1
|
Kattih Z, Bade B, Hatabu H, Brown K, Parambil J, Hata A, Mazzone PJ, Machnicki S, Guerrero D, Chaudhry MQ, Kellermeyer L, Johnson K, Cohen S, Ramdeo R, Naidich J, Borczuck A, Raoof S. Interstitial Lung Abnormality: Narrative Review of the Approach to Diagnosis and Management. Chest 2024:S0012-3692(24)05294-2. [PMID: 39393485 DOI: 10.1016/j.chest.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 10/13/2024] Open
Abstract
TOPIC IMPORTANCE As interstitial lung abnormalities (ILAs) are increasingly recognized on imaging and in clinical practice, identification and appropriate management are critical. We propose an algorithmic approach to the identification and management of patients with ILAs. REVIEW FINDINGS The radiologist initially identifies chest CT scan findings suggestive of an ILA pattern and excludes findings that are not consistent with ILAs. The next step is to confirm that these findings occupy > 5% of a nondependent lung zone. At this point, the radiologic pattern of ILA is identified. These findings are classified as non-subpleural, subpleural nonfibrotic, and subpleural fibrotic. It is then incumbent on the clinician to ascertain if the patient has symptoms and/or abnormal pulmonary physiology that may be attributable to these radiologic changes. Based on the patient's symptoms, physiological assessment, and risk factors for interstitial lung disease (ILD), we recommend classifying patients as having ILA, at high risk for developing ILD, probable ILD, or ILD. In patients identified as having ILA, a multidisciplinary discussion should evaluate features that indicate an increased risk of progression. If these features are present, serial monitoring is recommended to be proactive. If the patient does not have imaging or clinical features that indicate an increased risk of progression, then monitoring is recommended to be reactive. If ILD is subsequently diagnosed, the management is disease specific. SUMMARY We anticipate this algorithmic approach will aid clinicians in interpreting the radiologic pattern described as ILA within the clinical context of their patients.
Collapse
Affiliation(s)
- Zein Kattih
- Division of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health, New York NY
| | - Brett Bade
- Division of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health, New York NY
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Kevin Brown
- Department of Medicine, National Jewish Health, Denver, CO
| | | | - Akinori Hata
- Department of Diagnostic and Interventional Radiology, Osaka University, Osaka, Japan
| | | | - Stephen Machnicki
- Department of Radiology, Lenox Hill Hospital, Northwell Health, New York NY
| | - Dominick Guerrero
- Department of Pathology, Lenox Hill Hospital, Northwell Health, New York NY
| | - Muhammad Qasim Chaudhry
- Feinstein Institute of Medical Research, NorthShore University Hospital, Northwell Health, New York, NY
| | - Liz Kellermeyer
- Library and Knowledge Services, National Jewish Health, Denver, CO
| | - Kaitlin Johnson
- Division of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health, New York NY
| | - Stuart Cohen
- Department of Radiology, NorthShore University Hospital, Northwell Health, New York, NY
| | - Ramona Ramdeo
- Department of Medicine, NorthShore University Hospital, Northwell Health, New York, NY
| | - Jason Naidich
- Department of Radiology, NorthShore University Hospital, Northwell Health, New York, NY
| | - Alain Borczuck
- Department of Pathology, Lenox Hill Hospital, Northwell Health, New York NY
| | - Suhail Raoof
- Division of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health, New York NY.
