1
|
Huang H, Pan S, Yuan B, Wang N, Shao L, Chen ZE, Zhang H, Huang WZ. Recent Research Progress of Benzothiazole Derivative Based Fluorescent Probes for Reactive Oxygen (H 2O 2 HClO) and Sulfide (H 2S) Recognition. J Fluoresc 2024:10.1007/s10895-024-04016-w. [PMID: 39668328 DOI: 10.1007/s10895-024-04016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Fluorescent sensing technology has advantages such as high sensitivity, good selectivity, and easy operation. It is widely used in the environment and biomedical field and receives increasing attention from people. It is easy to modify the structure of the benzothiazole fluorophores, and adding the push-pull electronic system can regulate the optical properties of benzodiapylene molecules. As probes, its derivatives are widely used in biomedicine, catalysis, and materials. Therefore, this paper mainly describes the development in the detection of reactivated oxygen (H2O2 HClO) and sulfides (H2S) in the last six years (2019-2024) based on benzothiazole fluorescent probe, which will be classified according to the identification mechanism of probes to be summarized, and to explain their properties and applications in biological and food, providing some help for designing more sensitive and efficient fluorescent probe molecules.
Collapse
Affiliation(s)
- Hong Huang
- Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shaobang Pan
- Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Bin Yuan
- Zunyi Normal College, Zunyi, 563006, China
| | - Nvzhi Wang
- Zunyi Normal College, Zunyi, 563006, China
| | | | | | - Hai Zhang
- Chongqing University of Science and Technology, Chongqing, 401331, China.
- Zunyi Normal College, Zunyi, 563006, China.
| | - Wen-Zhang Huang
- Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
2
|
Hejna M, Kapuścińska D, Aksmann A. A sensitive and reliable method for the quantitative determination of hydrogen peroxide produced by microalgae cells. JOURNAL OF PHYCOLOGY 2024; 60:1356-1370. [PMID: 39585191 DOI: 10.1111/jpy.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
One of the reactive forms of oxygen is hydrogen peroxide (H2O2), which has been investigated as a key component of growth processes and stress responses. Different methods for the determination of H2O2 production by animal and bacterial cells exist; however, its detection in algal cell cultures is more complicated due to the presence of photosynthetic pigments in the cells and the complex structure of cell walls. Considering these issues, a reliable, quick, and simple method for H2O2 detection is needed in phycological research. The aim of this methodological study was to optimize an Amplex UltraRed method for the fluorometric detection of H2O2 produced by microalgae cells, using a wild-type strain of Chlamydomonas reinhardtii as a model. The results showed that (i) potassium phosphate is the most suitable reaction buffer for this method, (ii) a 560 nm wavelength variant is the most appropriate as the excitation wavelength for fluorescence spectra measurement, (iii) a 50:50 ratio for the reaction mixture to sample was the most suitable, (iv) the fluorescence signal was significantly influenced by the density of the microalgae biomass, and (v) sample fortification with H2O2 allowed for an increase of the method's reliability and repeatability. The proposed protocol of the Amplex UltraRed method for the fluorometric detection of H2O2 produced by microalgae cells can yield a sensitive and accurate determination of the content of the test compound, minimizing measurement errors, eliminating chlorophyll autofluorescence problem, and compensating for the matrix effect. This method can be applied to the study of other microalgae species.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Dominika Kapuścińska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
4
|
Liu Q, Huang Y, Wang S, Yang S, Jiang Z, Huang S. Monodispersed Au nanoparticles decorated MoS 2 nanosheets with enhanced peroxidase-like activity based electrochemical H 2O 2 sensing for anticancer drug evaluations. Anal Chim Acta 2024; 1320:342996. [PMID: 39142770 DOI: 10.1016/j.aca.2024.342996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The unique size, physical and chemical properties, and ultra-high stability of nanozymes have attracted extensive attentions in sensing, but improvement of catalytic activity of the nanozymes is still an urgent issue. Given the ultra-high simulated enzyme activity of metal nanoparticles and the advantage of multi-enzyme catalysis, an Au-decorated MoS2 nanosheets (MoS2/Au NS) integrating the double peroxidase-like (POD) activity is developed. RESULTS By optimizing and adjusting the density of AuNPs, as well as its morphology and other parameters, a monodisperse and high-density distribution of AuNPs on MoS2 nanosheets was obtained, which can greatly improve the POD-like activity of MoS2/Au NS. Nafion solution was applied to assist the modification of MoS2/Au NS on the electrode surface so as to improved its stability. An electrochemical H2O2 detection platform was constructed by modifying MoS2/Au NS nanozyme on the SPCE using the conductive Nafion solution. And the negatively charged sulfonic acid group can eliminate negatively charged electroactive substances to improve the specificity. Then ascorbic acid was used to stimulate tumor cells to produce H2O2 as therapeutic model, an ultrasensitive chronocoulometry detection for H2O2 in cell lysate was established. The logarithmically of ΔQ and the logarithmically of H2O2 concentration showed a good linear relationship between 1 μM and 500 mM, with a LOD value of 0.3 μM. SIGNIFICANCE The developed H2O2 sensor has excellent stability, reproducibility (RSD = 2.3 %, n = 6) and selectivity, realized the quantitative detection of H2O2 in cell lysate. Compared with commercial fluorescence detection kits for H2O2 in cell lysate, it is worth mentioning that the electrochemical H2O2 sensor developed in this study is simpler and faster, with higher sensitivity and lower cost. This provides a potential substitute for disease diagnosis and treatment evaluation based on accurate detection of H2O2.
