1
|
Yang W, Ye L, Wu Y, Wang X, Ye S, Deng Y, Huang K, Luo H, Zhang J, Zheng C. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134038. [PMID: 38552392 DOI: 10.1016/j.jhazmat.2024.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Millions of people worldwide are affected by naturally occurring arsenic in groundwater. The development of a low-cost, highly sensitive, portable assay for rapid field detection of arsenic in water is important to identify areas for safe wells and to help prioritize testing. Herein, a novel paper-based fluorescence assay was developed for the on-site analysis of arsenic, which was constructed by the solid-phase fluorescence filter effect (SPFFE) of AsH3-induced the generation of silver nanoparticles (AgNPs) toward carbon dots. The proposed SPFFE-based assay achieves a low arsenic detection limit of 0.36 μg/L due to the efficient reduction of Ag+ by AsH3 and the high molar extinction coefficient of AgNPs. In conjunction with a smartphone and an integrated sample processing and sensing platform, field-sensitive detection of arsenic could be achieved. The accuracy of the portable assay was validated by successfully analyzing surface and groundwater samples, with no significant difference from the results obtained through mass spectrometry. Compared to other methods for arsenic analysis, this developed system offers excellent sensitivity, portability, and low cost. It holds promising potential for on-site analysis of arsenic in groundwater to identify safe well locations and quickly obtain output from the global map of groundwater arsenic.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liqing Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuke Wu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Simin Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Huang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
2
|
Gebremedhin KH, Kahsay MH, Wegahita NK, Teklu T, Berhe BA, Gebru AG, Tesfay AH, Asgedom AG. Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. DISCOVER NANO 2024; 19:38. [PMID: 38421536 PMCID: PMC10904709 DOI: 10.1186/s11671-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As+3) and arsenate (As+5) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Mebrahtu Hagos Kahsay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Nigus Kebede Wegahita
- Department of Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tesfamariam Teklu
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Berihu Abadi Berhe
- School of Earth Science, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Asfaw Gebretsadik Gebru
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Amanuel Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Abraha Geberekidan Asgedom
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
3
|
Wang B, Pu S, Xia C, Hou X, Xu K. Enhancing peroxidase-like activity of AuNPs through headspace reaction: A signal amplification strategy for colorimetric and fluorescent sensing of trace Hg 2. Anal Chim Acta 2024; 1287:342132. [PMID: 38182354 DOI: 10.1016/j.aca.2023.342132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Recently, headspace single-drop microextraction (HS-SDME) has attracted some attention for developing sensitive and selective colorimetric assays due to its excellent capability to reduce matrix interference and enrich analytes. However, the single droplet limits direct visual observation of color change and its quantitative measurement suffers from reduced optical path length. Therefore, amplifying the detection signals in both volume and intensity is an important and challenging task for improving the sensitivity, stability, and accuracy of such colorimetric analysis. RESULTS In this study, a "headspace-nanoenzyme" (HS-NE) strategy was proposed that successfully addressed these challenges and enabled the colorimetric and fluorescent dual-mode detection of trace Hg2+. Atomic Hg0, generated via chemical vapor generation (CVG), underwent headspace reaction with AuNPs droplet to form Au@HgNPs, thus catalyzing the oxidation of o-phenylenediamine (OPD) in the presence of H2O2. The absorbance and fluorescence intensity of oxidized OPD were proportion to the concentration of Hg2+ in the sample solution. Due to the greatly enhanced peroxidase-like activity by Au@HgNPs, the limit of detection was as low as 0.98 nM and 0.21 nM for the colorimetric and fluorescent modes, respectively. The applicability of this assay was further demonstrated with determination of Hg2+ in real environmental and biological samples. Moreover, a convenient and cost-effective paper-based sensing platform was fabricated for rapid on-site detection of Hg2+. SIGNIFICANCE AND NOVELTY This novel HS-NE strategy combines HS-SDME and nanoenzyme-based sensing to achieve dual effects of eliminating matrix interference and amplifying the measurement signal, resulting in improved accuracy, enhanced stability, high sensitivity, and exceptional selectivity, with great potential for on-site determination of trace Hg2+.
