1
|
Deng L, May JC, McBee JK, Rosen A, Rorrer LC, Clingman R, Fico M, McLean JA, DeBord D. Rounded Turn SLIM Design for High-Resolution Ion Mobility Mass Spectrometry Analysis of Small Molecules. Anal Chem 2024; 96:20179-20188. [PMID: 39661157 DOI: 10.1021/acs.analchem.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Various rounded turn designs in Structures for Lossless Ion Manipulation (SLIM) were explored via ion trajectory simulations. The optimized design was integrated into a SLIM ion mobility (IM) system coupled with a time-of-flight (TOF) mass spectrometer (MS) for further experimental investigation. The SLIM-TOF IM-MS system was assessed for IM resolution and ion transmission efficiency across a wide m/z range using various RF frequencies and buffer gas combinations. High ion transmission efficiency and high resolution ion mobility (HRIM) separation were achieved for Agilent tune mix ions through a ∼12.8 m serpentine separation path in both nitrogen and helium. In helium, ion transmission for low m/z ions was enhanced at higher RF trapping frequency, enabling the detection of ions with m/z below 50 and all 17 amino acids from a standard mixture. Lossless ion transmission was observed for glycine (m/z 76) in both passthrough and HRIM modes. HRIM resolution was benchmarked using L-isoleucine, L-leucine, and various other isobaric and isomeric metabolites with m/z values of 60-89. This work demonstrates a rounded turn SLIM design that enables HRIM measurements for small molecule analytes, with a particular focus on metabolomics, where IM offers a means to enhance the speed, robustness, and specificity of analytical workflows.
Collapse
Affiliation(s)
- Liulin Deng
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua K McBee
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Adam Rosen
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Leonard C Rorrer
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Ryan Clingman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Miriam Fico
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
2
|
Reardon AR, May JC, Leaptrot KL, McLean JA. High-resolution ion mobility based on traveling wave structures for lossless ion manipulation resolves hidden lipid features. Anal Bioanal Chem 2024; 416:5473-5483. [PMID: 38935144 PMCID: PMC11427608 DOI: 10.1007/s00216-024-05385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
High-resolution ion mobility (resolving power > 200) coupled with mass spectrometry (MS) is a powerful analytical tool for resolving isobars and isomers in complex samples. High-resolution ion mobility is capable of discerning additional structurally distinct features, which are not observed with conventional resolving power ion mobility (IM, resolving power ~ 50) techniques such as traveling wave IM and drift tube ion mobility (DTIM). DTIM in particular is considered to be the "gold standard" IM technique since collision cross section (CCS) values are directly obtained through a first-principles relationship, whereas traveling wave IM techniques require an additional calibration strategy to determine accurate CCS values. In this study, we aim to evaluate the separation capabilities of a traveling wave ion mobility structures for lossless ion manipulation platform integrated with mass spectrometry analysis (SLIM IM-MS) for both lipid isomer standards and complex lipid samples. A cross-platform investigation of seven subclass-specific lipid extracts examined by both DTIM-MS and SLIM IM-MS showed additional features were observed for all lipid extracts when examined under high resolving power IM conditions, with the number of CCS-aligned features that resolve into additional peaks from DTIM-MS to SLIM IM-MS analysis varying between 5 and 50%, depending on the specific lipid sub-class investigated. Lipid CCS values are obtained from SLIM IM (TW(SLIM)CCS) through a two-step calibration procedure to align these measurements to within 2% average bias to reference values obtained via DTIM (DTCCS). A total of 225 lipid features from seven lipid extracts are subsequently identified in the high resolving power IM analysis by a combination of accurate mass-to-charge, CCS, retention time, and linear mobility-mass correlations to curate a high-resolution IM lipid structural atlas. These results emphasize the high isomeric complexity present in lipidomic samples and underscore the need for multiple analytical stages of separation operated at high resolution.