Collapse
Affiliation(s)
- Qiwen Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yang Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo Yang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Shengfeng Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
6
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
7
|
Wang YR, Qiao FQ, Tan YW, Hu JL, Zhang AH, Liang T, Liu XY, Song HR, Kang YF. A fluorescence probe with targeted mitochondria for detecting hydrogen peroxide in vitro and in diabetic mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3831-3838. [PMID: 38828794 DOI: 10.1039/d4ay00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We designed and prepared probe W-1 for the detection of H2O2. W-1 showed excellent selectivity for H2O2 and was accompanied by colorimetric signal changes. The excellent linear relationship between fluorescence intensity and H2O2 concentration (0-100 μM) provided favorable conditions for its quantitative detection. In addition, the combination of portable test strips with a smartphone platform provided great convenience for on-site visual detection of H2O2. Moreover, W-1 possessed targeting mitochondria property and could be applied to image the exogenous and endogenous H2O2 in cells to distinguish normal cells and cancer cells. Lastly, W-1 was used for monitoring the H2O2 fluctuation of the diabetic process in mice, and the results showed an increase in H2O2 levels in diabetes. Therefore, the probe provided a tool for understanding the pathological and physiological mechanisms of diabetes by imaging H2O2.
Collapse
Affiliation(s)
- Yi-Ru Wang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Fu-Qiang Qiao
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Yu-Wei Tan
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Jia-Ling Hu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Ting Liang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Xu-Ying Liu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Hong-Ru Song
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| |
Collapse
|
8
|
Hua Y, Si X, Li D, Li Z, Xu T. Hydrogen peroxide fluorescent probe-monitored butyric acid inhibition of the ferroptosis process. LUMINESCENCE 2024; 39:e4715. [PMID: 38506397 DOI: 10.1002/bio.4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024]
Abstract
Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2 O2 ) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP, capable of dynamically tracking intracellular H2 O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 μM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2 O2 levels accurately. The HOP probe confirmed H2 O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2 O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.
Collapse
Affiliation(s)
- Yuanqing Hua
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianghuan Si
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongna Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T, Arshi N. Synergism of Holmium Orthovanadate/Phosphorus-Doped Carbon Nitride Nanocomposite: Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Inorg Chem 2024; 63:3019-3027. [PMID: 38286799 PMCID: PMC10865356 DOI: 10.1021/acs.inorgchem.3c03804] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Developing efficient and robust electrode materials for electrochemical sensors is critical for real-time analysis. In this paper, a hierarchical holmium vanadate/phosphorus-doped graphitic carbon nitride (HoVO4/P-CN) nanocomposite is synthesized and used as an electrode material for electrochemical detection of hydrogen peroxide (H2O2). The HoVO4/P-CN nanocomposite exhibits superior electrocatalytic activity at a peak potential of -0.412 V toward H2O2 reduction in alkaline electrolytes while compared with other reported electrocatalysts. The HoVO4/P-CN electrochemical platform operated under the optimized conditions shows excellent analytical performance for H2O2 detection with a linear concentration range of 0.009-77.4 μM, a high sensitivity of 0.72 μA μM-1 cm-2, and a low detection limit of 3.0 nΜ. Furthermore, the HoVO4/P-CN-modified electrode exhibits high selectivity, remarkable stability, good repeatability, and satisfactory reproducibility in detecting H2O2. Its superior performance can be attributed to a large specific surface area, high conductivity, more active surface sites, unique structure, and synergistic action of HoVO4 and P-CN to benefit enhanced electrochemical activity. The proposed HoVO4/P-CN electrochemical platform is effectively applied to ascertain the quantity of H2O2 in food and biological samples. This work outlines a promising and effectual strategy for the sensitive electrochemical detection of H2O2 in real-world samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department
of Applied Sciences & Humanities, Faculty of Engineering &
Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Thamraa Alshahrani
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nishat Arshi
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Ruan S, Liu R, Chen X, Huang Q, Xiao C, You R, Huang L, Liu Y, Chen J, Xiao X, Lin Q, Lu Y. Determination of H 2O 2 and its antioxidant activity by BCM@Au NPs ratiometric SERS sensor. Talanta 2024; 268:125323. [PMID: 37890373 DOI: 10.1016/j.talanta.2023.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
As a reactive oxygen species (ROS), excessive production of H2O2 contributes to the development of several diseases such as, inflammation, cancer, and respiratory diseases. Supplementation with endogenous or exogenous antioxidants can scavenge ROS and reduce the oxidation of cellular molecules, thus alleviating the generation of diseases. Therefore, the determination of H2O2 content and its antioxidant activity is of great importance in disease diagnosis and treatment. In this paper, a ratiometric SERS sensor with a flexible cellulose membrane was designed for quantitative detection of H2O2 and assessment of antioxidant activity. First, gold seeds were reduced on bacterial cellulose membrane (BCM) and Au NPs were smoothly deposited on the bacterial cellulose membrane (BCM) using halides to reduce the reduction potential in the growth solution to form a flexible BCM@Au NPs SERS substrate. Afterwards, the oxidation of H2O2 was used to convert 3-mercaptophenylboronic acid (3-MPBA) to the corresponding phenol form 3-hydroxyphenylethanol (3-HTP). The change of substance resulted in a good linear relationship between the intensity ratio corresponding to the two Raman shifts of 881 cm-1 and 995 cm-1 and the H2O2 concentration with a detection limit of 0.0186 μM. This opens up a new method for the detection of H2O2 with high sensitivity and accuracy. In addition, this SERS platform was successfully used for the determination of antioxidant activity. It is promising to be applied to disease diagnosis and efficacy evaluation.
