1
|
Jiang W, Liu L, Li W, Liu H, Yang J, Wang P. A lysosomal-targeted switchable fluorescent probe for the detection of peroxynitrite in living tumor cells and in vivo. Talanta 2025; 291:127866. [PMID: 40037163 DOI: 10.1016/j.talanta.2025.127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Peroxynitrite (ONOO-) is a reactive nitrogen species whose abnormal accumulation in the body can lead to various diseases, including those related to oxidative stress. Accurate detection of ONOO- levels is essential for the diagnosis and treatment of these diseases. To address this need, we developed a lysosome-targeted fluorescent probe Lyso-PE for detecting ONOO- in tumors. In the presence of ONOO-, probe Lyso-PE showed a large Stokes shift of 100 nm. The probe exhibited high sensitivity, selectivity, and rapid response toward ONOO-. Additionally, Lyso-PE displayed excellent lysosomal targeting and was successfully employed in imaging the exogenous peroxynitrite in tumor cells. In the 4T1 subcutaneous graft tumor model, the probe could effectively distinguish tumors and normal tissues with the help of fluorescence imaging in vivo. Moreover, Lyso-PE could be used for tumor resection guided by fluorescent signals in vivo. These results suggested that Lyso-PE could enhance our understanding of lysosomal function in disease, identify new therapeutic targets, and aid in developing new diagnostic and therapeutic strategies with significant clinical implications.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Yang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Fang Y, Zhang Y, Liu C, Zhu H, Wang K, Ma L, Li X, Rong X, Li W, Sheng W, Zhu B. Development of a novel ICT-ESIPT-based NIR ratiometric fluorescent probe for specific detection of Hg 2+ in the environment and living organisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125634. [PMID: 39752995 DOI: 10.1016/j.saa.2024.125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
As a heavy metal contaminant, mercury ion (Hg2+) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg2+ in the environment and living bodies. Based on this, we constructed an example of reactive near-infrared ratiometric fluorescent probe NIRPC-Hg based on the ICT-ESIPT mechanism. The probe could not only effectively overcome the effects of environmental changes, thus realizing the accurate detection of Hg2+ in the environment, but also possessed the advantages of large emission wavelength shift (130 nm red shift). In addition, the probe NIRPC-Hg was constructed with the classical recognition structure of Hg2+ and NIR fluorophore, which could detect Hg2+ sensitively with a low detection limit (9.21 nM). The satisfactory experimental results of environmental water samples proved that the probe had high application potential in the environment. At the same time, the probe NIRPC-Hg had the characteristics of smaller photo-toxicity and lower autofluorescence interference in the bioimaging applications, which could conveniently realize the sensitive detection of Hg2+ in cells and zebrafish. Therefore, the construction of probe NIRPC-Hg provided an effective tool to detect Hg2+ in the environment and living organisms.
Collapse
Affiliation(s)
- Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Jiang Q, Chen R, Li M, Zhang T, Kong Z, Ma K, Ye C, Sun X, Shu W. Emerging fluorescent probes for bioimaging of drug-induced liver injury biomarkers: Recent advances. Bioorg Chem 2025; 159:108407. [PMID: 40157011 DOI: 10.1016/j.bioorg.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Drug-induced liver injury (DILI) has emerged as a significant concern in clinical settings, being one of the leading causes of acute liver failure. However, the specific pathogenesis of DILI remains unclear, and there is currently a lack of effective targeted therapies. Numerous studies have demonstrated that the occurrence and progression of DILI involve complex pathological processes, closely linked with various cellular substrates and microenvironments. Thus, developing non-invasive, highly sensitive, specific, and reliable methods to detect changes in biomarkers and microenvironments in situ would greatly aid in the precise diagnosis of DILI and help guide therapeutic interventions. Fortunately, fluorescence imaging technology has shown great promise in detecting biological species, microenvironments, and diagnosing DILI due to its superior detection capabilities. In this context, this review described the design strategies, working principles, and practical applications of small molecule fluorescent probes for monitoring biological species and microenvironments in DILI. Importantly, this review highlighted current limitations and future development directions, which may help uncover the underlying relationships between biological species, microenvironments, and DILI. This understanding could lead to potential diagnostic protocols and establish a platform for evaluating treatments and drug efficacy in DILI.