Collapse
Affiliation(s)
- Allison R Reardon
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
3
|
Yang S, Ma Y, Song Y, Wang X, Cong P, Meng N, Xu J, Xue C. Establishment of a targeted analysis method for gangliosides in mouse tissues by HILIC-ESI-MS/MS. Anal Bioanal Chem 2024; 416:5457-5471. [PMID: 38305860 DOI: 10.1007/s00216-024-05169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Gangliosides play an imperative role in cell signaling, neuronal recovery, apoptosis, and other physiological processes. For example, GM3 can regulate hypothalamic leptin resistance and control energy homeostasis, GD3 can mediate cell proliferation and differentiation and induce apoptosis, and GQ1b can stimulate neurogenesis. Therefore, the present study sought to establish and optimize the targeted analysis method for ganglioside subclasses and their molecular species using hydrophilic interaction liquid chromatography-triple quadrupole-MS/MS (HILIC-QQQ-MS/MS). Additionally, the fragmentation pattern of different ganglioside subclasses and their retention time patterns were analyzed, providing more accurate qualitative results. The limit of quantitation (LOQ) was as low as 10-4 ng. Moreover, the molecular species of gangliosides in the liver, cortex, and hypothalamus of C57BL/6 mice were analyzed using the established method. A total of 23 ganglioside subclasses with 164 molecular species, including 40 O-acetylated ganglioside molecular species and 28 NeuGc ganglioside molecular species, were identified using the semi-quantitative analysis method of an external standard curve corrected by an internal standard. In addition to NeuGc gangliosides, the contents of ganglioside subclasses were more abundant in the mouse brain than those in the mouse liver; especially, the contents of unsaturated gangliosides in the hypothalamus were much higher than those in the liver. Among them, O-acetylated gangliosides were detected only in the cortex and hypothalamus at a concentration of up to 100 μg/mg protein (40 molecular species). Overall, the proposed method expanded the detectable number of ganglioside subclasses and molecular species in biological samples and provided more opportunities for further study of the biological functions of gangliosides.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Yingxu Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China.
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
- Qingdao Marine Science and Technology Center, Qingdao, 266235, China
| |
Collapse
|
4
|
Williamson DL, Naylor CN, Nagy G. Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies. Anal Chem 2024. [PMID: 39137259 DOI: 10.1021/acs.analchem.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gangliosides, a diverse class of glycosphingolipids, are highly abundant in neural tissue and have been implicated in numerous aging-related diseases. Their characterization with methods such as liquid chromatography-tandem mass spectrometry is often precluded by their structural complexity, isomeric heterogeneity, and lack of commercially available authentic standards. In this work, we coupled high-resolution cyclic ion mobility spectrometry with multiple collision-induced dissociation-based tandem mass spectrometry strategies to sequence the sialic acid positions in various ganglioside isomers. Initially, as a proof-of-concept demonstration, we were able to characterize the sialic acid positions in several GD1 and GT1 species. From there, we extended our approach to identify the location of N-glycolylneuraminic acid (NeuGc) residues in previously uncharacterized GD1 and GQ1 isomers. Our results highlight the potential of this presented methodology for the de novo characterization of gangliosides within complex biological matrices without the need for authentic standards.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Naylor CN, Nagy G. Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21902. [PMID: 39087820 PMCID: PMC11785821 DOI: 10.1002/mas.21902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.