Collapse
Affiliation(s)
- Shuyan Ruan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ru Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xi Chen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qian Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Chongxin Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Luqiang Huang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiufeng Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qingqiang Lin
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
11
|
Li J, Song L, Hu W, Zuo Q, Li R, Dai M, Zhou Y, Qing Z. A Reversible Fluorescent Probe for In Situ Monitoring Redox Imbalance during Mitophagy. Anal Chem 2023; 95:13668-13673. [PMID: 37644392 DOI: 10.1021/acs.analchem.3c02717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitophagy is the lysosome-dependent degradation of damaged and dysfunctional mitochondria, which is closely associated with H2O2-related redox imbalance and pathological processes. However, development of fast-responding and highly sensitive reversible fluorescent probes for monitoring of mitochondrial H2O2 dynamics is still lacking. Herein, we report a reversible fluorescent probe (M-HP) that enables real-time imaging of H2O2-related redox imbalance. In vitro studies demonstrated that M-HP had a rapid response and high sensitivity to the H2O2/GSH redox cycle, with a detection limit of 17 nM for H2O2. M-HP was applied to imaging of H2O2 fluctuation in living cells with excellent reversibility and mitochondrial targeting. M-HP reveals an increase in mitochondrial H2O2 under lipopolysaccharide stimulation and a decrease in H2O2 following the combined treatment with rapamycin. This suggests that the level of oxidative stress is significantly suppressed after the enhancement of mitophagy. The rationally designed M-HP offers a powerful tool for understanding redox imbalance during mitophagy.
Collapse
Affiliation(s)
- Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lifei Song
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Weiguo Hu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Qin Zuo
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Roumei Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Min Dai
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| |
Collapse
|
12
|
Xue XL, Zhang H, Chen GH, Yu GH, Hu HR, Niu SY, Wang KP, Hu ZQ. Coumarin-cyanine hybrid: A ratiometric fluorescent probe for accurate detection of peroxynitrite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122443. [PMID: 36753868 DOI: 10.1016/j.saa.2023.122443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
There is an urgent need to develop highly sensitive and selective fluorescence probes for ONOO- in mitochondria. Herein, we reported a ratiometric fluorescent probe COUS with coumarin-cyanine hybrid as fluorophore and C = C bonds as reaction sites of ONOO-. The probe COUS was sensitive and selective to ONOO-, and had a large fluorescence emission shift (239 nm) as well as a low detection limit (41.88 nM). Moreover, COUS showed the mitochondrial targeting ability, and the targeting moiety could dissociate from the probe when reacting with ONOO-, which enabled COUS to accurately detect ONOO- in mitochondria.
Collapse
Affiliation(s)
- Xiao-Lei Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gui-Hua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guan-Hua Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shu-Yan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
13
|
Development of Highly Efficient Estrogen Receptor β-Targeted Near-Infrared Fluorescence Probes Triggered by Endogenous Hydrogen Peroxide for Diagnostic Imaging of Prostate Cancer. Molecules 2023; 28:molecules28052309. [PMID: 36903555 PMCID: PMC10005547 DOI: 10.3390/molecules28052309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Hydrogen peroxide is one of the most important reactive oxygen species, which plays a vital role in many physiological and pathological processes. A dramatic increase in H2O2 levels is a prominent feature of cancer. Therefore, rapid and sensitive detection of H2O2 in vivo is quite conducive to an early cancer diagnosis. On the other hand, the therapeutic potential of estrogen receptor beta (ERβ) has been implicated in many diseases including prostate cancer, and this target has attracted intensive attention recently. In this work, we report the development of the first H2O2-triggered ERβ-targeted near-infrared fluorescence (NIR) probe and its application in imaging of prostate cancer both in vitro and in vivo. The probe showed good ERβ selective binding affinity, excellent H2O2 responsiveness and near infrared imaging potential. Moreover, in vivo and ex vivo imaging studies indicated that the probe could selectively bind to DU-145 prostate cancer cells and rapidly visualizes H2O2 in DU-145 xenograft tumors. Mechanistic studies such as high-resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations indicated that the borate ester group is vital for the H2O2 response turn-on fluorescence of the probe. Therefore, this probe might be a promising imaging tool for monitoring the H2O2 levels and early diagnosis studies in prostate cancer research.
Collapse
|
14
|
Xu H, Yu Y, Chen L, Feng Y, Xuan H, He H. A theoretical study of the ESIPT mechanism for the 2-butyl-4-hydroxyisoindoline-1, 3-dione probe. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Mu Z, Guo J, Li M, Wu S, Zhang X, Wang Y. A sensitive fluorescence detection strategy for H 2O 2 and glucose by using aminated Fe-Ni bimetallic MOF as fluorescent nanozyme. Mikrochim Acta 2023; 190:81. [PMID: 36746829 DOI: 10.1007/s00604-023-05662-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
An aminated Fe-Ni bimetallic metal-organic framework (Fe3Ni-MOF-NH2) with both peroxidase-like activity and fluorescence properties was developed. Fe3Ni-MOF-NH2 possessed the enhanced peroxidase-like activity through the enhanced electron transfer process and hydroxyl radical (·OH) generation. It was found that the amino group endowed the material with fluorescent property and the metal site Ni in Fe3Ni-MOF-NH2 could also enhance the fluorescence emission intensity (Ex = 345 nm, Em = 452 nm). Based on the dual excellent performance of Fe3Ni-MOF-NH2, a novel sensitive fluorescence detection strategy for H2O2 and glucose was designed and achieved. First, Fe3Ni-MOF-NH2 converted H2O2 to ·OH by exerting peroxidase-like activity, and ·OH converts catechol to o-benzoquinone. Then, the amino group in Fe3Ni-MOF-NH2 connected to o-benzoquinone, which resulted in its fluorescence quenching. The detection limit of H2O2 was as low as 5 nM. Combined with glucose oxidase which can oxidize glucose and produce H2O2 the glucose could be indirectly determined with a detection limit of 40 nM. The method was applied to the detection of low-level glucose in human urine samples with good recoveries and reproducibilities.
