1
|
Cui R, Wang Z, Li L, Liu L, Li Z, Liu X, Chen T, Rauf A, Kang X, Guo Y. Bionic nanopore recognition receptors for single-molecule enantioselectivity studies of chiral drugs. Anal Chim Acta 2024; 1318:342960. [PMID: 39067929 DOI: 10.1016/j.aca.2024.342960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Enantiodiscrimination of chiral drugs is critical for understanding physiological phenomena and ensuring medical safety. Although enantiomers of these drugs share identical physicochemical properties, they exhibit significant differences in pharmacodynamic, pharmacokinetic, and toxicological properties due to the differences in their three-dimensional shapes. Therefore, the development of effective methods for chiral recognition is of great significance and has been a hot topic in chemo/biological studies. RESULTS In this study, we designed a recognition receptor comprising a α-hemolysin (α-HL) nanopore and sulfobutyl ether-β-cyclodextrin (SBEβCD) for identifying the enantiomers of the antidepressant duloxetine at the single-molecule level. Chiral molecules were discriminated based on the different current blockages within the recognition receptor. The results indicated a strong interaction between R-duloxetine and the recognition receptor. By combining the experimental data and molecular docking results, we explored the recognition mechanism of the designed nanopore recognition receptor for chiral drug molecules. It was found that hydrophobic and electrostatic interactions play key roles in chiral recognition. Additionally, by comparing the binding kinetics of enantiomers to cyclodextrins in confined nanospace and bulk solution, we found that enantiomeric identification was better facilitated in the confined nanospace. Finally, the enantiomeric excess (ee) of the enantiomeric duloxetine mixture was measured using this recognized receptor. SIGNIFICANCE This strategy has the advantages of low cost, high sensitivity, and no need for additional derivative modifications, providing a new perspective on the development of chiral recognition sensors with excellent enantioselectivity in drug design, pharmaceuticals, and biological applications.
Collapse
Affiliation(s)
- Rikun Cui
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Zhenzhao Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Linna Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lili Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Zhen Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Ayesha Rauf
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| |
Collapse
|
2
|
Khoshfetrat SM, Mamivand S, Darband GB. Hollow-like three-dimensional structure of methyl orange-delaminated Ti 3C 2 MXene nanocomposite for high-performance electrochemical sensing of tryptophan. Mikrochim Acta 2024; 191:546. [PMID: 39158725 DOI: 10.1007/s00604-024-06622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Tryptophan(Trp) is being explored as a potential biomarker for various diseases associated with decreased tryptophan levels; however, metabolomic methods are expensive and time-consuming and require extensive sample analysis, making them urgently needed for trace detection. To exploit the properties of Ti3C2 MXenes a rational porous methyl orange (MO)-delaminated Ti3C2 MXene was prepared via a facile mixing process for the electrocatalytic oxidation of Trp. The hollow-like 3D structure with a more open structure and the synergistic effect of MO and conductive Ti3C2 MXene enhanced its electrochemical catalytic capability toward Trp biosensing. More importantly, MO can stabilize Ti3C2 MXene nanosheets through noncovalent π-π interactions and hydrogen bonding. Compared with covalent attachment, these non-covalent interactions preserve the electronic conductivity of the Ti3C2 MXene nanosheets. Finally, the addition of MO-derived nitrogen (N) and sulfur (S) atoms to Ti3C2 MXene enhanced the electronegativity and improved its affinity for specific molecules, resulting in high-performance electrocatalytic activity. The proposed biosensor exhibited a wide linear response in concentration ranges of 0.01-0.3 µM and 0.5-120 µM, with a low detection limit of 15 nM for tryptophan detection, and high anti-interference ability in complex media of human urine and egg white matrices. The exceptional abilities of the MO/Ti3C2 nanocatalyst make it a promising electrode material for the detection of important biomolecules.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Borujerd, Iran.