Collapse
Affiliation(s)
- Cameron N. Naylor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Hohenwallner K, Lamp LM, Peng L, Nuske M, Hartler J, Reid GE, Rampler E. FAIMS Shotgun Lipidomics for Enhanced Class- and Charge-State Separation Complemented by Automated Ganglioside Annotation. Anal Chem 2024; 96. [PMID: 39028917 PMCID: PMC11295132 DOI: 10.1021/acs.analchem.4c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The analysis of gangliosides is extremely challenging, given their structural complexity, lack of reference standards, databases, and software solutions. Here, we introduce a fast 6 min high field asymmetric ion mobility spectrometry (FAIMS) shotgun lipidomics workflow, along with a dedicated software solution for ganglioside detection. By ramping FAIMS compensation voltages, ideal ranges for different ganglioside classes were obtained. FAIMS revealed both class- and charge-state separation behavior based on the glycan headgroup moiety. The number of sialic acids attached to the glycan moiety correlates positively with their preferred charge states, i.e., trisialylated gangliosides were mainly present as [M - 3H]3- ions, whereas [M - 4H]4- and [M - 5H]5- ions were observed for GQ1 and GP1. For data evaluation, we developed a shotgun/FAIMS extension for the open-source Lipid Data Analyzer (LDA), enabling automated annotation of gangliosides up to the molecular lipid species level. This extension utilized combined orthogonal fragmentation spectra from CID, HCD, and 213 nm UVPD ion activation methods and covers 29 ganglioside classes, including acetylated and fucosylated modifications. With our new workflow and software extension 117 unique gangliosides species were identified in porcine brain extracts. While conventional shotgun lipidomics favored the observation of singly charged ganglioside species, the utilization of FAIMS made multiply charged lipid species accessible, resulting in an increased number of detected species, primarily due to an improved signal-to-noise ratio arising from FAIMS charge state filtering. Therefore, this FAIMS-driven workflow, complemented by new software capabilities, offers a promising strategy for complex ganglioside and glycosphingolipid characterization in shotgun lipidomics.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Liuyu Peng
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madison Nuske
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
| | - Gavin E. Reid
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| |
Collapse
|
7
|
Kurilung A, Limjiasahapong S, Kaewnarin K, Wisanpitayakorn P, Jariyasopit N, Wanichthanarak K, Sartyoungkul S, Wong SCC, Sathirapongsasuti N, Kitiyakara C, Sirivatanauksorn Y, Khoomrung S. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples. J Pharm Anal 2024; 14:100921. [PMID: 38799238 PMCID: PMC11127212 DOI: 10.1016/j.jpha.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 05/29/2024] Open
Abstract
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
Collapse
Affiliation(s)
- Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, 168583, Singapore
| | - Pattipong Wisanpitayakorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sitanan Sartyoungkul
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Hu J, Linse S, Sparr E. Ganglioside Micelles Affect Amyloid β Aggregation by Coassembly. ACS Chem Neurosci 2023; 14:4335-4343. [PMID: 38050745 PMCID: PMC10739608 DOI: 10.1021/acschemneuro.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Amyloid β peptide (Aβ) is the crucial protein component of extracellular plaques in Alzheimer's disease. The plaques also contain gangliosides lipids, which are abundant in membranes of neuronal cells and in cell-derived vesicles and exosomes. When present at concentrations above its critical micelle concentration (cmc), gangliosides can occur as mixed micelles. Here, we study the coassembly of the ganglioside GM1 and the Aβ peptides Aβ40 and 42 by means of microfluidic diffusional sizing, confocal microscopy, and cryogenic transmission electron microscopy. We also study the effects of lipid-peptide interactions on the amyloid aggregation process by fluorescence spectroscopy. Our results reveal coassembly of GM1 lipids with both Aβ monomers and Aβ fibrils. The results of the nonseeded kinetics experiments show that Aβ40 aggregation is delayed with increasing GM1 concentration, while that of Aβ42 is accelerated. In seeded aggregation reactions, the addition of GM1 leads to a retardation of the aggregation process of both peptides. Thus, while the effect on nucleation differs between the two peptides, GM1 may inhibit the elongation of both types of fibrils. These results shed light on glycolipid-peptide interactions that may play an important role in Alzheimer's pathology.
Collapse
Affiliation(s)
- Jing Hu
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sara Linse
- Division
of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
9
|
Kedia K, Harris R, Ekroos K, Moser KW, DeBord D, Tiberi P, Goracci L, Zhang NR, Wang W, Spellman DS, Bateman K. Investigating Performance of the SLIM-Based High Resolution Ion Mobility Platform for Separation of Isomeric Phosphatidylcholine Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2176-2186. [PMID: 37703523 DOI: 10.1021/jasms.3c00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different cis-double bond locations. Similarly, PC 18:1/18:1 (cis-9) can be resolved from the corresponding PC 18:1/18:1 (trans-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.