Collapse
Affiliation(s)
- Zhao Mu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jingjing Guo
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Mengyuan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shu Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
16
|
Huang P, Chang Q, Jiang G, Wang X, Zhu H, Liu Q. Rapidly and ultra-sensitive colorimetric detection of H 2O 2 and glucose based on ferrous-metal organic framework with enhanced peroxidase-mimicking activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121943. [PMID: 36209713 DOI: 10.1016/j.saa.2022.121943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this article, a novel metal-organic framework, namely MIL-101(FeII), was firstly synthesized via a facile method. In the presence of H2O2, MIL-101(FeII) possesses excellent peroxidase-like activity toward the classical chromogenic substrate, N,N-Diethyl-p-phenylenediamine sulfate salt (DPD). The substitution of Fe2+ enhances the construction of Fe(II)-oxo nodes and accelerates electrons transfer between DPD and H2O2, thereby improving the peroxidase-mimicking catalytic activity of MIL-101(FeII) nanoenzyme. Additionally, DPD molecules could be adsorbed readily onto the surface of the nanoparticles due to the π-π interaction. The study of Michaelis constant indicates that the MIL-101(FeII) exhibits a higher affinity towards DPD (0.16 mM) in contrast to horseradish peroxidase (0.78 mM). In view of the impressive catalytic performance of MIL-101(FeII), two reliable monitoring platforms for the rapid detection of H2O2 and glucose were established with extremely low detection limits of 18.04 nM and 0.87 μM in the ranges of 40-5000 nM and 1.2-300 μM, respectively. The study of the catalytic mechanism indicates that DPD oxidation is attributed to the hydroxyl radical (·OH) produced from the decomposition of H2O2 catalyzed by MIL-101(FeII). Furthermore, the developed sensor indicates high selectivity and stability and can be effectively appropriate for the detection of H2O2 and glucose in real samples. This work not only provides a novel nanozyme with superior catalytic performance for biological analysis, but also broadens the application field of MIL-101(FeII) material.
Collapse
Affiliation(s)
- Peipei Huang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qing Chang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China.
| | - Guodong Jiang
- College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430074, Hubei, China
| | - Xu Wang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Haipeng Zhu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qianqian Liu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| |
Collapse
|
17
|
Wang H, Zhang L, Jin X, Tian P, Ding X, Chang J. A water-soluble fluorescent probe for monitoring mitochondrial GSH fluctuations during oxidative stress. RSC Adv 2022; 12:33922-33927. [PMID: 36505695 PMCID: PMC9703030 DOI: 10.1039/d2ra04732b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, we constructed a styrylpyridine derivative-based fluorescent probe MITO-PQDNs to monitor mitochondrial glutathione (GSH). The probe MITO-PQDNs could react rapidly (20 min) with GSH in PBS buffer and exhibited a strong fluorescence signal (586 nm) as well as a significant Stokes shift (200 nm). Moreover, MITO-PQDNs could quantitatively detect GSH with high sensitivity (LOD = 253 nM). Meanwhile, MITO-PQDNs possessed favorable biocompatibility and could detect both endogenous and exogenous GSH in MCF-7 cells. Above all, MITO-PQDNs enabled the detection of fluctuations in mitochondrial GSH concentrations during oxidative stress.
Collapse
Affiliation(s)
- Huayu Wang
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang 453003 China
| | - Luan Zhang
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Xia Jin
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Peijiao Tian
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Xiaojun Ding
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| | - Jing Chang
- Jiangsu Mai Jian Biotechnology Development Company Wuxi 214135 China
| |
Collapse
|
18
|
Zhu D, He P, Kong H, Yang G, Luan X, Wei G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J Mater Chem B 2022; 10:9216-9225. [PMID: 36314985 DOI: 10.1039/d2tb02132c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The detection of hydrogen peroxide (H2O2) is of great significance in environmental monitoring, enzymatic reactions, and disease diagnosis. Here we present the peptide-mediated biomimetic synthesis of ultrafine platinum nanowires (PtNWs) on graphene oxide (GO) nanosheets for the formation of functional hybrids, which show high potential for the fabrication of colorimetric and electrochemical sensors for the detection of H2O2 with high performance. A multifunctional peptide with the sequence KIIIIKYWYAF was designed to create peptide nanofibers (PNFs) via a controllable self-assembly process, which serves as a bridge between GO nanosheets and PtNWs to form PtNWs-PNFs/GO hybrids. On this basis, a dual-mode sensor platform for both colorimetric and electrochemical sensing of H2O2 was fabricated successfully. The obtained results indicate that the synthesized PtNWs-PNFs/GO hybrids could catalyze the decomposition of H2O2 to generate ˙OH radicals with a significant current response, and the ˙OH radicals are capable of overoxidizing 3,3',5,5',-tetramethylbenzidine (TMB), producing a blue-colored species with a distinct color change for colorimetric sensing. In addition, due to its high catalytic activity, the fabricated PtNWs-PNFs/GO hybrid-based electrochemical sensor exhibits a wider linear detection range of 0.05 μM-15 mM and a low detection limit of 0.0206 μM, which can be applied to detect H2O2 with high selectivity and sensitivity. Our study provides a green and environmentally friendly synthetic strategy for the preparation of biomimetic materials from PtNWs, and the fabricated colorimetric/electrochemical dual-mode H2O2 sensor platform will have a great impact in bioanalysis, environmental monitoring, and biomedicine.