| |
Collapse
|
2
|
McDermott GC, Hayashi K, Juge PA, Gill R, Byrne S, Gagne S, Wang X, Paudel ML, Moll M, Cho MH, Vanni K, Kowalski E, Qian G, Bade K, Saavedra A, Kawano Y, DiIorio M, Wolfgang T, Kim EY, Dellaripa PF, Weinblatt ME, Shadick N, Doyle TJ, Sparks JA. Impact of Sex, Serostatus, and Smoking on Risk for Rheumatoid Arthritis-Associated Interstitial Lung Disease Subtypes. Arthritis Care Res (Hoboken) 2024. [PMID: 39257341 DOI: 10.1002/acr.25432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) includes multiple subtypes with varying histopathology, prognosis, and potential treatments. Limited research has investigated risk factors for different RA-ILD subtypes. Therefore, we examined demographic, serologic, and lifestyle associations with RA-ILD subtypes. METHODS We systematically identified RA-ILD cases and RA controls without ILD (RA-noILD) in the Brigham RA Sequential Study and Mass General Brigham Biobank RA cohort. We determined RA-ILD subtype (usual interstitial pneumonia [UIP], nonspecific interstitial pneumonia [NSIP], and other/indeterminate) through chest high-resolution computed tomography imaging pattern. We investigated associations of demographic, lifestyle, and serologic factors with major RA-ILD subtypes using multivariable logistic regression. RESULTS Among 3,328 patients with RA, we identified 208 RA-ILD cases and 547 RA-noILD controls. RA-UIP was associated with older age (odds ratio [OR] 1.03 per year, 95% confidence interval [95% CI] 1.01-1.05), male sex (OR 2.15, 95% CI 1.33-3.48), and seropositivity (OR 2.08, 95% CI 1.24-3.48), whereas RA-NSIP was significantly associated only with seropositive status (OR 3.21, 95% CI 1.36-7.56). Nonfibrotic ILDs were significantly associated with smoking (OR 2.81, 95% CI 1.52-5.21). Having three RA-ILD risk factors (male, seropositive, smoking) had an OR of 6.89 (95% CI 2.41-19.7) for RA-UIP compared with having no RA-ILD risk factors. CONCLUSION Older age, seropositivity, and male sex were strongly associated with RA-UIP, whereas RA-related autoantibodies were associated with RA-NSIP. These findings suggest RA-ILD sex differences may be driven by RA-UIP and emphasize the importance of further studies to clarify RA-ILD heterogeneity and optimize screening and treatment approaches.
Collapse
Affiliation(s)
- Gregory C McDermott
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Pierre-Antoine Juge
- Brigham and Women's Hospital, Boston, Massachusetts, Université de Paris Cité, INSERM UMR 1152 and Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Ritu Gill
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Suzanne Byrne
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Staci Gagne
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Misti L Paudel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew Moll
- Brigham and Women's Hospital and Harvard Medical School, Boston, Department of Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Michael H Cho
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Grace Qian
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Yumeko Kawano
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael DiIorio
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Taylor Wolfgang
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edy Y Kim
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul F Dellaripa
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael E Weinblatt
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nancy Shadick
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tracy J Doyle
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Sparks
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Hata A, Aoyagi K, Hino T, Kawagishi M, Wada N, Song J, Wang X, Valtchinov VI, Nishino M, Muraguchi Y, Nakatsugawa M, Koga A, Sugihara N, Ozaki M, Hunninghake GM, Tomiyama N, Li Y, Christiani DC, Hatabu H. Automated Interstitial Lung Abnormality Probability Prediction at CT: A Stepwise Machine Learning Approach in the Boston Lung Cancer Study. Radiology 2024; 312:e233435. [PMID: 39225600 PMCID: PMC11419784 DOI: 10.1148/radiol.233435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background It is increasingly recognized that interstitial lung abnormalities (ILAs) detected at CT have potential clinical implications, but automated identification of ILAs has not yet been fully established. Purpose To develop and test automated ILA probability prediction models using machine learning techniques on CT images. Materials and Methods This secondary analysis of a retrospective study included CT scans from patients in the Boston Lung Cancer Study collected between February 2004 and June 2017. Visual assessment of ILAs by two radiologists and a pulmonologist served as the ground truth. Automated ILA probability prediction models were developed that used a stepwise approach involving section inference and case inference models. The section inference model produced an ILA probability for each CT section, and the case inference model integrated these probabilities to generate the case-level ILA probability. For indeterminate sections and cases, both two- and three-label methods were evaluated. For the case inference model, we tested three machine learning classifiers (support vector machine [SVM], random forest [RF], and convolutional neural network [CNN]). Receiver operating characteristic analysis was performed to calculate the area under the receiver operating characteristic curve (AUC). Results A total of 1382 CT scans (mean patient age, 67 years ± 11 [SD]; 759 women) were included. Of the 1382 CT scans, 104 (8%) were assessed as having ILA, 492 (36%) as indeterminate for ILA, and 786 (57%) as without ILA according to ground-truth labeling. The cohort was divided into a training set (n = 96; ILA, n = 48), a validation set (n = 24; ILA, n = 12), and a test set (n = 1262; ILA, n = 44). Among the models evaluated (two- and three-label section inference models; two- and three-label SVM, RF, and CNN case inference models), the model using the three-label method in the section inference model and the two-label method and RF in the case inference model achieved the highest AUC, at 0.87. Conclusion The model demonstrated substantial performance in estimating ILA probability, indicating its potential utility in clinical settings. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zagurovskaya in this issue.