Collapse
Affiliation(s)
- Komal Kedia
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rachel Harris
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Kim Ekroos
- Lipidomics Consulting Ltd, Irisviksvägen 31D, 02230 Esbo, Finland
| | - Kelly W Moser
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Paolo Tiberi
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire WD6 3FG United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Kevin Bateman
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Kinlein Z, Clowers BH. Evaluating dynamic traveling wave profiles for the enhancement of separation and sensitivity in traveling wave structures for lossless ion manipulations. J Chromatogr A 2023; 1706:464207. [PMID: 37506460 PMCID: PMC10528362 DOI: 10.1016/j.chroma.2023.464207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The amenability of traveling wave ion mobility spectrometry (TWIMS) to extended separation pathlengths has prompted a recent surge of interest concerning the technique. While promising, the optimization of ion transmission, particularly when analyzing increasingly disparate species, remains an obstacle in TWIMS. To address this issue, we evaluated a suite of dynamic TW profiles using an original TW structures for lossless ion manipulations (TW-SLIM) platform developed at Washington State University. Inspired by the range of gradient elution profiles used in traditional chromatography, three distinct square TW profiles were evaluated: a static approach which represents a traditional waveform, a dual approach which consists of two distinct TW profiles within a given separation event; and a ramp approach which varies TW speed and amplitude at a fixed rate during separation. The three waveform profiles were evaluated in terms of their impact on separation (quantified as resolution) and sensitivity (quantified using signal-to-noise ratio (SNR), and ion abundance). Concerning separation, the highest resolution (R) was observed when operating with the static waveform (R = 7.92); however, the ramp waveform performed comparably (R = 7.70) under similar conditions. Regarding SNR, optimum waveform profiles were species dependent. Bradykinin2+ displayed the largest gains in SNR (36.6% increase) when ramping TW speed, while the gains were greatest (33.5% increase) for tetraoctylammonium when modulating TW amplitude with the static waveform. Lastly, significant (>10%) increases in the abundance of tetraoctylammonium ions were observed exclusively when utilizing a ramped waveform. The present set of experiments outline the results and challenges related to optimizing separations using alternative TW profiles and provides insight concerning TW-SLIM method development which may be tailored to enhance select analytical metrics.
Collapse
Affiliation(s)
- Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
11
|
Naylor CN, Nagy G. Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry. Anal Chem 2023; 95:13725-13732. [PMID: 37650842 DOI: 10.1021/acs.analchem.3c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lipids are an important class of molecules involved in various biological functions but remain difficult to characterize through mass-spectrometry-based methods because of their many possible isomers. Glycolipids, specifically, play important roles in cell signaling but display an even greater level of isomeric heterogeneity as compared to other lipid classes stemming from the introduction of a carbohydrate and its corresponding linkage position and α/β anomericity at the headgroup. While liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidomics, it is still unable to characterize all isomeric species, thus presenting the need for new, orthogonal, methodologies. Ion mobility spectrometry-mass spectrometry (IMS-MS) can provide an additional dimension of information that supplements LC-MS/MS workflows, but has seen little use for glycolipid analyses. Herein, we present an analytical toolbox that enables the characterization of various glycolipid isomer sets using high-resolution cyclic ion mobility separations coupled with mass spectrometry (cIMS-MS). Specifically, we utilized a combination of both permethylation and metal adduction to fully resolve isomeric sphingolipids and ceramides with our cIMS-MS platform. We also introduce a new metric that can enable comparing peak-to-peak resolution across varying cIMS-MS pathlengths. Overall, we envision that our presented methodologies are highly amenable to existing LC-MS/MS-based workflows and can also have broad utility toward other omics-based analyses.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
13
|
Chan WH, Yau LF, Meng XY, Chan KM, Jiang ZH, Wang JR. Robust quantitation of gangliosides and sulfatides in human brain using UHPLC-MRM-MS: Method development and application in Alzheimer's disease. Talanta 2023; 256:124264. [PMID: 36689895 DOI: 10.1016/j.talanta.2023.124264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Gangliosides (GAs) and sulfatides (STs) are acidic glycosphingolipids that are particularly abundant in the nervous system and are closely related to aging and neurodegenerative disorders. To explore their roles in brain diseases, in-depth molecular profiling, including structural variations of sphingoid backbone, fatty acyl group, and sugar chain of GAs and STs was performed. A total of 210 GAs and 38 STs were characterized in the inferior frontal gyrus (IFG) of human brain, with 90 GAs discovered in brain tissues for the first time. Influential MS parameters for detecting GAs and STs in multiple reaction monitoring (MRM) mode were systematically examined and optimized to minimize in-source fragmentation, resulting in remarkable signal intensity enhancement for GAs and STs, especially for polysialylated species. To eliminate analytical variations, isotopic interference-free internal standards were prepared by simple and fast reduction reaction. The final established method facilitated the simultaneous quantitation of 184 GAs and 30 STs from 25 subtypes, which represents the highest number of GAs quantitated among all quantitation methods recorded in literature so far. The method was further validated and applied to reveal the aberrant change of GAs and STs in the IFG of 12 Alzheimer's disease (AD) patients. Four GAs exhibited high classification capacity for AD (AUC ≥0.80) and were thereby considered the most promising signatures for AD. These findings suggested the close correlation between GAs and the pathogenesis of AD, highlighting the achievements of our robust method for investigating the roles of GAs and STs in various physiological states and diseases.
