1
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Djambazova K, Gibson-Corley KN, Freiberg JA, Caprioli RM, Skaar EP, Spraggins JM. MALDI TIMS IMS Reveals Ganglioside Molecular Diversity within Murine S. aureus Kidney Tissue Abscesses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1692-1701. [PMID: 39052897 PMCID: PMC11311236 DOI: 10.1021/jasms.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.
Collapse
Affiliation(s)
- Katerina
V. Djambazova
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jeffrey A. Freiberg
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Division
of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Jeffrey M. Spraggins
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Canez CR, Li L. Investigation of the Effects of Labware Contamination on Mass Spectrometry-Based Human Serum Lipidome Analysis. Anal Chem 2024; 96:8373-8380. [PMID: 38709238 DOI: 10.1021/acs.analchem.3c05433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Polypropylene microcentrifuge tubes (MCTs) are increasingly used in lipidome sample preparation. In the absence of a comprehensive study evaluating ramifications of plasticware utilization in mass spectrometry-based lipidomic analyses, we conducted a systematic analysis to elucidate potential negative effects ascribable to labware contamination in serum lipidomics. During serum lipid extractions, tested glassware introduced 24 labware contaminants. In contrast, Eppendorf polypropylene MCTs contributed 485 contaminant features, many of which could be erroneously putatively identified as lipids via their m/z values. Eppendorf MCTs contamination engendered severe ion-suppression of 40 low abundance serum lipids, while generating mild to modest lipid ion-suppression across a multitude of higher abundance coeluting lipids. Less compatible polypropylene MCTs from an alternative manufacturer introduced a staggering 2,949 contaminant m/z values, severely affecting 75 coeluting serum lipids and causing more frequent and pronounced ion-suppression instances. Furthermore, by performing serum extractions with varied initial volumes, it was ascertained that labware-induced lipid ion-suppression is a dynamic phenomenon, contingent on both lipid and labware contaminant concentrations where low-abundance lipids are disproportionately impacted by coelutes of suppressive contaminants. In addition to lipid ion-suppression, the identification and quantification of 7 fatty acid endogenous serum lipids were compromised by the leaching of structurally identical surfactants from MCTs. MCTs artificially introduced 10 additional primary amides extraneous to serum samples. Utmost caution is imperative in interpreting data concerning primary amides and fatty acids when employing plastic labware. Through this investigation, we aspire to elevate awareness regarding the pernicious impact of labware contamination on lipidome analysis.
Collapse
Affiliation(s)
- Carlos R Canez
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Gu TJ, Liu PK, Wang YW, Flowers MT, Xu S, Liu Y, Davis DB, Li L. Diazobutanone-assisted isobaric labelling of phospholipids and sulfated glycolipids enables multiplexed quantitative lipidomics using tandem mass spectrometry. Nat Chem 2024; 16:762-770. [PMID: 38365942 DOI: 10.1038/s41557-023-01436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.
Collapse
Affiliation(s)
- Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Peng-Kai Liu
- Biophysics Graduate program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yen-Wen Wang
- Department of Biostatics, Yale University, New Haven, CT, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dawn B Davis
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Biophysics Graduate program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Luh D, Heiles S, Roderfeld M, Grevelding CG, Roeb E, Spengler B. Hepatic Topology of Glycosphingolipids in Schistosoma mansoni-Infected Hamsters. Anal Chem 2024; 96:6311-6320. [PMID: 38594017 PMCID: PMC11044111 DOI: 10.1021/acs.analchem.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.
Collapse
Affiliation(s)
- David Luh
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut
für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany
- Lipidomics,
Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Martin Roderfeld
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | | | - Elke Roeb
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | - Bernhard Spengler
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Wang X, Li H, Sheng Y, He B, Liu Z, Li W, Yu S, Wang J, Zhang Y, Chen J, Qin L, Meng X. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review. Biomed Pharmacother 2024; 171:116071. [PMID: 38183741 DOI: 10.1016/j.biopha.2023.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aβ oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAβ polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aβ, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aβ, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Zeying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Wanli Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jiajing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
7
|
Cummings RD. Glycosphingolipids in human parasites. FEBS Open Bio 2023; 13:1625-1635. [PMID: 37335950 PMCID: PMC10476572 DOI: 10.1002/2211-5463.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Glycosphingolipids (GSLs) are comprised of glycans (oligosaccharides) linked to a lipid containing a sphingosine moiety. They are major membrane components in cells of most animals, and importantly, they also occur in parasitic protozoans and worms that infect people. While the endogenous functions of the GSLs in most parasites are elusive, many of these GSLs are recognized by antibodies in infected human and animal hosts, and thus, their structures, biosynthesis, and functions are of great interest. Such knowledge of GSLs could lead to new drugs and diagnostics for treating infections, as well as novel vaccine strategies. The diversity of GSLs recently identified in such infectious organisms and aspects of their immune recognition are major topics of this review. It is not intended to be exhaustive but to highlight aspects of GSL glycans in human parasites.
