1
|
Li D, Yue W, He Q, Gao P, Gong T, Luo Y, Wang C, Luo X. Single-molecule detection of SARS-CoV-2 N protein on multilayered plasmonic nanotraps with surface-enhanced Raman spectroscopy. Talanta 2024; 278:126494. [PMID: 38955100 DOI: 10.1016/j.talanta.2024.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The spread of the SARS-CoV-2 virus has had an unprecedented impact, both by posing a serious risk to human health and by amplifying the burden on the global economy. The rapid identification of the SARS-CoV-2 virus has been crucial to preventing and controlling the spread of SARS-CoV-2 infections. In this study, we propose a multilayered plasmonic nanotrap (MPNT) device for the rapid identification of single particles of SARS-CoV-2 virus in ultra-high sensitivity by surface-enhanced Raman scattering (SERS). The MPNT device is composed of arrays of concentric cylindrical cavities with Ag/SiO2/Ag multilayers deposited on the top and at the bottom. By varying the diameter of the cylinders and the thickness of the multilayers, the resonant optical absorption and local electric field were optimized. The SERS enhancement factors of the proposed device are of the order of 108, which enable the rapid identification of SARS-CoV-2 N protein in concentrations as low as 1.25 × 10-15-12.5 × 10-15 g mL-1 within 1 min. The developed MPNT SERS device provides a label-free and rapid detection platform for SARS-CoV-2 virus. The general nature of the device makes it equally suitable to detect other infectious viruses.
Collapse
Affiliation(s)
- Dongxian Li
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weisheng Yue
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong He
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gao
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China
| | - Tiancheng Gong
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changtao Wang
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Huang Q, Zhou N, Peng J, Zeng X, Du L, Zhao Y, Luo X. Sensitivity-improved SERS detection of SARS-CoV-2 spike protein by Au NPs/COFs integrated with catalytic-hairpin-assembly amplification technology. Anal Chim Acta 2024; 1318:342924. [PMID: 39067931 DOI: 10.1016/j.aca.2024.342924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The COVID-19 pandemic, caused by the novel coronavirus, has had a profound impact on global health and economies worldwide. This unprecedented crisis has affected individuals, communities, and nations in diverse manners. Developing simple and accurate diagnostic methods is an imperative task for frequent testing to mitigate the spread of the virus. Among these methods, SARS-CoV-2 antigen tests in clinical specimens have emerged as a promising diagnostic method for COVID-19 due to their sensitive and accurate detection of spike (S) protein, which plays a crucial role in viral infection initiation. RESULTS In this work, a dual-signal amplification surface enhanced Raman scattering (SERS)-based S protein biosensor was constructed based on Au NPs/COFs and enzyme-free catalytic hairpin assembly (CHA) amplification method. The approach relies on a released free DNA sequence (T), which is generated from the competition reaction between Aptamer/T and Aptamer/S protein, to trigger a CHA reaction. Due to the high binding affinity and selectivity between the S protein and its aptamer, CHA process was triggered with the maximum SERS tags (H2-conjugated Au@4-mercaptobenzonitrile@Ag) anchored onto Au NPs/COFs substrate surface. This SERS platform could detect the S protein at concentrations with high sensitivity (limit of detection = 3.0 × 10-16 g/mL), wide detection range (1 × 10-16 to 1 × 10-11 g/mL), acceptable reproducibility (relative standard deviation = 7.01 %) and excellent specificity. The biosensor was also employed to detect S protein in artificial human salivas. SIGNIFICANCE Thus, this study not only developed a novel Au NPs/COFs substrate exhibiting strong SERS enhancement ability and high reproducibility, but also proposed a promising dual-signal amplification SERS-based diagnostic method for COVID-19, holding immense potential for the detection of a wide range of antigens and infectious diseases in future applications.