Collapse
Affiliation(s)
- Wai-Him Chan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Xiong-Yu Meng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Ka-Man Chan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510000, China.
| |
Collapse
|
14
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
15
|
Djambazova KV, Dufresne M, Migas LG, Kruse ARS, Van de Plas R, Caprioli RM, Spraggins JM. MALDI TIMS IMS of Disialoganglioside Isomers─GD1a and GD1b in Murine Brain Tissue. Anal Chem 2023; 95:1176-1183. [PMID: 36574465 DOI: 10.1021/acs.analchem.2c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gangliosides are acidic glycosphingolipids, containing ceramide moieties and oligosaccharide chains with one or more sialic acid residue(s) and are highly diverse isomeric structures with distinct biological roles. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables the untargeted spatial analysis of gangliosides, among other biomolecules, directly from tissue sections. Integrating trapped ion mobility spectrometry with MALDI IMS allows for the analysis of isomeric lipid structures in situ. Here, we demonstrate the gas-phase separation and identification of disialoganglioside isomers GD1a and GD1b that differ in the position of a sialic acid residue, in multiple samples, including a standard mixture of both isomers, a biological extract, and directly from thin tissue sections. The unique spatial distributions of GD1a/b (d36:1) and GD1a/b (d38:1) isomers were determined in rat hippocampus and spinal cord tissue sections, demonstrating the ability to structurally characterize and spatially map gangliosides based on both the carbohydrate chain and ceramide moieties.
Collapse
Affiliation(s)
- Katerina V Djambazova
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Lukasz G Migas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Angela R S Kruse
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue S #3218, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
17
|
May JC, McLean JA. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations. Metabolomics 2022; 18:104. [PMID: 36472678 DOI: 10.1007/s11306-022-01961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.
Collapse
Affiliation(s)
- Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Arends M, Weber M, Papan C, Damm M, Surma MA, Spiegel C, Djannatian M, Li S, Connell L, Johannes L, Schifferer M, Klose C, Simons M. Ganglioside lipidomics of CNS myelination using direct infusion shotgun mass spectrometry. iScience 2022; 25:105323. [PMID: 36310581 PMCID: PMC9615322 DOI: 10.1016/j.isci.2022.105323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gangliosides are present and concentrated in axons and implicated in axon-myelin interactions, but how ganglioside composition changes during myelin formation is not known. Here, we present a direct infusion (shotgun) lipidomics method to analyze gangliosides in small amounts of tissue reproducibly and with high sensitivity. We resolve the mouse ganglioside lipidome during development and adulthood and determine the ganglioside content of mice lacking the St3gal5 and B4galnt1 genes that synthesize most ganglioside species. Our results reveal substantial changes in the ganglioside lipidome during the formation of myelinated nerve fibers. In sum, we provide insights into the CNS ganglioside lipidome with a quantitative and sensitive mass spectrometry method. Since this method is compatible with global lipidomic profiling, it will provide insights into ganglioside function in physiology and pathology. A sensitive direct infusion mass spectrometry method for ganglioside lipidomics Quantification of gangliosides in CNS myelin development Generation of myelin in the absence of gangliosides
Collapse
Affiliation(s)
- Martina Arends
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | | | | | | | - Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | | | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Corresponding author
| |
Collapse
|
19
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Rose B, May JC, Reardon AR, McLean JA. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1229-1237. [PMID: 35653638 PMCID: PMC9516683 DOI: 10.1021/jasms.2c00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.