Collapse
Affiliation(s)
- Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ran Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Meng Li
- Huantai County Ecological Environment Management Service Center, Zibo 255000, PR China
| | - Tianyu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ziyuzhu Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, PR China.
| | - Chao Ye
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin, 132013, PR China
| | - Xiaohan Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
4
|
Zheng Z, Liao R, Du Y. Ratiometric Fluorescent Probe for Sensitive Tracking of Peroxynitrite during Drug-Induced Hepatotoxicity. Chembiochem 2025; 26:e202400907. [PMID: 39870582 DOI: 10.1002/cbic.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
As an essential component of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction, with anomalous levels implicated in various clinical conditions. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. In this study, we developed a ratiometric fluorescent probe to detect ONOO- levels in biological systems. The probe demonstrated a fast reaction rate (within 15 min), outstanding selectivity, high sensitivity (limit of detection=13.32 nM), and stability in the presence of ONOO-. The proposed probe was successfully used for visualizing endogenous ONOO- in living cells and tracking changes in intracellular ONOO- levels during drug-induced hepatotoxicity using ratiometric fluorescence.
Collapse
Affiliation(s)
- Zhijie Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ruhe Liao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuting Du
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| |
Collapse
|
5
|
Wu J, Li J, Shi Y, Jiang L, Chan C, Feng R, Wang Y, Xue Z. Turn-on fluorescent probe based on dicyanoisophorone for bioimaging and rapid detection of peroxynitrite in aqueous media. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8157-8163. [PMID: 39508378 DOI: 10.1039/d4ay01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A novel dicyanoisophorone-based colorimetric fluorescent probe 3 has been prepared for recognizing peroxynitrite in aqueous conditions. A large bathochromic shift of the absorption band is observed upon titration with ONOO-, inducing a clearly visible solution color change from yellow to pale pink, which makes "naked-eye" detection possible. Moreover, probe 3 can react instantly with ONOO- and is accompanied by a significant fluorescence enhancement at 621 nm while the detection limit is as low as 37 nM. Most importantly, probe 3 exhibits high selectivity and sensitivity towards ONOO- in the presence of other competitive ions in aqueous solution. Probe 3 has also been successfully applied in living MCF-7 cells, and the results suggest that probe 3 could be applied as a potential candidate for the detection of ONOO-.
Collapse
Affiliation(s)
- Jianwei Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yaqiao Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Liting Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ru Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Li L, Wang C, Hu J, Chen WH. Recent progress in organelle-targeting fluorescent probes for the detection of peroxynitrite. Chem Commun (Camb) 2024; 60:13629-13640. [PMID: 39480200 DOI: 10.1039/d4cc03452j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Peroxynitrite (ONOO-), as an important reactive nitrogen species, plays a pivotal role in the regulation of intracellular redox homeostasis, signal transduction, cell growth and metabolism, and other physiological processes. Organelles are important for regulating ONOO-, and the dysregulation of ONOO- in organelles is closely related to various diseases. Therefore, it is essential to monitor ONOO- in cellular organelles, including mitochondria, lysosome, endoplasmic reticulum (ER), Golgi apparatus, and lipid droplets. However, the latest advances in organelle-targeting ONOO- fluorescent probes have not been reviewed systematically. In this review, we focus on the design, sensing mechanism, and organelle-targeting imaging applications of ONOO- fluorescent probes that were reported since 2018. This review will help to facilitate the comprehension of organelle-targeting fluorescent probes for the detection of ONOO-.
Collapse
Affiliation(s)
- Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| |
Collapse
|
7
|
Lv J, Chen F, Zhang C, Kang Y, Yang Y, Zhang C. Role of Peroxynitrite in the Pathogenesis of Parkinson's Disease and Its Fluorescence Imaging-Based Detection. BIOSENSORS 2024; 14:506. [PMID: 39451719 PMCID: PMC11506598 DOI: 10.3390/bios14100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting the lives of millions of people worldwide. Although the mechanism underlying PD pathogenesis is largely undefined, increasing evidence indicates that oxidative and nitrosative stresses play a crucial role in PD occurrence and development. Among them, the role of oxidative stress has been widely acknowledged, but there is relatively less attention given to nitrosative stress, which is mainly derived from peroxynitrite. In the present review, after briefly introducing the background of PD, we discuss the physiopathological function of peroxynitrite and especially highlight how overloaded peroxynitrite is involved in PD pathogenesis. Then, we summarize the currently reported fluorescence imaging-based peroxynitrite detection probes. Moreover, we specifically emphasize the probes that have been applied in PD research. Finally, we propose perspectives on how to develop a more applicable peroxynitrite probe and leverage it for PD theranostics. Conclusively, the present review broadens the knowledge on the pathological role of peroxynitrite in the context of PD and sheds light on how to develop and utilize fluorescence imaging-based strategies for peroxynitrite detection.