Collapse
Affiliation(s)
- Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kota Aoyagi
- Canon Medical Systems Corporation, Tochigi, Japan
| | - Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Noriaki Wada
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jiyeon Song
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Xinan Wang
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
| | - Vladimir I. Valtchinov
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Dana Farber Cancer Institute, Department of Imaging, Boston, MA
| | | | | | - Akihiro Koga
- Canon Medical Systems Corporation, Tochigi, Japan
| | | | | | - Gary M. Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Noriyuki Tomiyama
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yi Li
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - David C. Christiani
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Venkat RK, Hayashi K, Juge PA, McDermott G, Paudel M, Wang X, Vanni KMM, Kowalski EN, Qian G, Bade KJ, Saavedra AA, Mueller KT, Chang SH, Dellaripa PF, Weinblatt ME, Shadick NA, Doyle TJ, Dieude P, Sparks JA. Forced vital capacity trajectories and risk of lung transplant and ILD-related mortality among patients with rheumatoid arthritis-associated interstitial lung disease. Clin Rheumatol 2024; 43:2453-2466. [PMID: 38898318 DOI: 10.1007/s10067-024-07028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
We aimed to determine the prevalence and outcomes for forced vital capacity percent predicted (FVCpp) decline among patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). We identified patients with RA-ILD in the Mass General Brigham Healthcare system. RA-ILD diagnosis was determined by review of high-resolution computed tomography (HRCT) imaging by up to three thoracic radiologists. We abstracted FVCpp measurements, covariates, lung transplant, and ILD-related death from the medical record. We employed a relative FVCpp decline cutoff of > 10% within 24 months. We also used a group-based trajectory model to obtain patterns of change from RA-ILD diagnosis. We then assessed for associations of each FVC decline definition with risk of lung transplant or ILD-related death using multivariable logistic regression. We analyzed 172 patients with RA-ILD with a median of 6 FVCpp measurements per patient over 6.5 years of follow-up (mean age 62.2 years, 36% male). There were seven (4%) lung transplants and 44 (26%) ILD-related deaths. Ninety-eight (57%) patients had relative decline of FVCpp by > 10% in 24 months. We identified three trajectory groups of FVCpp change: rapidly declining (n = 24/168 [14%]), slowly declining (n = 90/168 [54%]), and stable/improving (n = 54/168 [32%]). The rapidly declining group and FVCpp > 10% had adjusted odds ratios (aOR) for lung transplant/ILD-related death of 19.2 (95%CI 4.9 to 75.5) and 2.8 (95%CI 1.3 to 6.1) respectively. Over half of patients with RA-ILD had declining FVCpp. The different trajectory patterns demonstrate the importance of FVC monitoring for identifying patients at the highest risk of poor outcomes. Key Points • Over half of patients with RA-ILD had declining FVCpp over a median of 6.5 years of follow-up. • The rapidly declining FVCpp trajectory group had stronger associations with lung transplant and ILD-related death compared to those with FVCpp decline by > 10%. • Clinicians can employ FVC monitoring to proactively treat patients who are at risk of poor outcomes.
Collapse
Affiliation(s)
| | - Keigo Hayashi
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Pierre-Antoine Juge
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Université de Paris, INSERM UMR 1152, 7501875018, and Service de Rhumatologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Gregory McDermott
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Misti Paudel
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Xiaosong Wang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen M M Vanni
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Emily N Kowalski
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace Qian
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Katarina J Bade
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Alene A Saavedra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Kevin T Mueller
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Sung Hae Chang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Paul F Dellaripa
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael E Weinblatt
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nancy A Shadick
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tracy J Doyle
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary & Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Philippe Dieude