| | - Saba Mamivand
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Borujerd, Iran
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran
| |
Collapse
|
3
|
Hosseini F, Dashtian K, Golzani M, Ejraei Z, Zare-Dorabei R. Remote magnetically stimulated xanthan-biochar-Fe3O 4-molecularly imprinted biopolymer hydrogel toward electrochemical enantioselection of l-tryptophan. Anal Chim Acta 2024; 1316:342837. [PMID: 38969427 DOI: 10.1016/j.aca.2024.342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Monitoring the levels of L-Tryptophan (L-Trp) in body fluids is crucial due to its significant role in metabolism and protein synthesis, which ultimately affects neurological health. Herein, we have developed a novel magneto-responsive electrochemical enantioselective sensor for the recognition of L-Trp based on oriented biochar derived from Loofah, Fe3O4 nanoparticles, and molecularly imprinted polydopamine (MIPDA) in xanthan hydrogel. The successful synthesis of these materials has been confirmed through physicochemical and electrochemical characterization. Various operational factors such as pH, response time, loading sample volume, and loading of active materials were optimized. As a result, the sensor exhibited an affordable linear range of 1.0-60.0 μM, with a desirable limit of detection of 0.44 μM. Furthermore, the proposed electrochemical sensor demonstrated good reproducibility and desirable selectivity for the determination of L-Trp, making it suitable for analyzing L-Trp levels in human plasma and serum samples. The development presented offers an appealing, easily accessible, and efficient strategy. It utilizes xanthan hydrogel to improve mass transfer and adhesion, biochar-stabilized Fe3O4 to facilitate magnetic orientation and accelerate mass transfer and sensitivity, and polydopamine MIP to enhance selectivity. This approach enables on-site evaluation of L-Trp levels, which holds significant value for healthcare monitoring and early detection of related conditions.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mojdeh Golzani
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Ejraei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
4
|
Wen T, Li J, Cai W, Wu D, Yin ZZ, Kong Y. Visual and electrochemical chiral discrimination of tryptophan isomers with shikimic acid chiral ionic liquids-copper ions complex. Talanta 2024; 272:125850. [PMID: 38437760 DOI: 10.1016/j.talanta.2024.125850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Efficient discrimination of amino acids (AAs) isomers is of significant importance for life science and analytical chemistry. Here, a dual-mode chiral discrimination strategy is proposed for visual and electrochemical chiral discrimination of tryptophan (Trp) isomers. Shikimic acid chiral ionic liquids (SCIL) is coordinated with copper ions (Cu2+), and the obtained SCIL-Cu2+ can form ternary complexes with the Trp isomers. Owing to the inherent chirality of SCIL and the reverse homochirality of L-Trp and D-Trp, the ternary complex of SCIL-Cu-D-Trp has higher stability than SCIL-Cu-L-Trp, as revealed by the calculated stability constants (K) and changes in Gibbs free energy (ΔG). The difference in the stability can be utilized for the chiral discrimination of L-Trp and D-Trp, resulting in discernible differences in colors and the electrochemical signals of the Trp isomers. Besides Trp, the isomers of phenylalanine (Phe) can also be discriminated by the proposed dual-mode chiral discrimination strategy with the SCIL-Cu2+ complex.
Collapse
Affiliation(s)
- Tai Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
5
|
Suwankaisorn B, Aroonratsameruang P, Kuhn A, Wattanakit C. Enantioselective recognition, synthesis, and separation of pharmaceutical compounds at chiral metallic surfaces. ChemMedChem 2024; 19:e202300557. [PMID: 38233349 DOI: 10.1002/cmdc.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The development of new pharmaceutical compounds is challenging because most of them are based on enantiopure chiral molecules, which exhibit unique properties for therapy. However, the synthesis of pharmaceutical compounds in the absence of a chiral environment naturally leads to a racemic mixture. Thus, to control their synthesis, an asymmetric environment is required, and chiral homogeneous catalysts are typically used to synthesize enantiopure pharmaceutical compounds (EPC). Nevertheless, homogeneous catalysts are difficult to recover after the reaction, generating additional problems and costs in practical processes. Thus, the development of chiral heterogeneous catalysts is a timely topic. In a more general context, such chiral materials cannot only be used for synthesis, but also to recognize and separate enantiomers. In the frame of these different challenges, we give in this review a short introduction to strategies to extrinsically and intrinsically modify heterogeneous metal matrixes for the enantioselective synthesis, recognition, and separation of chiral pharmaceutical compounds.