Collapse
|
21
|
Gao T, Lott AA, Huang F, Rohokale R, Li Q, Olivos HJ, Chen S, Guo Z. Structural characterization and analysis of different epimers of neutral glycosphingolipid LcGg4 by ion mobility spectrometry-mass spectrometry. Analyst 2022; 147:3101-3108. [PMID: 35695136 DOI: 10.1039/d2an00224h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
LcGg4, a neutral glycosphingolipid (GSL) and cancer antigen, its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, and three lipid forms of GalNAc-LcGg4 were studied by mass spectrometry (MS). It was found that different forms of GalNAc-LcGg4 carrying homologous (d16:1/18:0) and (d18:1/18:0) lipids were easily separated and identified using liquid chromatography (LC)-MS. In addition, like gangliosides, homologous lipid forms of GalNAc-LcGg4 showed the same fragmentation pattern, except for a uniform shift of their glycolipid product ions by a certain m/z number determined by the varied lipid structure. It was also disclosed that LcGg4 and its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, which are different only in the C4-configuration of their non-reducing end sugar residues, gave the same MS/MS product ions in similar relative intensities, as well as the same LC retention time, suggesting the challenge to differentiate epimeric GSLs by LC-MS. However, ion mobility spectrometry (IMS)-MS was able to efficiently separate and distinguish these epimers. This study has demonstrated the promise of IMS-MS for isomeric GSL characterization and the IMS-MS and LC-MS/MS combination for natural GSL analysis.
Collapse
Affiliation(s)
- Tianqi Gao
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Aneirin A Lott
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Fanran Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Hernando J Olivos
- Waters Corporation, 5 Technology Drive, Building B, Milford, MA 01757, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
22
|
Validation of a multiplexed and targeted lipidomics assay for accurate quantification of lipidomes. J Lipid Res 2022; 63:100218. [PMID: 35489416 PMCID: PMC9168725 DOI: 10.1016/j.jlr.2022.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.
Collapse
|
23
|
Dubland JA. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:7-13. [PMID: 34988541 PMCID: PMC8703053 DOI: 10.1016/j.jmsacl.2021.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
Ion mobility spectrometry (IMS) is an analytical technique where ions are separated in the gas phase based on their mobility through a buffer gas in the presence of an electric field. An ion passing through an IMS device has a characteristic collisional cross section (CCS) value that depends on the buffer gas used. IMS can be coupled with mass spectrometry (MS), which characterizes an ion based on a mass-to-charge ratio (m/z), to increase analytical specificity and provide further physicochemical information. In particular, IMS-MS is of ever-increasing interest for the analysis of lipids, which can be problematic to accurately identify and quantify in bodily fluids by liquid chromatography (LC) with MS alone due to the presence of isomers, isobars, and structurally similar analogs. IMS provides an additional layer of separation when combined with front-end LC approaches, thereby, enhancing peak capacity and analytical specificity. CCS (and also ion mobility drift time) can be plotted against m/z ion intensity and/or LC retention time in order to generate in-depth molecular profiles of a sample. Utilization of IMS-MS for routine clinical laboratory testing remains relatively unexplored, but areas do exist for potential implementation. A brief update is provided here on lipid analysis using IMS-MS with a perspective on some applications in the clinical laboratory.