- Université de Paris, INSERM UMR 1152, 7501875018, and Service de Rhumatologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Hata A, Yanagawa M, Miyata T, Hiraoka Y, Shirae M, Ninomiya K, Doi S, Yamagata K, Yoshida Y, Kikuchi N, Ogawa R, Hatabu H, Tomiyama N. Association between interstitial lung abnormality and mortality in patients with esophageal cancer. Jpn J Radiol 2024; 42:841-851. [PMID: 38658500 PMCID: PMC11286667 DOI: 10.1007/s11604-024-01563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE To investigate the relationship between interstitial lung abnormalities (ILAs) and mortality in patients with esophageal cancer and the cause of mortality. MATERIALS AND METHODS This retrospective study investigated patients with esophageal cancer from January 2011 to December 2015. ILAs were visually scored on baseline CT using a 3-point scale (0 = non-ILA, 1 = indeterminate for ILA, and 2 = ILA). ILAs were classified into subcategories of non-subpleural, subpleural non-fibrotic, and subpleural fibrotic. Five-year overall survival (OS) was compared between patients with and without ILAs using the multivariable Cox proportional hazards model. Subgroup analyses were performed based on cancer stage and ILA subcategories. The prevalences of treatment complications and death due to esophageal cancer and pneumonia/respiratory failure were analyzed using Fisher's exact test. RESULTS A total of 478 patients with esophageal cancer (age, 66.8 years ± 8.6 [standard deviation]; 64 women) were evaluated in this study. Among them, 267 patients showed no ILAs, 125 patients were indeterminate for ILAs, and 86 patients showed ILAs. ILAs were a significant factor for shorter OS (hazard ratio [HR] = 1.68, 95% confidence interval [CI] 1.10-2.55, P = 0.016) in the multivariable Cox proportional hazards model adjusting for age, sex, smoking history, clinical stage, and histology. On subgroup analysis using patients with clinical stage IVB, the presence of ILAs was a significant factor (HR = 3.78, 95% CI 1.67-8.54, P = 0.001). Subpleural fibrotic ILAs were significantly associated with shorter OS (HR = 2.22, 95% CI 1.25-3.93, P = 0.006). There was no significant difference in treatment complications. Patients with ILAs showed a higher prevalence of death due to pneumonia/respiratory failure than those without ILAs (non-ILA, 2/95 [2%]; ILA, 5/39 [13%]; P = 0.022). The prevalence of death due to esophageal cancer was similar in patients with and without ILA (non-ILA, 82/95 [86%]; ILA 32/39 [82%]; P = 0.596). CONCLUSION ILAs were significantly associated with shorter survival in patients with esophageal cancer.
Collapse
Affiliation(s)
- Akinori Hata
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Masahiro Yanagawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tomo Miyata
- Department of Radiology, Sakai City Medical Center, 1-1-1 Ebaraji-cho, Nishi-ku, Sakai, Osaka, 5938304, Japan
| | - Yu Hiraoka
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Motohiro Shirae
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keisuke Ninomiya
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Shuhei Doi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kazuki Yamagata
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yuriko Yoshida
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriko Kikuchi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Ryo Ogawa
- Future Diagnostic Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
6
|
Dettmer S, Vogel-Claussen J. [Interstitial lung abnormalities : What the radiologist needs to know]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:612-616. [PMID: 38949668 DOI: 10.1007/s00117-024-01336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Interstitial lung abnormalities (ILA) are incidental findings on computed tomography (CT), particularly in elderly patients and smokers. They describe mild interstitial abnormalities that can be progressive and turn into overt interstitial lung disease (ILD). In recent years, ILA have increasingly come into focus because several large cohort studies have shown poorer clinical outcomes and increased mortality for patients with ILA compared to those without ILA. The radiological classification into nonsubpleural, subpleural nonfibrotic and subpleural fibrotic as well as the assessment over time can-together with clinical risk factors-help estimate clinical outcome. Clinical management of patients with ILA includes exclusion of ILD and risk-adapted control intervals, especially in the presence of risk factors.
Collapse
Affiliation(s)
- Sabine Dettmer
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30629, Hannover, Deutschland.