Collapse
Affiliation(s)
- Richard D. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
8
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
9
|
Hořejší K, Jin C, Vaňková Z, Jirásko R, Strouhal O, Melichar B, Teneberg S, Holčapek M. Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues. J Biol Chem 2023; 299:102923. [PMID: 36681125 PMCID: PMC9976472 DOI: 10.1016/j.jbc.2023.102923] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Karel Hořejší
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Department of Chemistry, České Budějovice, Czech Republic
| | - Chunsheng Jin
- University of Gothenburg, Sahlgrenska Academy, Proteomics Core Facility, Göteborg, Sweden
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Ondřej Strouhal
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Susann Teneberg
- University of Gothenburg, Sahlgrenska Academy, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Göteborg, Sweden.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic.
| |
Collapse
|
10
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
12
|
Nagasawa H, Miyazaki S, Kyogashima M. Simple separation of glycosphingolipids in the lower phase of a Folch's partition from crude lipid fractions using zirconium dioxide. Glycoconj J 2022; 39:789-795. [PMID: 36103104 DOI: 10.1007/s10719-022-10080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch's partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.
Collapse
Affiliation(s)
- Hideharu Nagasawa
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan
| | - Shota Miyazaki
- GL Sciences Inc., 237-2 Sayamagahara, Saitama, 358-0032, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan.
| |
Collapse
|
13
|
Arends M, Weber M, Papan C, Damm M, Surma MA, Spiegel C, Djannatian M, Li S, Connell L, Johannes L, Schifferer M, Klose C, Simons M. Ganglioside lipidomics of CNS myelination using direct infusion shotgun mass spectrometry. iScience 2022; 25:105323. [PMID: 36310581 PMCID: PMC9615322 DOI: 10.1016/j.isci.2022.105323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gangliosides are present and concentrated in axons and implicated in axon-myelin interactions, but how ganglioside composition changes during myelin formation is not known. Here, we present a direct infusion (shotgun) lipidomics method to analyze gangliosides in small amounts of tissue reproducibly and with high sensitivity. We resolve the mouse ganglioside lipidome during development and adulthood and determine the ganglioside content of mice lacking the St3gal5 and B4galnt1 genes that synthesize most ganglioside species. Our results reveal substantial changes in the ganglioside lipidome during the formation of myelinated nerve fibers. In sum, we provide insights into the CNS ganglioside lipidome with a quantitative and sensitive mass spectrometry method. Since this method is compatible with global lipidomic profiling, it will provide insights into ganglioside function in physiology and pathology. A sensitive direct infusion mass spectrometry method for ganglioside lipidomics Quantification of gangliosides in CNS myelin development Generation of myelin in the absence of gangliosides
Collapse
Affiliation(s)
- Martina Arends
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | | | | | | | - Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | | | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Corresponding author
| |
Collapse
|
14
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|
15
|
Ma Y, Wang X, Wang Z, Cong P, Xu J, Xue C. Characterization of Gangliosides in Three Sea Urchin Species by HILIC-ESI-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7641-7651. [PMID: 34184526 DOI: 10.1021/acs.jafc.1c02058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sea urchin gangliosides (SU-GLSs) are well acknowledged for their nerve regeneration activity and neuroprotective property. The present study sought to characterize and semi-quantitate different SU-GLS subclasses in three sea urchin species, including Strongylocentrotus nudus, Hemicentrotus pulcherrimus, and Glyptocidaris crenularis. A total of 14 SU-GLS subclasses were identified by a hydrophilic interaction liquid chromatography-Q-Exactive tandem mass spectrometry method. Three sialic acid (Sia) structures, including Neu5Ac, Neu5Gc, and KDN, were identified in SU-GLSs, of which Neu5Ac and Neu5Gc had their corresponding sulfated forms. The linkage among Sias was determined to be 2-8. Additionally, KDN2-6Glc1-1Cer, KDN2-8Neu5Gc2-6Glc1-1Cer, and KDN2-8Neu5Gc2-8Neu5Gc2-6Glc-1Cer were speculated to be novel SU-GLS structures. Furthermore, the total SU-GLS content was 2.0-7.3 mg/g in the three sea urchin species. These results will provide useful data for developing a SU-GLS database of aquatic products. Besides, this study will provide a theoretical basis to explore the nutritional values of seafood products further.