Collapse
Affiliation(s)
- Qiuwen Huang
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Na Zhou
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Food Microbiology, Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Xuanjiang Zeng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Lijuan Du
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| |
Collapse
|
3
|
Yang Y, Cui J, Luo D, Murray J, Chen X, Hülck S, Tripp RA, Zhao Y. Rapid Detection of SARS-CoV-2 Variants Using an Angiotensin-Converting Enzyme 2-Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms. ACS Sens 2024; 9:3158-3169. [PMID: 38843447 PMCID: PMC11217934 DOI: 10.1021/acssensors.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
Collapse
Affiliation(s)
- Yanjun Yang
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| | - Jiaheng Cui
- School
of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Dan Luo
- Department
of Statistics, The University of Georgia, Athens, Georgia 30602, United States
| | - Jackelyn Murray
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianyan Chen
- Department
of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602, United States
| | | | - Ralph A. Tripp
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
5
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Guo J, Zhou Y, Cheng J, Chen F, Xu J, Yang L, Shi H, An Z, Guo J, Ma X. Afterglow Nanoprobe-Enabled Quantitative Lateral Flow Immunoassay by a Palm-Size Device for Household Healthcare. Anal Chem 2024; 96:4891-4900. [PMID: 38462674 DOI: 10.1021/acs.analchem.3c05448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lateral flow immunoassay (LFIA), a classical point-of-care testing (POCT) technique, plays an important role in disease screening and healthcare monitoring. However, traditional LFIA is either designed for qualitative analysis or requires expensive equipment for quantification, limiting its use in household diagnosis. In this study, we proposed a new generation of LFIA for household health monitoring by using ultralong organic phosphorescence (UOP) nanomaterials as afterglow nanoprobes with a self-developed palm-size sensing device. The UOP nanoprobes exhibit a phosphorescence signal with a second-level lifetime, which completely avoids the interference from excitation light and biological background fluorescence. Therefore, an ultraminiaturized and low-cost UOP nanosensor was successfully designed by eliminating the complex optical path and filtering systems. We chose an inflammatory factor, C-reactive protein (CRP), for household POCT validation. The whole analysis was completed within 9 min. A limit of detection (LOD) of 0.54 ng/mL of CRP antigen was achieved with high stability and good specificity, which is comparable to laboratory instruments and fully satisfying the clinical diagnosis requirement.
Collapse
Affiliation(s)
- Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yudong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jie Cheng
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fuli Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiahui Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lirong Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. BIOSENSORS 2024; 14:108. [PMID: 38392027 PMCID: PMC10887370 DOI: 10.3390/bios14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Nanostructures have played a key role in the development of different techniques to attack severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors. The latter are of great interest for detecting diseases since some of their features allowed us to find specific markers in secretion samples such as saliva, blood, and even tears. Herein, we highlight how hierarchical nanoparticles integrated into two or more low-dimensional materials present outstanding advantages that are attractive for photonic biosensing using their nanoscale functions. The potential of nanohybrids with their superlative mechanical characteristics together with their optical and optoelectronic properties is discussed. The progress in the scientific research focused on using nanoparticles for biosensing a variety of viruses has become a medical milestone in recent years, and has laid the groundwork for future disease treatments. This perspective analyzes the crucial information about the use of hierarchical nanostructures in biosensing for the prevention, treatment, and mitigation of SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Jael Abigail Medrano-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Isaela Villalpando
- Centro de Investigación para los Recursos Naturales, Salaices 33941, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
8
|
Liu X, Li T, Lee TC, Sun Y, Liu Y, Shang L, Han Y, Deng W, Yuan Z, Dang A. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level. ACS Sens 2024; 9:483-493. [PMID: 38206578 DOI: 10.1021/acssensors.3c02285] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional transition metal carbon/nitrides (MXenes) are promising candidates to revolutionize next-generation wearable sensors as high-performance surface-enhanced Raman scattering (SERS) substrates. However, low sensitivity of pure MXene nanosheets and weak binding force or uncontrolled in situ growth of plasmonic nanoparticles on hybrid MXene composites limit their progress toward universal and reliable sensors. Herein, we designed and manufactured a highly sensitive, structurally stable wearable SERS sensor by in situ fabrication of plasmonic nanostructures on the flexible TiVC membranes via the maximization of chemically reducing sites using alkaline treatment. DFT calculations and experimental characterization demonstrated that the hydroxyl