Collapse
Affiliation(s)
- Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
| |
Collapse
|
19
|
Yang YZ, Qiu WX, Xu ZY, Sun Z, Qing M, Li NB, Luo HQ. Rational design of a fluorescent probe for specific sensing of hydrogen peroxide/glucose and intracellular imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121254. [PMID: 35452901 DOI: 10.1016/j.saa.2022.121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A new type of dye with advantages of high selectivity and sensitivity is formed by using the strategy of hybridization between the luminescent unit and recognition unit. Based on this strategy, we exploit a novel dye bonding the benzopyrylium salt as a luminescent unit and phenylboronate group as a response site, which is served as a fluorescent probe 1 for specific recognition of hydrogen peroxide in biological application. Probe 1 employs a unique recognition switch, phenylboronate unit, to"turn-on"a highly specific and rapid fluorescence response toward hydrogen peroxide combined with the 1,6-rearrangement elimination reaction strategy. Meanwhile, probe 1 has the ability to glucose assay by taking advantage of glucose oxidase/glucose enzymatic reaction. What's more, the probe 1 is capable of tracking endogenous hydrogen peroxide in living cells and intracellular imaging. Therefore, the newly developed bioprobe 1 is expected to be used to monitor hydrogen peroxide and glucose levels in complex organisms.
Collapse
Affiliation(s)
- Yu Zhu Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Wan Xiang Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Min Qing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Chen S, Fan W, Sun Z, Zheng E, Wang L, Wu Y, Hou S, Ma X. Acetyl group assisted rapid intramolecular recognition of hydrogen peroxide: A novel promising approach for efficient hydrogen peroxide probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121162. [PMID: 35397454 DOI: 10.1016/j.saa.2022.121162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As a vital biomolecule, hydrogen peroxide (H2O2) is involved in many physiological and pathological processes. Therefore, it is important to detect H2O2 in vivo conveniently and efficiently. In this paper, we report a new method of nucleophilic addition of H2O2 to the acetyl group to promote the rapid intramolecular reaction, which can be used to develop an efficient H2O2 probe. Based on this unique auxiliary recognition part, a fluorescent probe for H2O2 detection was designed and synthesized. This probe has the advantages of high sensitivity (limits of detection 7.0 × 10-8 M or even lower.), fast response (within 3 min) and large Stokes shift (225 nm), which not only can monitor exogenous and endogenous H2O2 in cells but also successfully achieves the change of endogenous H2O2 level caused by drug sexual organ injury in zebrafish.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhen Sun
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - En Zheng
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
21
|
Zhan X, Yu X, Li B, Zhou R, Fang Q, Wu Y. Quantifying H 2O 2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121191. [PMID: 35366522 DOI: 10.1016/j.saa.2022.121191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the presence of thioglycolic acid (TGA) and under the catalysis of Fe3+, a simple, rapid, sensitive, selective and effective ratiometric fluorescence sensor platform based on the mixed physically blue nitrogen-doped graphene quantum dots (N-GQDs) as probe signals and orange rhodamine B as internal standard signals has been constructed for analysis of H2O2 in human serum. TGA is the key factor for fluorescence response toward H2O2 by N-GQDs and the mechanism is H2O2 reacts speedily with TGA under the catalysis of Fe3+, and produces intermediate of superoxide anions (O2-), which accepts electrons from N-GQDs, and generates graphene oxide, causing the fluorescence quench of N-GQDs. Compared with N-GQDs probe, the sensitivity of the ratiometric fluorescence sensor platform of N-GQDs/rhodamine B for analysis of H2O2 has been improved by nearly 5-folds. Under the optimum conditions, Fλ=580nm/Fλ=440nm has a good linear relationship with the concentration of H2O2 and the detection limit of H2O2 is 0.46 μmol/L with 3.5% RSD. The established sensor platform has been successfully used for probing H2O2 in human serum with satisfactory results. The superior performance of the probe lies in its high selectivity and can be directly employed in detecting H2O2 in serum samples without any sample pretreatment procedures.
Collapse
Affiliation(s)
- Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Benmengyang Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingyu Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
22
|
Zhu HT, Ma YY, Du J, Tan HQ, Wang YH, Li YG. Efficient Electrochemical Detection of Hydrogen Peroxide Based on Silver-Centered Preyssler-Type Polyoxometalate Hybrids. Inorg Chem 2022; 61:6910-6918. [PMID: 35473356 DOI: 10.1021/acs.inorgchem.2c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Four polyoxometalate (POM)-based organic-inorganic hybrid compounds, namely, (H2bimb)6H8[((Mn(H2O)3(μ-bimb))0.5(Mn(H2O)4)(Mn(H2O)5)0.5(AgP5W30O110))2]·29H2O (1), [(Cu(Hbimb)(H2O)2(μ-bimb)Cu(Hbimb)(H2O))(Cu(H2O)2(μ-bimb)Cu(H2O)3)((Cu(H2O)2)0.5(μ-bimb)(Cu(H2O)3)0.5)H2(AgP5W30O110)]·12.5H2O (2), (H2bimb)2H[(Zn(Hbimb)(H2O)4(Zn(Hbimb)(H2O)2)0.5)2(AgP5W30O110)]·12H2O (3), and (H2bimb)3H2[(Ag(H2O)2)0.5(Ag(Hbimb)Ag(Hbimb)(μ-bimb)Ag)(Ag(H2O)2)0.5(AgP5W30O110)]·7H2O (4) (bimb = 1,4-bis(1H-imidazol-1-yl)benzene), were hydrothermally synthesized using a silver-centered Preyssler-type POM K14[AgP5W30O110]·18H2O (abbreviated as K-{AgP5W30}) as a precursor. In 1-4, {AgP5W30} clusters integrating the merits of Ag+ and {P5W30} units are modified by different transition metal (TM)-organic fragments to extend the structures into three-dimensional frameworks. As nonenzymatic electrochemical sensor materials, 1-4 show good electrocatalytic activity, high sensitivity, and a low detection limit for detecting hydrogen peroxide (H2O2); 4 possesses the highest sensitivity of 195.47 μA·mM-1·cm-2 for H2O2 detection. Most importantly, the average level of H2O2 detection of these {AgP5W30}-based materials outperforms that of Na-centered Preyssler-type {NaP5W30} and most Keggin-type POM-based materials. The performances of such {AgP5W30} materials mainly stem from the unique advantage of high-negatively charged {AgP5W30} clusters together with the good synergistic effect between {AgP5W30} and TMs. This work expands on the research of high-efficiency POM-based nonenzymatic electrochemical H2O2 sensors using Ag-containing POMs with high negative charges, which is also of great theoretical and practical significance to carry out health monitoring and environmental analysis.
