1
|
Zhao J, Shi Z, Chen M, Xi F. Highly active nanozyme based on nitrogen-doped graphene quantum dots and iron ion nanocomposite for selective colorimetric detection of hydroquinone. Talanta 2025; 281:126817. [PMID: 39245006 DOI: 10.1016/j.talanta.2024.126817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Inspired by the iron porphyrin structure of natural horseradish peroxidase (HRP), an efficient carbon-based nanozyme was fabricated using nitrogen-doped graphene quantum dots (NGQDs) and iron ion (Fe3+) nanocomposite, enabling selective distinguishment of hydroquinone (HQ) from its isomers. NGQDs with good dispersibility and uniform size were synthesized via a one-step hydrothermal process. NGQDs lacked peroxidase-like activity but the formed nanocomposite (Fe3+-NGQDs) upon Fe3+ addition possessed high peroxidase-like activity. Fe3+-NGQDs nanocomposite exhibited shuttle-shaped structure (∼30 nm), the lattice structure of NGQDs and electron transfer between Fe3+ and NGQDs. The Fe3+-NGQDs nanocomposite can catalyze the production of superoxide radicals (•O2-) from H2O2. The Michaelis constant (Km) of Fe3+-NGQDs (0.115 mM) was lower than that of natural HRP (0.434 mM) with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate and the maximum initial reaction rate (Vmax, 16.47 × 10-8 M/s) was nearly 4 times higher than that of HRP using H2O2 substrate. HQ, unlike its isomers catechol (CC) and resorcinol (RE), could consume •O2- generated from the decomposition of H2O2 catalyzed by Fe3+-NGQDs nanocomposite, reducing the oxidation of TMB. This principle enabled selective colorimetric determination of HQ ranged from 1 μM to 70 μM and a limit of detection (LOD) of 0.2 μM. Successful determination of HQ in pond water was also realized.
Collapse
Affiliation(s)
- Jingwen Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhuxuan Shi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mixia Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhao P, Xia X, Luo Y, Yuan Z, Deng J, Luo H, Luo X, Huo D, Hou C. A porphyrin-modified CoMoO 4 nanosensor array for the detection of crude baijiu. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7494-7501. [PMID: 39364608 DOI: 10.1039/d4ay01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The rapid classification of crude baijiu is pivotal for its industrialization and automated development. In this study, a colorimetric sensor array employing peroxidase nanase (Por-CoMoO4) was developed to detect reducing substances and crude baijiu. The peroxidase-like activity of CoMoO4 was significantly enhanced by porphyrin (Por), exhibiting a Km value of 0.044 mM and Vmax of 19.37 × 10-8 for TMB substrate. Peroxidase activity varies at different pH levels. Organic and crude baijiu scavenge free radicals, thereby inhibiting oxTMB formation and yielding distinctive fingerprint profiles. Using linear discriminant analysis, 14 types of small molecules and 16 varieties of Luzhou-flavor crude baijiu were identified within specific concentration ranges. The method achieved 100% accuracy in distinguishing baijiu samples sourced from different distilleries, offering a straightforward, rapid, and effective approach to differentiate crude baijiu during alcoholic beverage production.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Xuhui Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yiyao Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Zirui Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| |
Collapse
|
3
|
Du N, Weng W, Xu Y, Zhou Y, Yi Y, Zhao Y, Zhu G. Vanadium-Based Metal-Organic Frameworks with Peroxidase-like Activity as a Colorimetric Sensing Platform for Direct Detection of Organophosphorus Pesticides. Inorg Chem 2024; 63:16442-16450. [PMID: 39172690 DOI: 10.1021/acs.inorgchem.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Colorimetry based on the bioenzyme inhibition strategy holds promising application prospects in the field of organophosphorus pesticide (OPs) detection. However, overcoming the challenges of the high cost and low stability of bioenzymes remains crucial. In this study, we successfully synthesized a peroxidase vanadium-based metal-organic framework (MOF) nanozyme named MIL-88B(V) and employed its mediated bioenzyme-free colorimetric strategy for direct OPs detection. The experimental results demonstrated that MIL-88B(V) exhibited a remarkable affinity and a remarkable catalytic rate. When the OPs target is added, it can be anchored on the MOF surface through a V-O-P bond, effectively inhibiting the MOF's activity. Subsequently, leveraging the advantages of smartphones such as convenience, speed, and sensitivity, we developed a paper sensor integrated into a smartphone for efficient OPs detection. The as-designed nanozyme-based colorimetric assay and paper sensor presented herein offer notable advantages, including affordability, speed, stability, wide adaptability, low cost, and accuracy in detecting OPs, thus providing a versatile and promising analytical approach for real sample analysis and allowing new applications of V-based MOF nanozymes.