functional groups on the surface of MXenes can facilitate the reduction of metal precursors and the nucleation of gold nanoparticles (AuNPs) and can be covalently attached to AuNPs. Thus, the fabricated flexible TiVC-OH-Au sensor satisfied the rigorous mechanical requirements for wearable sensors. In addition, combining the electromagnetic (EM) enhancement from dense AuNPs formed by the activation of nucleation sites and charge transfer (CT) between target molecule and substrate induced by the abundant DOS near the Fermi level of TiVC, the fabricated sensor exhibits ultrasensitivity, long-term stability, good signal repeatability, and excellent mechanical durability. Moreover, the proof-of-concept application of the wearable SERS sensor in sweat sensing was demonstrated to monitor the content of nicotine, methotrexate, nikethamide, and 6-acetylmorphine in sweat at the molecular level, which was an important step toward the universality and practicality of the wearable sensing technology.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Tung-Chun Lee
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, United Kingdom
- Institute for Materials Discovery, University College London (UCL), London WC1H 0AJ, United Kingdom
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Li Shang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Yanying Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Zeqi Yuan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| |
Collapse
|
9
|
Dong Y, Yuan X, Zhuang K, Li Y, Luo X. Simultaneous and sensitive detection of SARS-CoV-2 proteins spike and nucleocapsid based on long-range SERS biosensor. Anal Chim Acta 2024; 1287:342070. [PMID: 38182376 DOI: 10.1016/j.aca.2023.342070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Early diagnosis of SARS-CoV-2 infection is still critical to control COVID-19 outbreak. Traditional polymerase chain reaction, enzyme-linked immunosorbent assay or lateral flow immunoassay performed poorly on detection times, sample preparation process and accuracy. Surface-enhanced Raman scattering (SERS)-based detection has emerged as a powerful analytical technique, which overcomes the above limitations. However, due to the near-field effect of traditional substrate, it is difficult to monitor the binding event of aptamers with proteins. It is obvious that a novel SERS substrate thatsupportedextended and stronger electromagnetic fields was required to hold long-range effects and allow for binding event testing. RESULTS Driven by this challenge, we reported a long-range SERS-active substrate, which was built by inserting bowtie nanoaperture arrays in a refractive-index-symmetric environment and Au mirror surfaces, for SARS-CoV-2 protein binding event detection. Then, a double-π structure aptasensor was simply designed through the hybridization of spike (S) and nucleocapsid (N) proteins aptamers, and a corresponding complementary strand. This kind of double-π structure would dissociate when targets proteins S and N existed and led to the SERS responses decreased, which established the detection basis of our system. What's more, due to two Raman labels were involved, both proteins S and N can be sensed simultaneously. Our proposed method showed improved sensitivity with a low limit of detection for multiplex detection (1.6 × 10-16 g/mL for protein S and 1.0 × 10-16 g/mL for protein N) over a wide concentration range. SIGNIFICANCE This represents the first long-range SERS apatasensor platform for detection of S and N proteins simultaneously. Our method showed high sensitivity, selectivity, reproducibility, stability and remarkable recoveries in human in saliva and serum samples, which is particularly important for the early diagnostics of COVID as well as for future unknown coronavirus.
Collapse
Affiliation(s)
- Ying Dong
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Xue Yuan
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Kaiyi Zhuang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yuanyuan Li
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, Shanghai, 200438, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, PR China.
| |
Collapse
|
10
|
Cennamo N, Bencivenga D, Annunziata M, Arcadio F, Stampone E, Piccirillo A, Della Ragione F, Zeni L, Guida L, Borriello A. Plasmon resonance biosensor for interleukin-1β point-of-care determination: A tool for early periodontitis diagnosis. iScience 2024; 27:108741. [PMID: 38269096 PMCID: PMC10805648 DOI: 10.1016/j.isci.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Among pro-inflammatory cytokines, Interleukin-1β is crucially involved in several inflammatory-based diseases and even cancer. Increased Interleukin-1β levels in oral fluids have been proposed as an early marker of periodontitis, a broadly diffused chronic inflammatory condition of periodontal-supporting tissues, leading eventually to tooth loss. We describe the development of a portable surface-plasmon-resonance-based optical fiber probe suitably coated with an anti-Interleukin-1β antibody monolayer. A pico-nanomolar linear range of determination was obtained in both buffer solution and saliva with a rapid (3 min) incubation and high selectivity in presence of interferents. Higher Interleukin-1β concentration in the saliva of a periodontitis patient compared to a healthy control was determined. These measurements were validated by an automated ELISA system. Our results sustain the potential applicability of the proposed SPR-POF as diagnostic point-of-care device for real-time monitoring of salivary Interleukin-1β, that can support early detection of oral inflammatory-based pathologies and rapid and timely therapeutic decisions.