Collapse
Affiliation(s)
- Bodong Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chengyan Xia
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kailai Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
4
|
Zou Z, Ye S, Xiao J, Jiang C, Zhang S, Tan C, Xiong X, Huang K. Ag-containing metal organic framework reacted with AsH 3: Mechanism and application for inorganic arsenic detection by hydride generation-smartphone RGB readout colorimetric system. Food Chem 2023; 428:136806. [PMID: 37450952 DOI: 10.1016/j.foodchem.2023.136806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The reaction mechanism of Ag-containing metal organic framework (Ag-BTC) and hydrogen arsenide (AsH3) was discussed in detail in this work. Silver ions in Ag-BTC were reacted with AsH3, and silver nanoparticles were generated on the surface of Ag-BTC, causing its color changed. This property was further applied to a hydride generation-colorimetric analytical system. As(III) was converted to AsH3via hydride generation and then reacted with the Ag-BTC (immobilized on test paper), leading to the test paper changed from white to black. Visual colorimetric and smartphone RGB readout mode were used for this analytical system. The results could be readout by naked-eye in visual colorimetric mode and a smartphone in RGB readout mode. Under the optimized conditions, As(III) concentration as low as 10 μg/L and 50 μg/L could be readout by smartphone and naked-eye, respectively. This method was further successful applied to As(III) determination in real samples (drinking water samples and scented tea samples), with recoveries of 91-113%.
Collapse
Affiliation(s)
- Zhirong Zou
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan 644000, China.
| | - Shuang Ye
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jing Xiao
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Chenxi Jiang
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Shu Zhang
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan 644000, China
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
5
|
Jiang C, Ye S, Xiao J, Tan C, Yu H, Xiong X, Huang K, Deng Y, Zou Z. Hydride generation-smartphone RGB readout and visual colorimetric dual-mode system for the detection of inorganic arsenic in water samples and honeys. Food Chem X 2023; 18:100634. [PMID: 36968312 PMCID: PMC10036497 DOI: 10.1016/j.fochx.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A miniaturized/portable dual-mode colorimetric analytical system was established for inorganic arsenic determination in honey and drinking water samples. Hydride generation (HG) was utilized as a sampling technique for this colorimetric system, because of its high generation efficiency and efficient matrix separation. AsH3 was generated via HG and then reacted with HAuCl4, gold nanoparticles (Au NPs) were formed on the paper sheet, leading the paper color changed from light yellow to dark blue, it could be readout by naked-eye (visual colorimetric mode) and a smartphone (RGB readout mode) simultaneously. The accuracy and potential application for field analysis were further confirmed by the analysis of two water samples, four honey samples and two certified reference water samples (BWB2440-2016 and GBW08650), good recoveries (90-116%) were obtained for those samples and their spiked samples.
Collapse
|
6
|
Nario NA, Vidal E, Grünhut M, Domini CE. 3D-printed device for the kinetic determination of As(III) in groundwater samples by digital movie analysis. Talanta 2023; 261:124625. [PMID: 37201338 DOI: 10.1016/j.talanta.2023.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
High concentrations of inorganic arsenic in groundwater for human consumption is a worldwide common problem. Particularly, the determination of As(III) becomes important, since this species is more toxic than organic, pentavalent and elemental arsenic forms. In this work, a 3D-printed device that included a 24-well microplate was developed to perform the colourimetric kinetic determination of arsenic (III) by digital movie analysis. A smartphone camera attached to the device was used to take the movie during the process where As(III) inhibited the decolourization of methyl orange. The movie images were subsequently transformed from RGB to YIQ space to obtain a new analytical parameter called "d", which was related to the chrominance of the image. Then, this parameter allowed the determination of the inhibition time of reaction (tin), which was linearly correlated with the concentration of As(III). A linear calibration curve (R = 0.9995) in the range from 5 μg L-1 to 200 μg L-1 was obtained. The method was precise (RSD = 1.2%), and the limits of detection (LOD) and quantification (LOQ) were 1.47 μg L-1 and 4.44 μg L-1, respectively. These values were lower than the limit established by the World Health Organization for total arsenic in drinking water (10 μg L-1). The accuracy of the method was assessed by a recovery study with optimal results (94.3%-104.0%). Additionally, the Analytical GREEnness metric approach was applied, obtaining a score 1.7 times higher than previously published works. The method is simple, portable and low-cost, being in compliance with various principles of green analytical chemistry.
Collapse
Affiliation(s)
- Nicolás A Nario
- INQUISUR (UNS-CONICET), Department of Chemistry, Universidad Nacional Del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - Ezequiel Vidal
- Department of Chemistry, Universidad Nacional Del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - Marcos Grünhut
- INQUISUR (UNS-CONICET), Department of Chemistry, Universidad Nacional Del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina.