Collapse
Affiliation(s)
- Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 16, avenue Pey Berland, 33607, Pessac, France
| | - Ponart Aroonratsameruang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 16, avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
| |
Collapse
|
6
|
Xu Z, Liu Y, Lv M, Qiao X, Fan GC, Luo X. An anti-fouling wearable molecular imprinting sensor based on semi-interpenetrating network hydrogel for the detection of tryptophan in sweat. Anal Chim Acta 2023; 1283:341948. [PMID: 37977778 DOI: 10.1016/j.aca.2023.341948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The challenge of heavy biofouling in complex sweat environments limits the potential of electrochemical sweat sensors for noninvasive physiological assessment. In this study, a novel semi-interpenetrating hydrogel of PSBMA/PEDOT:PSS was engineered by interlacing PEDOT:PSS conductive polymer with zwitterionic PSBMA network. This versatile hydrogel served as the foundation for developing an anti-fouling wearable molecular imprinting sensor capable of sensitive and robust detection of tryptophan (Trp) in complex sweat. The incorporation of PEDOT:PSS conductive polymer into the semi-interpenetrating hydrogel introduced diverse physical crosslinks, including hydrogen bonding, electrostatic interactions, and chain entanglement. This incorporation considerably boosted the hydrogel's mechanical robustness and imparted commendable self-healing property. At the same time, the synergistic coupling between the well-balanced charge of the zwitterionic network and the high conductivity of the PEDOT:PSS polymer facilitated efficient charge transfer. The formation of the desired molecular imprinting membrane of semi-interpenetrating hydrogel was triggered by self-polymerization of dopamine (DA) in the presence of Trp. The designed biosensor demonstrated good sensitivity, selectivity and stability in detecting the target Trp. Notably, it also exhibited exceptional anti-fouling abilities, allowing for accurate Trp detection in complex real sweat samples, yielding results comparable to commercial enzyme-linked immunoassay (ELISA).
Collapse
Affiliation(s)
- Zhenying Xu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanyuan Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Mingrui Lv
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Cheng Y, Tian DY, Wang YH, Liu W, Huo XL, Bao N, Wu ZQ. Vibration-enhanced disposable electroanalytical platform for selective analysis of tryptophan in fruits based on molecular imprinting. Anal Chim Acta 2023; 1279:341853. [PMID: 37827659 DOI: 10.1016/j.aca.2023.341853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Although electrochemical detection based on molecular imprinting polymers (MIP) could dramatically improve the selectivity, the procedure is time-consuming because of the essential incubation step. In addition, current MIP electrochemical detections were not suitable for analysis of microliter-level sample solutions, limiting their applications for real samples. This investigation aims at applying vibration to enhance efficiency of MIP electrochemical detection of 20 μL sample solutions. MIP analysis of Tryptophan (Trp) was used as the model with disposable MIP electrodes prepared by electrochemical polymerization of o-phenylenediamine on carbon ink coated on stainless steel sheets. The MIP electrode was integrated in a 3D-printed analytical device for vibration-enhanced electrochemical detection of Trp. Our results showed that this vibration-enhanced strategy could significantly increase electrochemical responses of Trp at the same incubation time. Such improvement might be attributed to the enhanced mass transfer at the surface of the working electrode brought by vibration. It needs to be emphasized that this strategy is suitable for analysis of sample solutions with the volume of microliters, which is superior to normal stirring in MIP electrochemical detection. Our approach could be successfully utilized for differentiation of Trp in different fruits, opening more opportunities for MIP electrochemical detection of real samples. The enhanced efficiency by vibration could pave foundation for extensive practical MIP detection of sample solutions at the level of microliters.
Collapse
Affiliation(s)
- Ye Cheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Dong-Yang Tian
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Ya-Hong Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| |
Collapse
|