Collapse
Affiliation(s)
- Jiye Lv
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Feiyu Chen
- School of Chinese Medicine, Tianjin University of Traditional Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Changchan Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yan Yang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
8
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
9
|
Zhang X, Wu W, Wei Y, Zhang Y, Nie X, Sun X, Lin L, Yang D, Yan Y. A FRET-based multifunctional fluorescence probe for the simultaneous detection of sulfite and viscosity in living cells. Bioorg Chem 2024; 148:107423. [PMID: 38733751 DOI: 10.1016/j.bioorg.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Viscosity and sulfur dioxide derivatives were significant indicators for the assessment of health threat and even cancers, therefore, on-site and real time detection of viscosity and sulfur dioxide derivatives has obtained considerable attentions. An FRET-based fluorescence probe JZX was designed and synthesized based on a novel energy donor of N,N-diethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzamide fluorophore. JZX exhibited a large Stokes shift (230 nm), high energy transfer efficiency, wide emission channel gap (135 nm) and excellent stability and biocompatibility. JZX detected sulfur dioxide with low detection limit (55 nM), fast responding (16 min), high selectivity and sensitivity. Additionally, JZX tend to target endoplasmic reticulum of which normal metabolism will be disturbed by the abnormal levels of viscosity and sulfur dioxide derivatives. Prominently, JZX could concurrently detect viscosity and sulfur dioxide derivatives depending on different fluorescence signals in living cells for the screening of cancer cells. Hence, probe JZX will be a promising candidate for the detection of viscosity and sulfur dioxide derivatives, and even for the diagnosis of liver cancers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yin Wei
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Yiheng Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xuqing Nie
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xiaoqi Sun
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Di Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
10
|
Xu Z, Liu S, Xu L, Li Z, Zhang X, Kang H, Liu Y, Yu J, Jing J, Niu G, Zhang X. A novel ratiometric fluorescent probe with high selectivity for lysosomal nitric oxide imaging. Anal Chim Acta 2024; 1297:342303. [PMID: 38438223 DOI: 10.1016/j.aca.2024.342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.
Collapse
Affiliation(s)
- Zhiling Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Songtao Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Liren Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Sun X, Jiang Q, Zhang Y, Su J, Liu W, Lv J, Yang F, Shu W. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers. Eur J Med Chem 2024; 267:116195. [PMID: 38330868 DOI: 10.1016/j.ejmech.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The clinical symptoms of PD are usually related to motor symptoms, including postural instability, rigidity, bradykinesia, and resting tremors. At present, the pathology of PD is not yet clear. Therefore, revealing the underlying pathological mechanism of PD is of great significance. A variety of bioactive molecules are produced during the onset of Parkinson's, and these bioactive molecules may be a key factor in the development of Parkinson's. The emerging fluorescence imaging technology has good sensitivity and high signal-to-noise ratio, making it possible to deeply understand the pathogenesis of PD through these bioactive molecules. Currently, fluorescent probes targeting PD biomarkers are widely developed and applied. This article categorizes and summarizes fluorescent probes based on different PD biomarkers, systematically introduces their applications in the pathological process of PD, and finally briefly elaborates on the challenges and prospects of these probes. We hope that this review will provide in-depth reference insights for designing fluorescent probes, and contribute to study of the pathogenesis and clinical treatment of PD.