Collapse
Affiliation(s)
- Hao-Tian Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuan-Yuan Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.,College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing Du
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Hao Y, Li Z, Ding N, Tang X, Zhang C. A new near-infrared fluorescence probe synthesized from IR-783 for detection and bioimaging of hydrogen peroxide in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120642. [PMID: 34857465 DOI: 10.1016/j.saa.2021.120642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A new near-infrared fluorescence probe was developed and synthesized for detection of hydrogen peroxide (H2O2) in vitro and in vivo. Synthesized from IR-783, the probe DBIS was designed to connect 4-(Bromomethyl)benzeneboronic acid pinacol ester as the recognizing moiety to the stable hemicyanine skeleton. Reaction of probe DBIS with H2O2 would result in the oxidation of phenylboronic acid pinacol ester, and thereby release the near-infrared fluorophore HXIS. The background signal of probe DBIS is very low, which is necessary for sensitive detection. Compared with the existing probes for detecting H2O2, the proposed probe DBIS shows excellent optical performance in vitro and in vivo, high selectivity, high sensitivity and good water solubility, as well as near-infrared fluorescence emission 708 nm, with a low detection limit of 0.12 μM. Furthermore, probe DBIS is low cytotoxic, cell membrane permeable, and its applicability has been shown to visualize endogenous H2O2 in mice. In addition, it is the first time that paper chips have been used as carrier to detect H2O2 through fluorescence signals instead of the traditional liquid phase detection mode of fluorescent probes. These superior characteristics of the probe make it have great application potential in biological systems or in vivo related research.
Collapse
Affiliation(s)
- Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
24
|
A deep red ratiometric fluorescent probe for accurate detection of peroxynitrite in mitochondria. Anal Chim Acta 2022; 1203:339652. [DOI: 10.1016/j.aca.2022.339652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/28/2023]
|
25
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
26
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
27
|
Ahmed N, Zareen W, Ye Y. Recent development in fluorescent probes based on attacking of double bond and masking of functional group. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Phukan K, Sarma RR, Dash S, Devi R, Chowdhury D. Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. NANOSCALE ADVANCES 2021; 4:138-149. [PMID: 36132963 PMCID: PMC9416979 DOI: 10.1039/d1na00617g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/11/2023]
Abstract
Investigation of the intracellular generation of H2O2, one of the most important reactive oxygen species (ROS), is crucial for preventing various diseases since it is closely linked with different physiological and complex cell signaling pathways. Despite the development of various fluorescent probes, the majority of the fluorescent probes cannot move across the nuclear membrane. However, detection of the nuclear level of H2O2 is very important since it can directly cause oxidative DNA damage which ultimately leads to various diseases. Therefore, in this study, p-phenylenediamine based carbon quantum dots (B-PPD CDs) have been synthesized and integrated with 4-formylbenzeneboronic acid as a doping agent for the detection of H2O2. The detection mechanism showed that, upon exposure to H2O2, the fluorescence of the B-PPD CDs was immediately quenched. Further investigation has been done in the in vitro RAW 264.7 cell line by both exogenous and endogenous exposure of H2O2 to demonstrate the feasibility of the method. It is shown successfully that the exogenous presence and endogenous generation of H2O2 in RAW 264.7 cells can be detected using B-PPD CDs. The limit of detection (LOD) was determined to be 0.242 μM. The development of such imaging probes using carbon quantum dots will lead to live-cell imaging as well as ROS detection.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| | - Ritwick Ranjan Sarma
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| | - Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati-781035 India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati-781035 India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| |
Collapse
|
29
|
Zhao D, Huang Y, Ouyang H, Shi B, Li S, Chen S, Zhao S. Facile preparation of Cu-doped carbon dots for naked-eye discrimination of phenylenediamine isomers and highly sensitive ratiometric fluorescent detection of H 2O 2. Talanta 2021; 239:123110. [PMID: 34864533 DOI: 10.1016/j.talanta.2021.123110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Changing a detection analyte into a colored material is a key challenge for visual discrimination of isomers. In this work, a novel fluorescent probe incorporating Cu-doped carbon dots (Cu-CDs), for the first time, was developed for naked-eye discrimination of phenylenediamine isomers and highly sensitive ratiometric fluorescence detection of H2O2. In this strategy, Cu-CDs were synthesized by a facile hydrothermal approach using citric acid, formamide, and CuCl2 as reactants. The prepared Cu-CDs exhibited outstanding peroxidase-like activity and stability. Consequently, a chemosensor platform based on Cu-CDs was constructed to enable naked-eye discrimination of phenylenediamine isomers through the H2O2-mediated oxidation reaction. Moreover, a Cu-CDs-based ratiometric fluorescence sensor was proposed as a means to sensitively detect H2O2 with a detection limit of 5.0 nM. The sensor was further employed for monitoring H2O2 in human serum, indicating its potential applications in other biologically related study.