| | - Jens Vogel-Claussen
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30629, Hannover, Deutschland
| |
Collapse
|
7
|
Yang HM, Ryu MH, Carey VJ, Young K, Kinney GL, Dransfield MT, Wade RC, Wells JM, Budoff M, Castaldi PJ, Hersh CP, Silverman EK. COPD Subtypes Are Differentially Associated With Cardiovascular Events and COPD Exacerbations. Chest 2024:S0012-3692(24)04878-5. [PMID: 39094733 DOI: 10.1016/j.chest.2024.07.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The coronary artery calcium score (CACS) and ratio of the pulmonary artery to aorta diameters (PA:A ratio) measured from chest CT scans have been established as predictors of cardiovascular events and COPD exacerbations, respectively. However, little is known about the reciprocal relationship between these predictors and outcomes. Furthermore, the prognostic implications of COPD subtypes on clinical outcomes remain insufficiently characterized. RESEARCH QUESTION How can these two chest CT scan-derived parameters predict subsequent cardiovascular events and COPD exacerbations in different COPD subtypes? STUDY DESIGN AND METHODS Using COPDGene study data, we assessed prospective cardiovascular disease (CVD) and COPD exacerbation risk in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease spirometric grades 2-4), focusing on CACS and PA:A ratio at study enrollment, with logistic regression models. These outcomes were analyzed in three COPD subtypes: 1,042 patients with non-emphysema-predominant disease (NEPD) (low attenuation area at -950 Hounsfield units [LAA-950] < 5%), 1,324 patients with emphysema-predominant disease (EPD) (LAA-950 ≥ 10%), and 465 patients with intermediate emphysema disease (5% ≤ LAA-950 < 10%). RESULTS Our study indicated significantly higher overall risk for cardiovascular events in patients with higher CACS (≥ median; OR, 1.61; 95% CI, 1.30-2.00) and increased COPD exacerbations in those with higher PA:A ratios (≥ 1; OR, 1.80; 95% CI, 1.46-2.23). Notably, patients with NEPD showed a stronger association between these indicators and clinical events than those with EPD (with CACS/CVD, NEPD vs EPD: OR, 2.02 vs 1.41; with PA:A ratio/COPD exacerbation, NEPD vs EPD: OR, 2.50 vs 1.65); the difference in ORs between COPD subtypes was statistically significant for CACS/CVD. INTERPRETATION Two chest CT scan parameters, CACS and PA:A ratio, hold distinct predictive values for cardiovascular events and COPD exacerbations that are influenced by specific COPD subtypes. TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT00608764; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Han-Mo Yang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Min Hyung Ryu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Vincent J Carey
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Kendra Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Gregory L Kinney
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
| | - Raymond C Wade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
| | - James M Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Hwang J, You S, Lee YJ, Sun JS. Prevalence and progression rate of interstitial lung abnormalities detected on thoracic CT: a systematic review and meta-analysis. Eur Radiol 2024:10.1007/s00330-024-10952-9. [PMID: 39026064 DOI: 10.1007/s00330-024-10952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES To estimate the pooled prevalence and progression rate of ILAs and identify the risk factors for radiological progression. MATERIALS AND METHODS An EMBASE and PubMed search was undertaken, identifying all studies meeting the inclusion criteria performed before May 10, 2023. Random effect models were used to estimate pooled prevalence, ILA progression rates, and odds ratio for radiological progression based on radiological subtype. Subgroup analyses were performed to compare the general and high-risk populations for lung cancer. The quality of the included studies was evaluated using the risk of bias assessment tool for non-randomized studies. RESULTS We analyzed 19 studies (241,541 patients) and 10 studies (1317 patients) for the pooled prevalence and progression rate of ILA, respectively. The pooled ILA prevalence was 9.7% (95% CI, 6.1-13.9%). The pooled prevalence was 6.8% (95% CI, 3.1-11.6%) and 7.1% (95% CI, 2.2-14.4%) in the general (six studies) and high-risk population for lung cancer (six studies), respectively. The pooled progression rate was 47.1% (95% CI, 29.1-65.5%). The pooled progression rate was 64.2% (95% CI, 45.0-81.2%, five studies) and 31.0% (95% CI, 8.2-60.5%, five studies) for longer (≥ 4.5 years) and shorter follow-up periods (< 4.5 years), respectively (p = 0.009). Fibrotic ILAs were significantly associated with a higher progression probability (combined OR, 5.55; 95% CI, 1.95-15.82). CONCLUSIONS The prevalence of ILAs was approximately 9.7%. Approximately half of the patients exhibited radiological progression, with the rate increasing over a longer follow-up period. Fibrotic ILA was a significant risk factor for radiological progression. CLINICAL RELEVANCE STATEMENT The prevalence of interstitial lung abnormalities (ILAs) is approximately 9.7%, with about half exhibiting progression; a longer follow-up duration and fibrotic ILAs are associated with a higher progression rate. KEY POINTS ILAs are increasingly recognized as important, but few population data are available. ILAs exhibited a pooled prevalence of 9.7% with a progression rate of 47.1%. Fibrotic ILAs were associated with increased progression likelihood.