Collapse
Affiliation(s)
- Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wenqu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
12
|
Lu Z, Dong C, Wang Y, Liu Q, Wei H, Zhao B, Xu X, Dong B, Fan C. A near-infrared fluorescent probe with remarkably large stokes shift for specifical imaging of peroxynitrite fluctuations in Hela cells. Bioorg Chem 2023; 141:106866. [PMID: 37729809 DOI: 10.1016/j.bioorg.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Peroxynitrite (ONOO-), an endogenous reactive nitrogen species, plays an important role in maintaining intracellular homeostasis. Abnormal levels of ONOO- in cells could cause protein oxidation which is confirmed that related with Alzheimer's diseases, so accurate monitoring of ONOO- in cells is crucial. Herein, a novel fluorescent probe (XPC) based on dicyanomethylene-4H-benzothiopyran was developed by regulating its intramolecular charge transfer (ICT) effect to detect ONOO-. Once reaction with ONOO-, the fluorescence of XPC was turned on and the emission wavelength could reach up to 750 nm. Furthermore, XPC exhibited satisfactory performances for ONOO- such as large Stokes shift (200 nm), good sensitivity (Limit of detection = 13 nM), high selectivity to ONOO- over other a reactive nitrogen species (RNS)/reactive oxygen species (ROS). More importantly, XPC was successfully applied for monitoring the fluctuations of ONOO- in living cells.
Collapse
Affiliation(s)
- Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Chao Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qingqing Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xionghao Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
13
|
Peng Q, Zeng Q, Wang F, Wu X, Zhang R, Shi G, Zhang M. Multi-engineered Graphene Extended-Gate Field-Effect Transistor for Peroxynitrite Sensing in Alzheimer's Disease. ACS NANO 2023; 17:21984-21992. [PMID: 37874899 DOI: 10.1021/acsnano.3c08499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The expression of β-amyloid peptides (Aβ), a pathological indicator of Alzheimer's disease (AD), was reported to be inapparent in the early stage of AD. While peroxynitrite (ONOO-) is produced excessively and emerges earlier than Aβ plaques in the progression of AD, it is thus significant to sensitively detect ONOO- for early diagnosis of AD and its pathological research. Herein, we unveiled an integrated sensor for monitoring ONOO-, which consisted of a commercially available field-effect transistor (FET) and a high-performance multi-engineered graphene extended-gate (EG) electrode. In the configuration of the presented EG electrode, laser-induced graphene (LIG) intercalated with MnO2 nanoparticles (MnO2/LIG) can improve the electrical properties of LIG and the sensitivity of the sensor, and graphene oxide (GO)-MnO2/Hemin nanozyme with ONOO- isomerase activity can selectively trigger the isomerization of ONOO- to NO3-. With this synergistic effect, our EG-FET sensor can respond to the ONOO- with high sensitivity and selectivity. Moreover, taking advantage of our EG-FET sensor, we modularly assembled a portable sensing platform for wireless tracking ONOO- levels in the brain tissue of AD transgenic mice at earlier stages before massive Aβ plaques appeared, and we systematically explored the complex role of ONOO- in the occurrence and development of AD.
Collapse
Affiliation(s)
- Qiwen Peng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Qiankun Zeng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Fangbing Wang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Xiaoyuan Wu
- School of Communication and Electric Engineering, East China Normal University, Shanghai 200241, China
| | - Runxi Zhang
- School of Communication and Electric Engineering, East China Normal University, Shanghai 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| |
Collapse
|
14
|
Chen S, Huang W, Tan H, Yin G, Chen S, Zhao K, Huang Y, Zhang Y, Li H, Wu C. A large Stokes shift NIR fluorescent probe for visual monitoring of mitochondrial peroxynitrite during inflammation and ferroptosis and in an Alzheimer's disease model. Analyst 2023; 148:4331-4338. [PMID: 37547973 DOI: 10.1039/d3an00956d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The excessive formation of peroxynitrite (ONOO-) in mitochondria has been implicated in various pathophysiological processes and diseases. However, owing to short emission wavelengths and small Stokes shifts, previously reported fluorescent probes pose significant challenges for mitochondrial ONOO- imaging in biological systems. In this study, a near-infrared (NIR) fluorescent probe, denoted as DCO-POT, is designed for the visual monitoring of mitochondrial ONOO-, displaying a remarkable Stokes shift of 170 nm. The NIR fluorophore of DCO-CHO is released by DCO-POT upon the addition of ONOO-, resulting in off-on NIR fluorescence at 670 nm. This phenomenon facilitates the high-resolution confocal laser scanning imaging of ONOO- generated in biological systems. The practical applications of DCO-POT as an efficient fluorescence imaging tool are verified in this study. DCO-POT enables the fluorometric visualization of ONOO- in organelles, cells, and organisms. In particular, ONOO- generation is analyzed during cellular and organism-level (zebrafish) inflammation during ferroptosis and in an Alzheimer's disease mouse model. The excellent visual monitoring performance of DCO-POT in vivo makes it a promising tool for exploring the pathophysiological effects of ONOO-.