| | - Claudia E Domini
- INQUISUR (UNS-CONICET), Department of Chemistry, Universidad Nacional Del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Xia C, Pu S, Hua J, Xu K. In situ formation of AuNPs in liquid bead-headspace microextraction of arsine for colorimetric sensing of trace As(III). Microchem J 2023. [DOI: 10.1016/j.microc.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
UV-vis spectrophotometer and smartphone RGB dual mode detection of inorganic arsenic based on hydride generation iodine-starch system. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Kumari B, Bharti VK. Recent advancements in toxicology, modern technology for detection, and remedial measures for arsenic exposure: review. Biotechnol Genet Eng Rev 2022:1-43. [PMID: 36411979 DOI: 10.1080/02648725.2022.2147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Arsenic toxicity has become a major global health concern for humans and animals due to extensive environmental and occupational exposure to arsenic-contaminated water, air, soil, and plant and animal origin food. It has a wide range of detrimental effects on animals, humans, and the environment. As a result, various experimental and clinical studies were undertaken and are undergoing to understand its source of exposures, pathogenesis, identify key biomarkers, the medical and economic impact on affected populations and ecosystems, and their timely detection and control measures. Despite these extensive studies, no conclusive information for the prevention and control of arsenic toxicity is available, owing to complex epidemiology and pathogenesis, including an imprecise approach and repetitive work. As a result, there is a need for literature that focuses on recent studies on the epidemiology, pathogenesis, detection, and ameliorative measures of arsenic toxicity to assist researchers and policymakers in the practical future planning of research and community control programs. According to the preceding viewpoint, this review article provides an extensive analysis of the recent progress on arsenic exposure to humans through the environment, livestock, and fish, arsenic toxicopathology, nano-biotechnology-based detection, and current remedial measures for the benefit of researchers, academicians, and policymakers in controlling arsenic eco-toxicology and directing future research. Arsenic epidemiology should therefore place the greatest emphasis on the prevalence of different direct and indirect sources in the afflicted areas, followed by control strategies.
Collapse
Affiliation(s)
- Bibha Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, UT Ladakh, India
| |
Collapse
|
10
|
Krishna MVB, Thangavel S, Sunitha Y. A blue arsenomolybdic acid-crystal violet ion-associate pair paving the way for the field detection of arsenic in groundwater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3539-3551. [PMID: 36018243 DOI: 10.1039/d2ay00608a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A simple visual colorimetric method based on arsenomolybdic acid-crystal violet ion-associate pair formation is described for the detection of As in groundwater at about 10, 25 and 50 μg L-1 levels. The pair exhibits light green coloration at ≤5 μg L-1 and blue colorations of distinctly different intensities at about 10, 25 and 50 μg L-1 concentrations of arsenic. High sensitivity is achieved by the preconcentration of As that entails simultaneous sorption of both As(III) and As(V) from groundwater on covellite (CuS) and, later, their elution as As(V), which subsequently participates in the formation of arsenomolybdic acid. The interference in the color development from PO43-ions that are as efficiently sorbed on CuS and eluted as the oxyanions of As is eliminated by their selective removal by Ce4+ ions under basic (pH ∼ 8.5) conditions. The removal is caused by the formation of cerium phosphate and its co-precipitation with calcium hydroxide. SiO42- ions do not interfere in the process as they are not sorbed by CuS. Groundwater containing ≤0.5 mg L-1 P and ≥200 mg L-1 total dissolved solid can be conveniently analysed by the method. The direct sensing of As(III) as well as As(V), the use of benign and easily available chemicals, the absence of any hazardous by-product, undiminished applicability in sunlight, the testing procedure lasting only for about 30 min, and rapidity are the major advantages of the method. Thus, the method is potentially well-suited for the on-site testing of groundwater potability under different regulations.
Collapse
Affiliation(s)
- M V Balarama Krishna
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, Hyderabad-500062, India.
| | - S Thangavel
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, Hyderabad-500062, India.
| | - Y Sunitha
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, Hyderabad-500062, India.
| |
Collapse
|
11
|
Du Y, Sun C, Shen Y, Liu L, Chen M, Xie Q, Xiao H. Anodic Stripping Voltammetric Analysis of Trace Arsenic(III) on a Au-Stained Au Nanoparticles/Pyridine/Carboxylated Multiwalled Carbon Nanotubes/Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1450. [PMID: 35564158 PMCID: PMC9105122 DOI: 10.3390/nano12091450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/20/2023]
Abstract
A Au-stained Au nanoparticle (Aus)/pyridine (Py)/carboxylated multiwalled carbon nanotubes (C-MWCNTs)/glassy carbon electrode (GCE) was prepared for the sensitive analysis of As(III) by cast-coating of C-MWCNTs on a GCE, electroreduction of 4-cyanopyridine (cPy) to Py, adsorption of gold nanoparticles (AuNPs), and gold staining. The Py/C-MWCNTs/GCE can provide abundant active surface sites for the stable loading of AuNPs and then the AuNPs-initiated Au staining in HAuCl4 + NH2OH solution, giving a large surface area of Au on the Aus/Py/C-MWCNTs/GCE for the linear sweep anodic stripping voltammetry (LSASV) analysis of As(III). At a high potential-sweep rate of 5 V s-1, sharp two-step oxidation peaks of As(0) to As(III) and As(III) to As(V) were obtained to realize the sensitive dual-signal detection of As(III). Under optimal conditions, the ASLSV peak currents for oxidation of As(0) to As(III) and of As(III) to As(V) are linear with a concentration of As(III) from 0.01 to 8 μM with a sensitivity of 0.741 mA μM-1 and a limit of detection (LOD) of 3.3 nM (0.25 ppb) (S/N = 3), and from 0.01 to 8.0 μM with a sensitivity of 0.175 mA μM-1 and an LOD of 16.7 nM (1.20 ppb) (S/N = 3), respectively. Determination of As(III) in real water samples yielded satisfactory results.