Collapse
Affiliation(s)
- Dandan Zhao
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China
| | - Yijun Huang
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China
| | - Huixiang Ouyang
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China
| | - Bingfang Shi
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China.
| | - Suping Li
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China
| | - Shengyu Chen
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi, Baise, 533000, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
30
|
Wang L, Hou X, Fang H, Yang X. Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition. Curr Med Chem 2021; 29:2476-2489. [PMID: 34473614 DOI: 10.2174/0929867328666210902101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Given the crucial association of hydrogen peroxide with a wide-range of human diseases, this compound has currently earned the reputation of being popular biomolecular target. Although various of analytical methods have attracted our attention, fluorescent probes have been used as prominent tools to determine H2O2 to reflect the physiological and pathological conditions of biological systems, As the sensitive responsive portion of these probes, Boronate ester and boronic acid groups are vital reporter as the sensitive responsive part for H2O2 recognition. In this review, we summarized boronate ester/boronic acid group-based fluorescent probes for H2O2 reported from 2012 to 2020 and generally classify the fluorophores into six categories to exhaustively elaborate the design strategy and comprehensive systematic performance. We hope that this review will inspire the exploration of new fluorescent probes based on boronate ester/boronic acid groups for detection of H2O2 and other relevant analytes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xuben Hou
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Hao Fang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xinying Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| |
Collapse
|
31
|
Yang G, Zhu T, Wang D, Liu Z, Zhang R, Han G, Tian X, Liu B, Han MY, Zhang Z. Revealing the signaling regulation of hydrogen peroxide to cell pyroptosis using a ratiometric fluorescent probe in living cells. Chem Commun (Camb) 2021; 57:6628-6631. [PMID: 34124718 DOI: 10.1039/d1cc02008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ratiometric fluorescent probe with a large emission shift was developed for the accurate measurement of hydrogen peroxide (H2O2) in sophisticated pyroptosis signaling pathways. The results reported here demonstrate that H2O2, as a principal member of ROS, is a critical upstream signaling molecule in regulating pyroptosis.
Collapse
Affiliation(s)
- Guanqing Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, China
| | - Dong Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Zhengjie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Ruilong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| | - Guangmei Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bianhua Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ming-Yong Han
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhongping Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
32
|
Xu J, Wang C, Ma Q, Zhang H, Tian M, Sun J, Wang B, Chen Y. Novel Mitochondria-Targeting and Naphthalimide-based Fluorescent Probe for Detecting HClO in Living Cells. ACS OMEGA 2021; 6:14399-14409. [PMID: 34124462 PMCID: PMC8190919 DOI: 10.1021/acsomega.1c01271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
As a key reactive oxygen species (ROS), hypochlorous acid (HClO) plays an important role in many physiological and pathological processes. The mitochondria-targeting probes for the highly sensitive detection of HClO are desirable. In present work, we designed and synthesized an original mitochondria-localizing and turn-on fluorescent probe for detecting HClO. 4-Aminonaphthalimide was employed as the fluorescent section, the (2-aminoethyl)-thiourea unit was utilized as a typical sensing unit, and the quaternized pyridinium moiety was used as a mitochondria-targeted localization group. When HClO was absent, the probe showed weak fluorescence. In the existence of HClO, the probe revealed a blue fluorescence. Moreover, the turn-on fluorescent probe was able to function in a broad pH scope. There was an excellent linearity between the fluorescence emission intensity at 488 nm and the concentrations of HClO in the range of 5.0 × 10-7 to 2.5 × 10-6 mol·L-1. Additionally, the probe had almost no cell toxicity and possessed an excellent mitochondria-localizing capability. Furthermore, the probe was able to image HClO in mitochondria of living PC-12 cells. The above remarkable properties illustrated that the probe was able to determine HClO in mitochondria of living cells.
Collapse
Affiliation(s)
- Junhong Xu
- Department
of Dynamical Engineering, North China University
of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Chunyan Wang
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Hongtao Zhang
- Department
of Dynamical Engineering, North China University
of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Meiju Tian
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Jingguo Sun
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Baiyan Wang
- Key
Discipline Laboratory of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, PR China
| | - Yacong Chen
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
33
|
Tian Y, Du C, Liu B, Qiu HN, Zhang X, Wu ZL, Zheng Q. Tough and fluorescent hydrogels composed of poly(hydroxyurethane) and poly(stearyl acrylate‐
co
‐acrylic acid) with hydrophobic associations and hydrogen bonds as the physical crosslinks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ye Tian
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- College of Mechanical Engineering Zhejiang University of Technology Hangzhou China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province Zhejiang University of Technology Hangzhou China
| | - Cong Du
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bin Liu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hao Nan Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xing‐Hong Zhang
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
34
|
Muthusamy S, Zhu D, Rajalakshmi K, Zhu W, Wang S, Lee KB, Zhao L. Successive Detection of Zinc Ion and Citrate Using a Schiff Base Chemosensor for Enhanced Prostate Cancer Diagnosis in Biosystems. ACS APPLIED BIO MATERIALS 2021; 4:1932-1941. [PMID: 35014462 DOI: 10.1021/acsabm.0c01568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensitive and quantitative detection of prostate cancer (PC) requires a chemosensor with an applicable sensing strategy. A star-shaped Schiff base triaminoguanidine-integrated thiophene fluorophore TAT was rationally designed with nitrogen and sulfur atoms to coordinate with Zn2+ as the initial step and to chelate with citrate as the following step. Formation of the complex TAT-Zn2+ induced an intramolecular charge transfer and caused a red-shifted, Zn2+ concentration-dependent fluorescence at 507 nm. Chelation of TAT-Zn2+ with citrate led to an emission band at 692 nm upon an aggregation-induced emission mechanism. The distinctive fluorescence emissions of Zn2+ and citrate biomarkers were demonstrated first in on-site paper-based test strips showing gradually enhanced colors at yellow and red channels and second in both in vitro and in vivo by using PC3 cells and BALB/c nude mouse animal models, respectively. The in vitro test confirmed the mitochondria organelle-targeting property of TAT, and the in vivo performance manifested the successful application of the probe in recognizing the prostate cancer. This is the first applicable chemosensor that could be in continuous recognition of dual PC biomarkers Zn2+ and citrate in cancer diagnosis with a mitochondria organelle-targeting ability.