Collapse
Affiliation(s)
- Shiying Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Hongli Tan
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Guoxing Yin
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shengyou Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Kuicheng Zhao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yinghui Huang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| |
Collapse
|
15
|
Liu Z, Mo S, Hao Z, Hu L. Recent Progress of Spectroscopic Probes for Peroxynitrite and Their Potential Medical Diagnostic Applications. Int J Mol Sci 2023; 24:12821. [PMID: 37629002 PMCID: PMC10454944 DOI: 10.3390/ijms241612821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Peroxynitrite (ONOO-) is a crucial reactive oxygen species that plays a vital role in cellular signal transduction and homeostatic regulation. Determining and visualizing peroxynitrite accurately in biological systems is important for understanding its roles in physiological and pathological activity. Among the various detection methods, fluorescent probe-based spectroscopic detection offers real-time and minimally invasive detection, high sensitivity and selectivity, and easy structural and property modification. This review categorizes fluorescent probes by their fluorophore structures, highlighting their chemical structures, recognition mechanisms, and response behaviors in detail. We hope that this review could help trigger novel ideas for potential medical diagnostic applications of peroxynitrite-related molecular diseases.
Collapse
Affiliation(s)
| | | | | | - Liming Hu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (S.M.); (Z.H.)
| |
Collapse
|
16
|
Bi S, Yang T, An K, Zhou B, Han Y. A benzo BODIPY based fluorescent probe for selective visualization of hypochlorous acid in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122860. [PMID: 37201333 DOI: 10.1016/j.saa.2023.122860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Hypochlorous acid (HOCl) is an essential endogenous reactive oxygen species in biological systems, playing a critical role in various physiological processes. Real-time monitoring of HOCl concentration in living organisms is essential for understanding its biological functions and pathological roles. In this study, we developed a novel fluorescent probe based on benzobodipy, BBDP, for rapid and sensitive detection of HOCl in aqueous solutions. The probe exhibited a significant fluorescence turn-on response to HOCl based on its specific oxidation reaction towards diphenylphosphine, with high selectivity, instantaneous response (less than 10 s), and low detection limit (21.6 nM). Furthermore, bioimaging results illustrated that the probe could be applied for real-time fluorescence imaging of HOCl in live cells and zebrafish. The development of BBDP may provide a new tool for exploring the biological functions of HOCl and its pathological roles in diseases.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Taorui Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ke An
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Baocheng Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Niu L, Cao Q, Zhang T, Zhang Y, Liang T, Wang J. Simultaneous detection of mitochondrial viscosity and peroxynitrite in livers from subjects with drug-induced fatty liver disease using a novel fluorescent probe. Talanta 2023; 260:124591. [PMID: 37141820 DOI: 10.1016/j.talanta.2023.124591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Drug-induced fatty liver disease (DIFLD) is a basic clinicopathological example of drug-induced liver injury (DILI). Some drugs can inhibit β-oxidation in hepatocyte mitochondria, leading to steatosis in the liver. Additionally, drug-induced inhibition of β-oxidation and the electron transport chain (ETC) can lead to increased production of reactive oxygen species (ROS) such as peroxynitrite (ONOO-). Therefore, it is reasonable to suspect that compared to a healthy liver, viscosity and ONOO- levels are elevated in livers during DIFLD. A novel, smart, dual-response fluorescent probe-Mito-VO-was designed and synthesized for the simultaneous detection of viscosity and ONOO- content. This probe had a large emission shift of 293 nm and was capable of monitoring the viscosity of, and the ONOO- content in, cell and animal models alike, either individually or simultaneously. For the first time, Mito-VO was successfully used to demonstrate the elevated viscosity and the amount of ONOO- in livers from mice with DIFLD.