Collapse
Affiliation(s)
- Nunzio Cennamo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Angelantonio Piccirillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| |
Collapse
|
11
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
12
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
13
|
Zhang H, Zhang C, Wang Z, Cao W, Yu M, Sun Y. Antibody- and aptamer-free SERS substrate for ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva. Biosens Bioelectron 2023; 237:115457. [PMID: 37321043 PMCID: PMC10247595 DOI: 10.1016/j.bios.2023.115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Sensitive and anti-interference detection of targeted signal(s) in body fluids is one of the paramount tasks in biosensing. Overcoming the complication and high cost of antibody/aptamer-modification, surface-enhanced Raman spectroscopy (SERS) based on antibody/aptamer-free (AAF) substrates has shown great promise, yet with rather limited detection sensitivity. Herein, we report ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva by an AAF SERS substrate, applying the evanescent field induced by the high-order waveguide modes of well-defined nanorods for SERS for the first time. A detection limit of 3.6 × 10-17 M and 1.6 × 10-16 M are obtained in phosphate buffered saline and untreated saliva, respectively; the detection limits are three orders of magnitude improved than the best records from AAF substrates. This work unlocks an exciting path to design AAF SERS substrates for ultrasensitive biosensing, not limited to detection of viral antigens.
Collapse
Affiliation(s)
- Hong Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Chenggang Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Zhaotong Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Wenwu Cao
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| | - Ye Sun
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| |
Collapse
|
14
|
Ma P, Liu J, Pang S, Zhou W, Yu H, Wang M, Dong T, Wang Y, Wang Q, Liu A. Biopanning of specific peptide for SARS-CoV-2 nucleocapsid protein and enzyme-linked immunosorbent assay-based antigen assay. Anal Chim Acta 2023; 1264:341300. [PMID: 37230729 DOI: 10.1016/j.aca.2023.341300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide which triggered serious public health issues. The search for rapid and accurate diagnosis, effective prevention, and treatment is urgent. The nucleocapsid protein (NP) of SARS-CoV-2 is one of the main structural proteins expressed and most abundant in the virus, and is considered a diagnostic marker for the accurate and sensitive detection of SARS-CoV-2. Herein, we report the screening of specific peptides from the pIII phage library that bind to SARS-CoV-2 NP. The phage monoclone expressing cyclic peptide N1 (peptide sequence, ACGTKPTKFC, with C&C bridged by disulfide bonding) specifically recognizes SARS-CoV-2 NP. Molecular docking studies reveal that the identified peptide is bound to the "pocket" region on the SARS-CoV-2 NP N-terminal domain mainly by forming a hydrogen bonding network and through hydrophobic interaction. Peptide N1 with the C-terminal linker was synthesized as the capture probe for SARS-CoV-2 NP in ELISA. The peptide-based ELISA was capable of assaying SARS-CoV-2 NP at concentrations as low as 61 pg/mL (∼1.2 pM). Furthermore, the as-proposed method could detect the SARS-CoV-2 virus at limits as low as 50 TCID50 (median tissue culture infective dose)/mL. This study demonstrates that selected peptides are powerful biomolecular tools for SARS-CoV-2 detection, providing a new and inexpensive method of rapidly screening infections as well as rapidly diagnosing coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Wenhao Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yanbo Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
15
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
16
|
Lukose J, Barik AK, George SD, Murukeshan VM, Chidangil S. Raman spectroscopy for viral diagnostics. Biophys Rev 2023; 15:199-221. [PMID: 37113565 PMCID: PMC10088700 DOI: 10.1007/s12551-023-01059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer, tip-enhanced Raman Spectroscopy, and coherent anti-Stokes Raman scattering. Surface-enhanced Raman scattering can play an essential role in viral detection by multiplexing nanotechnology, microfluidics, and machine learning for ensuring spectral reproducibility and efficient workflow in sample processing and detection. The application of these techniques to diagnose the SARS-CoV-2 virus is also reviewed. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01059-4.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Sajan D. George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| |
Collapse
|
17
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|