Collapse
Affiliation(s)
- Ningjing Du
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenchuan Weng
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Yuanyuan Xu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Zhou
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Yong Zhao
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao 266061, P. R. China
| |
Collapse
|
4
|
Li J, Wang L, Ma Y, Bi Z, Li Y, Huang H. Modified Metal-Organic Framework (MOF-818) inspired by natural enzymes for intelligent detection of total antioxidants and bisphenol A in infant beverages. Anal Chim Acta 2024; 1317:342897. [PMID: 39030003 DOI: 10.1016/j.aca.2024.342897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Accurate and quick judgement of the food quality can protect the legitimate rights of consumers. Currently, nanozymes are widely employed in the rapid detection of food due to their stability and economy. The contents of bisphenol A and antioxidant can be used to measure the quality of beverages. However, due to the complexity of the actual samples, it is still challenging to achieve the sensitive detection of both at the same time. The development of nanozyme with high enzyme activity is essential for sensitive detection of targets in complex foods. RESULTS In this work, a novel nanomaterial (ZrTGA) was synthesized based on thioglycolic acid-modified Metal-Organic Framework (MOF-818). The interaction between Cu-S bonds and increase in the proportion of Cu1+ resulted in ZrTGA exhibiting higher peroxidase-like and polyphenol oxidase-like activities. These enzyme activities were 317 % and 200 % of the original values, respectively. With high enzyme activity can sensitively detect two important indicators of bisphenol A and antioxidants in beverages. The increased enzyme activity of ZrTGA enabled the content of both substances to be detected by smartphone extraction of RGB. Finally, through the output of the ''0″ and ''1″ signals of the logic gates, it is possible to quickly determine the level of the two substances and thus directly assess the quality of the beverages. SIGNIFICANCE The modification of nanozyme enables the detection of substances at low concentrations based on enhancing dual-enzyme activity. The combination of mobile phone photography and logic gate technology enables the continuous detection of two important indicators in beverages, overcoming the limitations of traditional large-scale instruments. It also provides an alternative strategy for food quality detection.
Collapse
Affiliation(s)
- Jie Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Luwei Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yu Ma
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
5
|
Han D, Yang K, Chen L, Zhang Z, Wang C, Yan H, Wen J. Facile preparation of high-efficiency peroxidase mimics: modulation of the catalytic microenvironment of LDH nanozymes through defect engineering induced by amino acid intercalation. Chem Sci 2024; 15:6002-6011. [PMID: 38665520 PMCID: PMC11040636 DOI: 10.1039/d4sc00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nanozymes have gained much attention as a replacement for natural enzymes duo to their unique advantages. Two-dimensional layered double hydroxide (LDH) nanomaterials with high physicochemical plasticity are emerging as the main forces for the construction of nanozymes. Unfortunately, high-performance LDH nanozymes are still scarce. Recently, defects in nanomaterials have been verified to play a significant role in modulating the catalytic microenvironment, thereby improving catalytic performances of nanozymes. Therefore, the marriage between defect engineering and LDH nanozymes is expected to spark new possibilities. In this work, twenty kinds of natural amino acids were separately inserted into the interlayer of CoFe-LDH to obtain defect-rich CoFe-LDH nanozymes. The peroxidase (POD)-like activity and catalytic mechanism of the as-prepared LDH nanozymes were systematically studied. The results showed that the intercalation of amino acids can effectively enhance the POD-like activity of LDH nanozymes owing to the increasing oxygen/metal vacancies. And l-cysteine intercalated LDH exhibited the highest catalytic activity ascribed to its thiol group. As a proof of concept, LDH nanozymes with superb POD-like activity were used in biosensing and antibacterial applications. This work suggests that modulating the catalytic microenvironment through defect engineering is an effective way to obtain high-efficiency POD mimics.
Collapse
Affiliation(s)
- Dong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Pharmaceutical Science, Hebei University Baoding 071002 P. R. China
| | - Kui Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University Baoding 071002 P. R. China
| | - Lanlan Chen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Pharmaceutical Science, Hebei University Baoding 071002 P. R. China
| | - Zhaosheng Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University Baoding 071002 P. R. China
| | - Chen Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Pharmaceutical Science, Hebei University Baoding 071002 P. R. China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University Baoding 071002 P. R. China
| | - Jia Wen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Pharmaceutical Science, Hebei University Baoding 071002 P. R. China
| |
Collapse
|
6
|
Chi Z, Gu J, Li H, Wang Q. Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024; 149:1416-1435. [PMID: 38334683 DOI: 10.1039/d3an01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nanozymes, a class of synthetic nanomaterials possessing enzymatic catalytic properties, exhibit distinct advantages such as exceptional stability and cost-effectiveness. Among them, metal-organic framework (MOF)-based nanozymes have garnered significant attention due to their large specific surface area, tunable pore size and uniform structure. MOFs are porous crystalline materials bridged by inorganic metal ions/clusters and organic ligands, which hold immense potential in the fields of catalysis, sensors and drug carriers. The combination of MOFs with diverse nanomaterials gives rise to various types of MOF-based nanozyme, encompassing original MOFs, MOF-based nanozymes with chemical modifications, MOF-based composites and MOF derivatives. It is worth mentioning that the metal ions and organic ligands in MOFs are perfectly suited for designing oxidoreductase-like nanozymes. In this review, we intend to provide an overview of recent trends and progress in MOF-based nanozymes with oxidoreductase-like activity. Furthermore, the current obstacles and prospective outlook of MOF-based nanozymes are proposed and briefly discussed. This comprehensive analysis aims to facilitate progress in the development of novel MOF-based nanozymes with oxidoreductase-like activity while serving as a valuable reference for scientists engaged in related disciplines.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|