Collapse
Affiliation(s)
- Yun Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Changsha Center for Diseases Prevention and Control, Changsha 410004, China
| | - Chenglong Sun
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuru Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Luyao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Mingjian Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hongbo Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
12
|
Reich ND, Nghiem AA, Nicholas S, Bostick BC, Campbell MG. Determination of Arsenic Content in Water Using a Silver Coordination Polymer. ACS ENVIRONMENTAL AU 2022; 2:150-155. [PMID: 35662741 PMCID: PMC9165637 DOI: 10.1021/acsenvironau.1c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we describe a practical method for the colorimetric determination of dissolved inorganic arsenic content in water samples, using a silver coordination polymer as the sensing material. We demonstrate that a crystalline polymer framework can be used to stabilize silver(I) ions, greatly reducing both photosensitivity and water solubility, while still affording sufficient reactivity to detect arsenic in water samples at low parts-per-billion (ppb) levels. Test strips fabricated with the silver-based polymer are shown to be effective for field tests of groundwater under real-world operating conditions and display performance that is competitive with commercially available mercury-based test strips. Spectroscopic methods are also used to probe the reaction products formed, in order to better understand the sensing mechanism. Thus, our work provides the foundation for an improved field test that could be deployed to help manage groundwater usage in regions where arsenic contamination is problematic but sophisticated lab testing is not readily available.
Collapse
Affiliation(s)
- Natasha D Reich
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Athena A Nghiem
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Sarah Nicholas
- Brookhaven National Laboratory, NSLS-II, Upton, New York 11973, United States
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Michael G Campbell
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
13
|
Ye S, Li L, Ou Y, Li W, Zhang S, Huang K, Luo H, Zou Z, Xiong X. In situ formation of silver nanoparticles via hydride generation: A miniaturized/portable visual colorimetric system for arsenic detection in environmental water samples. Anal Chim Acta 2022; 1192:339366. [DOI: 10.1016/j.aca.2021.339366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
|
14
|
Bai H, Wang H, Bai F, Liang A, Jiang Z. A Simple and Sensitive Nanogold RRS/Abs Dimode Sensor for Trace As 3+ Based on Aptamer Controlled Nitrogen Doped Carbon Dot Catalytic Amplification. Molecules 2021; 26:molecules26195930. [PMID: 34641474 PMCID: PMC8512150 DOI: 10.3390/molecules26195930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze ethanol (Et)-HAuCl4 to generate gold nanoparticles (AuNPs), which have strong surface plasmon resonance, Rayleigh scattering, (RRS) and a surface plasmon resonance (SPR) absorption (Abs) effect at 370 nm and 575 nm, respectively. Compled the new catalytic amplification indicator reaction with the specific As3+ aptamer reaction, a new RRS/Abs dual-mode aptamer sensor for the assay of trace As3+ was developed, based on the RRS/Abs signals increasing linearly with As3+ increasing in the ranges of 5-250 nmol/L and 50-250 nmol/L, whose detection limits were 0.8 nmol/L and 3.4 nmol/L As3+, respectively. This analytical method has the advantages of high selectivity, simplicity, and rapidity, and it has been successfully applied to the detection of practical samples.
Collapse
Affiliation(s)
- Hongyan Bai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (H.B.); (H.W.); (F.B.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Haolin Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (H.B.); (H.W.); (F.B.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Fuzhang Bai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (H.B.); (H.W.); (F.B.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (H.B.); (H.W.); (F.B.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Correspondence: (A.L.); (Z.J.)
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (H.B.); (H.W.); (F.B.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Correspondence: (A.L.); (Z.J.)
| |
Collapse
|
15
|
Wang Y, Qing W. The construction of gold hybrid supramolecular hydrogels for doxorubicin delivery. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1973002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P.R. China
| | - Weixia Qing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, P.R. China
| |
Collapse
|
16
|
Leng G, Lin L, Worsfold PJ, Xu W, Luo X, Chang L, Li W, Zhang X, Xia C. A simple and rapid head space-single drop microextraction-‘spectro-pipette’ (HS-SDME-SP) method for the on-site measurement of arsenic species in natural waters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Harisha KS, Narayana B, Sangappa Y. Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1931286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. S. Harisha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| | - Y. Sangappa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| |
Collapse
|