Collapse
Key Words
- CCS, collisional cross section
- CV, compensation voltage
- CVD, cardiovascular disease
- Clinical analysis
- DG, diacylglycerol
- DMS, differential mobility spectrometry
- DTIMS, drift tube ion mobility spectrometry
- EV, elution voltage
- FAIMS, field asymmetric waveform ion mobility spectrometry
- FIA, flow injection analysis
- FTICR, fourier-transform ion cyclotron resonance
- HDL, high-density-lipoprotein
- HRMS, high-resolution mass spectrometry
- IMS, ion mobility spectrometry
- IMS-MS, ion mobility spectrometry-mass spectrometry
- Ion mobility spectrometry
- LC, liquid chromatography
- LDL, low-density-lipoprotein
- LPC, lysophosphatidylcholine
- Lipids
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- NBS, newborn screening
- PC, glycerophosphocholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- RF, radio frequency
- SLIM, structures for loss less ion manipulations
- SM, sphingomyelin
- SV, separation voltage
- TG, triglyceride
- TIMS, trapped ion mobility spectrometry
- TOF, time-of-flight
- TWIMS, traveling wave ion mobility spectrometry
- VLDL, very-low-density lipoprotein
- m/z, mass-to-charge ratio
Collapse
Affiliation(s)
- Joshua A. Dubland
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Koomen DC, May JC, McLean JA. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Rev Proteomics 2022; 19:17-31. [PMID: 34986717 PMCID: PMC8881341 DOI: 10.1080/14789450.2022.2026218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/23/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Collapse
Affiliation(s)
- David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Chao HC, McLuckey SA. Manipulation of Ion Types via Gas-Phase Ion/Ion Chemistry for the Structural Characterization of the Glycan Moiety on Gangliosides. Anal Chem 2021; 93:15752-15760. [PMID: 34788022 DOI: 10.1021/acs.analchem.1c03876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gangliosides are the most abundant glycolipid among eukaryotic cell membranes and consist of a glycan head moiety containing one or more sialic acids and a ceramide chain. The analysis of the glycan moieties among different subclass gangliosides, including GM, GD, and GT gangliosides, remains a challenge for shotgun lipidomics. Here, we present a novel shotgun lipidomics approach employing gas-phase ion/ion chemistry. The gas-phase derivatization strategy provides a rapid way to manipulate the ion-types of the precursor ions, and, in conjunction with collision induced dissociation (CID), allows for the elucidation of the structures of the glycan moieties from gangliosides. In addition to the enhancement of structural characterization, gas-phase ion chemistry leads to a form of purification of the precursor ions prior to CID by neutralizing isobaric or isomeric ions with different charge states but with similar or identical m/z values. To demonstrate the proposed strategy, both deprotonated GM3 and GM1 gangliosides ([GM-H]-) were isolated and subjected to reaction with magnesium-Terpy complex cations ([Mg(Terpy)2]2+). The post-reaction product spectra show the elimination of possible contamination, illustrating the ability of charge-switching derivatization to purify the precursor ions. Isomeric differentiation between GD1a and GD1b was achieved by the sequential ion/ion reactions, with the CID of [GD1-H+Mg]+ showing diagnostic fragment ions from the isomers. Moreover, isomeric identification among GT1a, GT1b, and GT1c was accomplished while performing a gas-phase magnesium transfer reaction and CID. Lastly, the presented workflow was applied to ganglioside profiling in a porcine brain extract. In total, 34 gangliosides were profiled among only 20 precursor ion m/z values by resolving isomers. Furthermore, the fucosylation site on GM1 and GD1, and N-glycolylneuraminic acid conjugated GT1 isomers was identified. Relative quantification of isomeric two isomeric pairs, GD1a/b C36:1 and GD1a/b C38:1 was also achieved using pure component product ion spectra coupled with a total least-squares method. The results demonstrate the applicability and strength of using shotgun MS coupled with gas-phase ion/ion chemistry to characterize the glycan moiety structures on different subclasses of gangliosides.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Liu J, Wang K, Li Y, Zhou B, Tseng K, Zhang X, Su Y, Sun W, Guo Y. Rapid Discrimination of Citrus reticulata 'Chachi' by Electrospray Ionization-Ion Mobility-High-Resolution Mass Spectrometry. Molecules 2021; 26:7015. [PMID: 34834108 PMCID: PMC8622672 DOI: 10.3390/molecules26227015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A common idea is that some dishonest businessmen often disguise Citrus reticulata Blanco varieties as Citrus reticulata 'Chachi', which places consumers at risk of economic losses. In this work, we combined high-resolution ion mobility (U-shaped mobility analyzer) with high-resolution mass spectrometry to rapidly distinguish Citrus reticulata 'Chachi' from other Citrus species. The samples were analyzed directly through simple extraction and the analytes were separated in one second. It only took about 1 min to perform a cycle of sample analysis and data acquisition. The results showed that polymethoxylated flavones and their isomers were separated easily by the ion mobility analyzer and preliminarily identified according to the accurate mass. Moreover, the collision cross-section values of all analytes, which could be used as auxiliary parameters to characterize and identify the compounds in the samples, were measured. Twenty-four samples were grouped as two clusters by multivariate analysis, which meant that Citrus reticulata 'Chachi' could be effectively differentiated. It was confirmed that the developed method had the potential to rapidly separate polymethoxylated flavones and distinguish between Citrus reticulata 'Chachi' and other Citrus reticulata Blanco varieties.
