), bovine serum albumin (BSA) and ribonuclease A (RNase A). The material was successfully applied to separation of lysozyme from egg white. Graphical abstract.
Collapse
|
29
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Li P, Lu Y, Cao J, Li M, Yang C, Yan H. Imidazolium ionic-liquid-modified phenolic resin for solid-phase extraction of thidiazuron and forchlorfenuron from cucumbers. J Chromatogr A 2020; 1623:461192. [DOI: 10.1016/j.chroma.2020.461192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
|
31
|
Chen Y, Xie Z, Zhang L, Hu X. Effective preparation of magnetic molecularly imprinted polymer nanoparticle for the rapid and selective extraction of cyfluthrin from honeysuckle. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:954-968. [PMID: 32069426 DOI: 10.1080/09205063.2020.1731788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyfluthrin is a widely used pesticide. In this study, a sensitive and efficient magnetic molecularly imprinted polymer (MMIP) was prepared by surface molecular imprinting, which used functionalized Fe3O4 particles as magnetic cores. Cyfluthrin was extracted and enriched using magnetic molecularly polymer for analyzing pesticide residue of Chinese herbal medicines. The crystal type, microstructure, particle size, saturation magnetization, and characteristic functional groups of the synthesized MMIPs were analyzed by analysis equipment. The results of isothermal adsorption and kinetic adsorption indicated that MMIPs reached adsorption equilibrium at 30 min, with a maximum capacity of 4.9 mg g-1, which had good adsorption performance, while selective adsorption experiments showed that MMIPs had higher affinity for cyfluthrin. Under the optimized conditions, the limit of detection (LOD) and the limit of quantification (LOQ) were 32.987 ng ml-1 and 109.955 ng ml-1, respectively. And linear range (30-3000ng ml-1) of cyfluthrin with correlation coefficient R2=0.9979, and MMIPs were used in honeysuckle, the recoveries were 91.5%∼97.2%, and RSD was 5.35%∼8.32% (n = 3). It is indicated that the magnetic molecularly imprinted polymer can be used as an effective material for the specific separation of cyfluthrin from honeysuckle.
Collapse
Affiliation(s)
- Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Zenghui Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Lanyun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| |
Collapse
|
32
|
Xing Y, Han J, Wang L, Li C, Wu J, Mao Y, Ni L, Wang Y. The fabrication of dendrimeric phenylboronic acid-functionalized magnetic graphene oxide nanoparticles with excellent adsorption performance for the separation and purification of horseradish peroxidase. NEW J CHEM 2020. [DOI: 10.1039/c9nj06461c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A dendrimeric phenylboronic acid-affinitive magnetic graphene oxide nanoparticle was synthesized and used to separate and purify HRP.
Collapse
Affiliation(s)
- Youyuan Xing
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Juan Han
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology
- Henan University of Urban Construction
- Pingdingshan 467036
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|