Collapse
Affiliation(s)
- Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Qijuan Cao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tian Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
18
|
Liu C, Zhang Y, Sun W, Zhu H, Su M, Wang X, Rong X, Wang K, Yu M, Sheng W, Zhu B. H2S-activated fluorescent probe enables dual-channel fluorescence tracking of drug release in tumor cells. Bioorg Chem 2023; 135:106498. [PMID: 37060848 DOI: 10.1016/j.bioorg.2023.106498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Nowadays, the selective release of therapeutic drugs into tumor cells has become an important way of tumor treatment due to the high side effects of chemotherapy drugs. As one of the gas mediators, hydrogen sulfide (H2S) is closely related to cancer. Due to the high content of H2S in tumor cells, it can be used as a signaling molecule that triggers the release of drugs to achieve the selective release of therapeutic drugs. In addition, dual-channel fluorescence imaging technology can be better applied to monitor the drug delivery process and distinguish the state before and after drug release, so as to better track the effect of drug therapy. Based on this, we used NBD amines (NBD-NHR) as the recognition group of H2S and connected the tyrosine kinase inhibitor crizotinib to construct an activated dual-channel fluorescent probe CZ-NBD. After the probe enters the tumor cells, it consumes H2S and releases crizotinib, which is highly toxic to the tumor cells. Importantly, the probe displays significant fluorescence changes in different cells, enabling not only the screening of tumor cells, but also tracking and monitoring drug release and tumor cell activity. Therefore, the construction of probe CZ-NBD provides a new strategy for drug release monitoring in tumor cells.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
19
|
Yu H, Fang Y, Wang J, Zhang Q, Chen S, Wang KP, Hu ZQ. Enhancing probe's sensitivity for peroxynitrite through alkoxy modification of dicyanovinylchromene. Anal Bioanal Chem 2022; 414:6779-6789. [PMID: 35879424 DOI: 10.1007/s00216-022-04239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
An intramolecular charge transfer (ICT)-based fluorescent probe P-ONOO- was synthesized to detect ONOO-. After responding to peroxynitrite, the dicyano-vinyl group of P-ONOO- generates the aldehyde group, emitting strong green fluorescence accompanied by quenching of the yellow fluorescence. According to the calculated Fukui function, the modification of the alkoxy group can enhance the f+ of P-ONOO-, which can enhance the probe's nucleophilic addition reactivity with ONOO-. It has been experimentally verified that P-ONOO- shows fast response (within 30 s), excellent sensitivity (the detection limit = 10.4 nM), and good selectivity towards ONOO-. Additionally, the probe P-ONOO- has high membrane permeability and good biocompatibility, which can image endogenous ONOO- and exogenous ONOO- in HeLa cells.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ying Fang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
20
|
He L, Liu H, Wu J, Cheng Z, Yu F. Construction of a mitochondria-endoplasmic reticulum dual-targeted red-emitting fluorescent probe for imaging peroxynitrite in living cells and zebrafish. Chem Asian J 2022; 17:e202200388. [PMID: 35521668 DOI: 10.1002/asia.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Peroxynitrite (ONOO - ) is one of the important reactive oxygen species, which plays a vital role in the physiological process of intracellular redox balance. Revealing the biological functions of ONOO - will contribute to further understanding of the oxidative process of organisms. In this work, we designed and synthesized a novel red-emitting fluorescent probe MCSA for the detection of ONOO - , which could rapidly respond to ONOO - within 250 s and exhibited high sensitivity to ONOO - with a low detection limit of 78 nM. Co-localization experiments demonstrated MCSA had the ability to localize into the mitochondria and endoplasmic reticulum. What's more, MCSA enabled monitoring ONOO - level changes during tunicamycin-induced endoplasmic reticulum stress. We have also successfully achieved the visual detection of exogenous and endogenous ONOO - in living cells and zebrafish. This work presented a chemical tool for imaging ONOO - in vitro and in vivo.
Collapse
Affiliation(s)
- Lingchao He
- Qufu Normal University, College of Chemistry and Chemical Engineering, CHINA
| | - Heng Liu
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Jinsheng Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Radiotherapy, CHINA
| | - Ziyi Cheng
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Fabiao Yu
- Hainan Medical University, Institute of Functional Materials and Molecular Imaging, 3 College Road, Longhua District, Haikou, China, 571199, Hainan, CHINA
| |
Collapse
|