Collapse
Affiliation(s)
- Yingxu Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
16
|
Ranasinghe A, Ciccimaro E, D'Arienzo C, Olah TV, Ponath P, Hnatyshyn S. An integrated Qual/Quan strategy for ganglioside lipidomics using high-resolution mass spectrometry and Skyline software. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9041. [PMID: 33415785 DOI: 10.1002/rcm.9041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Gangliosides (GS) are attractive targets in biomarker discovery because of their physiological significance in numerous human diseases including certain cancers and developmental and metabolic disorders. The robust strategy described here enables the profiling of numerous GS while obtaining quantitative data of exploratory biomarkers present in human plasma and whole blood. METHOD The GS from human blood, human plasma, and several cell lines were extracted using a mixture of methanol and isopropanol/0.1% formic acid followed by direct analysis of the supernatant. The simultaneous Qualitative and Quantitative (Qual/Quan) approach involves micro flow (20 μL/min) high pressure liquid chromatography (HPLC)/high-resolution mass spectrometry (HRMS) and post-acquisition data processing with Skyline software for profiling numerous GS in biological matrices. The quantitative assay involves reverse-phase liquid chromatography/HRMS and calibration curves using commercially available GS. RESULTS Protein precipitation resulted in ~60%-80% GS recovery from biological matrices. Direct injection of the extract allowed for quantification of targeted GS in human blood, plasma, and cancer cell lines. The lower limit of detection for the target analytes, GM1, GT1, GD1, spiked into 1% BSA/PBS, ranged from 1 to 10 ng/mL. Human lung cancer cell lines contained variable amounts (1-130 ng/mL) of soluble Fuc-GM1 analogs, potential biomarkers of lung cancer. CONCLUSIONS A combination of simple extraction and micro-HPLC/HRMS allowed for quantification of GS in human serum and whole blood. Integration of HRMS with Skyline allowed for GS profiling in the same samples using post-acquisition HRMS data without the need for reanalysis. The strategy presented here is expected to play an important role in profiling exploratory GS biomarkers in discovery bioanalytical research.
Collapse
Affiliation(s)
- Asoka Ranasinghe
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Eugene Ciccimaro
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Celia D'Arienzo
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Timothy V Olah
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Paul Ponath
- Bristol-Myers Squibb Bay Area Research Facility, Research & Development, Redwood City, California
| | - Serhiy Hnatyshyn
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| |
Collapse
|
17
|
Hořejší K, Jirásko R, Chocholoušková M, Wolrab D, Kahoun D, Holčapek M. Comprehensive Identification of Glycosphingolipids in Human Plasma Using Hydrophilic Interaction Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11030140. [PMID: 33652716 PMCID: PMC7996953 DOI: 10.3390/metabo11030140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosphingolipids (GSL) represent a highly heterogeneous class of lipids with many cellular functions, implicated in a wide spectrum of human diseases. Their isolation, detection, and comprehensive structural analysis is a challenging task due to the structural diversity of GSL molecules. In this work, GSL subclasses are isolated from human plasma using an optimized monophasic ethanol–water solvent system capable to recover a broad range of GSL species. Obtained deproteinized plasma is subsequently purified and concentrated by C18-based solid-phase extraction (SPE). The hydrophilic interaction liquid chromatography coupled to electrospray ionization linear ion trap tandem mass spectrometry (HILIC-ESI-LIT-MS/MS) is used for GSL analysis in the human plasma extract. Our results provide an in-depth profiling and structural characterization of glycosphingolipid and some phospholipid subclasses identified in the human plasma based on their retention times and the interpretation of tandem mass spectra. The structural composition of particular lipid species is readily characterized based on the detailed interpretation of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) spectra and further confirmed by specific fragmentation behavior following predictable patterns, which yields to the unambiguous identification of 154 GSL species within 7 lipid subclasses and 77 phospholipids representing the highest number of GSL species ever reported in the human plasma. The developed HILIC-ESI-MS/MS method can be used for further clinical and biological research of GSL in the human blood or other biological samples.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.H.); (R.J.); (M.C.); (D.W.)
- Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České Budějovice, Czech Republic;
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.H.); (R.J.); (M.C.); (D.W.)
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.H.); (R.J.); (M.C.); (D.W.)
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.H.); (R.J.); (M.C.); (D.W.)
| | - David Kahoun
- Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České Budějovice, Czech Republic;
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.H.); (R.J.); (M.C.); (D.W.)
- Correspondence: ; Tel.: +420-466-037-087
| |
Collapse
|
18
|
Rampler E, Abiead YE, Schoeny H, Rusz M, Hildebrand F, Fitz V, Koellensperger G. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics-Standardization, Coverage, and Throughput. Anal Chem 2021; 93:519-545. [PMID: 33249827 PMCID: PMC7807424 DOI: 10.1021/acs.analchem.0c04698] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Evelyn Rampler
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Harald Schoeny
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Mate Rusz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Institute of Inorganic
Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Felina Hildebrand
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Veronika Fitz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
19
|
Panzenboeck L, Troppmair N, Schlachter S, Koellensperger G, Hartler J, Rampler E. Chasing the Major Sphingolipids on Earth: Automated Annotation of Plant Glycosyl Inositol Phospho Ceramides by Glycolipidomics. Metabolites 2020; 10:metabo10090375. [PMID: 32961698 PMCID: PMC7570276 DOI: 10.3390/metabo10090375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Glycosyl inositol phospho ceramides (GIPCs) are the major sphingolipids on earth, as they account for a considerable fraction of the total lipids in plants and fungi, which in turn represent a large portion of the biomass on earth. Despite their obvious importance, GIPC analysis remains challenging due to the lack of commercial standards and automated annotation software. In this work, we introduce a novel GIPC glycolipidomics workflow based on reversed-phase ultra-high pressure liquid chromatography coupled to high-resolution mass spectrometry. For the first time, automated GIPC assignment was performed using the open-source software Lipid Data Analyzer (LDA), based on platform-independent decision rules. Four different plant samples (salad, spinach, raspberry, and strawberry) were analyzed and the results revealed 64 GIPCs based on accurate mass, characteristic MS2 fragments and matching retention times. Relative quantification using lactosyl ceramide for internal standardization revealed GIPC t18:1/h24:0 as the most abundant species in all plants. Depending on the plant sample, GIPCs contained mainly amine, N-acetylamine or hydroxyl residues. Most GIPCs revealed a Hex-HexA-IPC core and contained a ceramide part with a trihydroxylated t18:0 or a t18:1 long chain base and hydroxylated fatty acid chains ranging from 16 to 26 carbon atoms in length (h16:0-h26:0). Interestingly, four GIPCs containing t18:2 were observed in the raspberry sample, which was not reported so far. The presented workflow supports the characterization of different plant samples by automatic GIPC assignment, potentially leading to the identification of new GIPCs. For the first time, automated high-throughput profiling of these complex glycolipids is possible by liquid chromatography-high-resolution tandem mass spectrometry and subsequent automated glycolipid annotation based on decision rules.
Collapse
Affiliation(s)
- Lisa Panzenboeck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria; (L.P.); (N.T.); (S.S.); (G.K.)
| | - Nina Troppmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria; (L.P.); (N.T.); (S.S.); (G.K.)
| | - Sara Schlachter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria; (L.P.); (N.T.); (S.S.); (G.K.)
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria; (L.P.); (N.T.); (S.S.); (G.K.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chemistry Meets Microbiology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria;
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria; (L.P.); (N.T.); (S.S.); (G.K.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chemistry Meets Microbiology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-4277-52381
| |
Collapse
|