Collapse
Affiliation(s)
- Selvaraj Muthusamy
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Kanagaraj Rajalakshmi
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weihua Zhu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Kang-Bong Lee
- National Agenda Research Division, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Lu Z, Dang Y, Dai C, Zhang Y, Zou P, Du H, Zhang Y, Sun M, Rao H, Wang Y. Hollow MnFeO oxide derived from MOF@MOF with multiple enzyme-like activities for multifunction colorimetric assay of biomolecules and Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123979. [PMID: 33265018 DOI: 10.1016/j.jhazmat.2020.123979] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
In this work, a new type of hollow MnFeO oxide derived obtained from the metal-organic framework (MOF)@MOF was designed and proposed, which has intrinsic activity of mimicking enzymes of oxidase and peroxidase by adjustment pH values. Based on the colorimetric reaction and the hindrance of the oxidase-like activity in the presence of L-cysteine (Cys), as well as the recovery of oxidase-like activity due to the specific complexation of Cys and mercury (II) ions (Hg2+), a new type of colorimetric transmission platform for Cys and Hg2+ detection with wide linear ranges of 1-25 μM for Cys and 0.1-15 μM for Hg2+ has been developed. Besides, a better colorimetric sensing platform for detecting H2O2 was established with linear ranges of 1-60 μM and 60-300 μM based on generating hydroxyl radicals (·OH). Furthermore, the hollow MnFeO oxide has high stability, excellent selectivity with good activity over a long period of time. Surprisingly, the proposed method for Cys, Hg2+ and H2O2 estimation can also be used in actual samples. These characteristics lay a foundation for further investigation about the catalytic activity of the hollow MnFeO oxide nanomaterials and make it show broad prospects in the field of biosensing and catalysis.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yang Dang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Changlian Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yan Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yi Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
36
|
Wei Y, Liu Y, He Y, Wang Y. Mitochondria and lysosome-targetable fluorescent probes for hydrogen peroxide. J Mater Chem B 2021; 9:908-920. [PMID: 33346307 DOI: 10.1039/d0tb02440f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen peroxide (H2O2), as a key member of the reactive oxygen species (ROS), has a certain regulatory effect on many physiological processes, such as cell proliferation, differentiation and migration. However, abnormal production of H2O2 can cause diseases including cancer, Alzheimer's disease, cardiovascular disease, and so on. Therefore, it is important to detect changes in H2O2 at the subcellular level. In recent years, many fluorescent probes for H2O2 have been developed and used in living cells. In this review, we introduce some typical fluorescent probes for H2O2 with mitochondrial and lysosomal targeting. This review contains targeting strategies, detection mechanisms, optical characteristics and cell imaging of these probes.
Collapse
Affiliation(s)
- Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China.
| | | | | | | |
Collapse
|
37
|
Yu Y, Peng J, Pan M, Ming Y, Li Y, Yuan L, Liu Q, Han R, Hao Y, Yang Y, Hu D, Li H, Qian Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis. SMALL METHODS 2021; 5:e2001212. [PMID: 34928089 DOI: 10.1002/smtd.202001212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/01/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yang Ming
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yan Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - He Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
38
|
Zhou R, Niu L, Hu Y, Qi Q, Huang W, Yang L. A novel dual-function fluorescent probe for the rapid detection of bisulfite and hydrogen peroxide in aqueous solution and living cells. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 248:119226. [PMID: 33296749 DOI: 10.1016/j.saa.2020.119226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023]
Abstract
In this work, Hcy-OB, a novel hemicyanine-based biocompatible dual-function fluorescence probe for bisulfite and H2O2 detection is designed and synthesized. Based on a 1,4-addition reaction, Hcy-OB can be used for bisulfite detection with fast response, high sensitivity and low detection limit (120 nM). In addition, the probe is successfully applied to the detection of bisulfite in aqueous solution. Furthermore, Hcy-OB shows excellent performance for hydrogen peroxide detection with the oxidation of phenylboronic acid. Hcy-OB shows excellent selectivity to H2O2 over other interfering substances with detection limit of H2O2 is calculated to be 70 nM. Most importantly, due to its good cell membrane permeability and low cytotoxicity, Hcy-OB has been applied to monitor and image H2O2 in living cells and mice.
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
| | - Yuefu Hu
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
39
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
40
|
Jiang T, Sun X, Wei L, Li M. Determination of hydrogen peroxide released from cancer cells by a Fe-Organic framework/horseradish peroxidase-modified electrode. Anal Chim Acta 2020; 1135:132-141. [PMID: 33070850 DOI: 10.1016/j.aca.2020.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were used as conductive carrier on the glassy carbon electrode (GCE), and the hybrid of metal organic framework [NH2-MIL-53(Fe)] and horseradish peroxidase (HRP) was prepared by simple physical mechanical mixture. The GCE modified by the above material with immobilization, namely NH2-MIL-53(Fe)/HRP/MWCNTs/GCE, was used to construct an electrochemical biosensor toward H2O2. The results indicated that the addition of NH2-MIL-53(Fe) had a good synergistic effect on the electron transfer of HRP and the detection of H2O2. Under the optimized condition, the biosensor exhibited excellent electrochemical performances such as low detection limit, high sensitivity, good stability and so on. The H2O2 biosensor showed two linear ranges of 0.1-1 μM and 1-600 μM with a calculated detection limit of 0.028 μM (signal-to-noise ratio, S/N = 3). In addition, the stability of the hybrid of NH2-MIL-53(Fe) and HRP were discussed by SEM, XRD and UV-vis methods. Furthermore, the reported biosensors were practically used in direct detection of H2O2 released from HeLa and HepG2 cells successfully. Thus, this work provides a new strategy to fabricate electrochemical biosensors using MOFs and biomolecules.
Collapse
Affiliation(s)
- Tian Jiang
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Lingli Wei
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
41
|
Activatable red emitting fluorescent probe for rapid and sensitive detection of intracellular peroxynitrite. Talanta 2020; 217:121053. [DOI: 10.1016/j.talanta.2020.121053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|