Collapse
Affiliation(s)
- Juan Liu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Keke Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yuling Li
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Bowen Zhou
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yue Su
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| |
Collapse
|
27
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
28
|
Chakraberty R, Reiz B, Cairo CW. Profiling of glycosphingolipids with SCDase digestion and HPLC-FLD-MS. Anal Biochem 2021; 631:114361. [PMID: 34478702 DOI: 10.1016/j.ab.2021.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Lipid components of cells and tissues feature a large diversity of structures that present a challenging problem for molecular analysis. Glycolipids from mammalian cells contain glycosphingolipids (GSLs) as their major glycolipid component, and these structures vary in the identity of the glycan headgroup as well as the structure of the fatty acid and sphingosine (Sph) tails. Analysis of intact GSLs is challenging due to the low abundance of these species. Here, we develop a new strategy for the analysis of lyso-GSL (l-GSL), GSL that retain linkage of the glycan headgroup with the Sph base. The analysis begins with digestion of a GSL sample with sphingolipid ceramide N-deacylase (SCDase), followed by labelling with an amine-reactive fluorophore. The sample was then analyzed by HPLC-FLD-MS and quantitated by addition of an external standard. This method was compared to analysis of GSL glycans after cleavage by an Endoglycoceramidase (EGCase) enzyme and labeling with a fluorophore (2-anthranilic acid, 2AA). The two methods are complementary, with EGCase providing improved signal (due to fewer species) and SCDase providing analysis of lyso-GSL. Importantly the SCDase method provides Sph composition of GSL species. We demonstrate the method on cultured human cells (Jurkat T cells) and tissue homogenate (porcine brain).
Collapse
Affiliation(s)
- Radhika Chakraberty
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Bela Reiz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
29
|
Saigusa D, Hishinuma E, Matsukawa N, Takahashi M, Inoue J, Tadaka S, Motoike IN, Hozawa A, Izumi Y, Bamba T, Kinoshita K, Ekroos K, Koshiba S, Yamamoto M. Comparison of Kit-Based Metabolomics with Other Methodologies in a Large Cohort, towards Establishing Reference Values. Metabolites 2021; 11:652. [PMID: 34677367 PMCID: PMC8538467 DOI: 10.3390/metabo11100652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic profiling is an omics approach that can be used to observe phenotypic changes, making it particularly attractive for biomarker discovery. Although several candidate metabolites biomarkers for disease expression have been identified in recent clinical studies, the reference values of healthy subjects have not been established. In particular, the accuracy of concentrations measured by mass spectrometry (MS) is unclear. Therefore, comprehensive metabolic profiling in large-scale cohorts by MS to create a database with reference ranges is essential for evaluating the quality of the discovered biomarkers. In this study, we tested 8700 plasma samples by commercial kit-based metabolomics and separated them into two groups of 6159 and 2541 analyses based on the different ultra-high-performance tandem mass spectrometry (UHPLC-MS/MS) systems. We evaluated the quality of the quantified values of the detected metabolites from the reference materials in the group of 2541 compared with the quantified values from other platforms, such as nuclear magnetic resonance (NMR), supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) and UHPLC-Fourier transform mass spectrometry (FTMS). The values of the amino acids were highly correlated with the NMR results, and lipid species such as phosphatidylcholines and ceramides showed good correlation, while the values of triglycerides and cholesterol esters correlated less to the lipidomics analyses performed using SFC-MS/MS and UHPLC-FTMS. The evaluation of the quantified values by MS-based techniques is essential for metabolic profiling in a large-scale cohort.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shu Tadaka
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ikuko N. Motoike
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan;
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kim Ekroos
- Lipidomics Consulting Ltd., 02230 Espoo, Finland;
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| |
Collapse
|