Collapse
Affiliation(s)
- Jisun Hwang
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seulgi You
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Ye Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joo Sung Sun
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
9
|
Tomishima Y, Kitamura A, Imai R, Ohde S. Deleterious impact of trivial to severe interstitial pneumonia and emphysema on mortality and acute exacerbation of interstitial pneumonia in patients with lung cancer: a retrospective cohort study. BMC Pulm Med 2024; 24:290. [PMID: 38909185 PMCID: PMC11193298 DOI: 10.1186/s12890-024-03105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Interstitial pneumonia and emphysema may complicate patients with lung cancer. However, clinical significance of trivial and mild pulmonary abnormalities remains unclear. In this study, we aimed to investigate whether trivial and mild interstitial pneumonia and emphysema, in addition to their advanced forms, impact the prognosis and lead to acute exacerbation of interstitial pneumonia (AEIP) in patients with lung cancer. METHODS This retrospective cohort study was conducted at a tertiary hospital and included patients with lung cancer. Computed tomography images were evaluated using the interstitial lung abnormality (ILA) score for interstitial pneumonia, which included no ILA, equivocal ILA, ILA, interstitial lung disease (ILD), and the Goddard score for emphysema. Cox analyses were performed using the ILA and Goddard scores as the main explanatory variables, adjusting for multiple covariates. RESULTS Among 1,507 patients with lung cancer, 1,033 had no ILA, 160 had equivocal ILA, 174 had ILA, and 140 had ILD. In total, 474 patients (31.5%) exhibited interstitial pneumonia and 638 (42.3%) showed emphysema. The log-rank trend test showed that survival probability was significantly better in patients with no ILA, followed by those with equivocal ILA, ILA, and ILD (P < 0.001). After adjustment, the ILA and Goddard scores remained significant variables for increased hazard ratios (HR) for mortality: no ILA (HR, 1.00: reference), equivocal ILA (HR, 1.31; 95% confidence interval [CI], 1.18-1.46; P < 0.001), ILA (HR, 1.71; 95% CI, 1.39-2.12; P < 0.001), ILD (HR, 2.24; 95% CI, 1.63-3.09; P < 0.001), and Goddard score (HR, 1.03; 95% CI, 1.01-1.06; P < 0.010). Moreover, both scores were associated with increased cause-specific HRs for AEIP. CONCLUSION Our results revealed that approximately one-third of patients with lung cancer had interstitial pneumonia when incorporating trivial and mild cases. Because interstitial pneumonia and emphysema, ranging from trivial to severe, significantly impact mortality and AEIP in patients with lung cancer, we should identify even trivial and mild cases of these pulmonary abnormalities among patients with lung cancer in addition to the advanced ones.
Collapse
Affiliation(s)
- Yutaka Tomishima
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, St. Luke's International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.
- Graduate School of Public Health, St. Luke's International University, 9-1 Akashi-cho, Chuo- ku, Tokyo, 104-8560, Japan.
| | - Atsushi Kitamura
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, St. Luke's International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Ryosuke Imai
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, St. Luke's International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Sachiko Ohde
- Graduate School of Public Health, St. Luke's International University, 9-1 Akashi-cho, Chuo- ku, Tokyo, 104-8560, Japan
| |
Collapse
|
10
|
Yang H, Ryu MH, Carey VJ, Kinney GL, Hokanson JE, Dransfield MT, Hersh CP, Silverman EK. Chronic Obstructive Pulmonary Disease Exacerbations Increase the Risk of Subsequent Cardiovascular Events: A Longitudinal Analysis of the COPDGene Study. J Am Heart Assoc 2024; 13:e033882. [PMID: 38818936 PMCID: PMC11255614 DOI: 10.1161/jaha.123.033882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the most important comorbidity in patients with chronic obstructive pulmonary disease (COPD). COPD exacerbations not only contribute to COPD progression but may also elevate the risk of CVD. This study aimed to determine whether COPD exacerbations increase the risk of subsequent CVD events using up to 15 years of prospective longitudinal follow-up data from the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) study. METHODS AND RESULTS The COPDGene study is a large, multicenter, longitudinal investigation of COPD, including subjects at enrollment aged 45 to 80 years with a minimum of 10 pack-years of smoking history. Cox proportional hazards models and Kaplan-Meier survival curves were used to assess the risk of a composite end point of CVD based on the COPD exacerbation rate. Frequent exacerbators exhibited a higher cumulative incidence of composite CVD end points than infrequent exacerbators, irrespective of the presence of CVD at baseline. After adjusting for covariates, frequent exacerbators still maintained higher hazard ratios (HRs) than the infrequent exacerbator group (without CVD: HR, 1.81 [95% CI, 1.47-2.22]; with CVD: HR, 1.92 [95% CI, 1.51-2.44]). This observation remained consistently significant in moderate to severe COPD subjects and the preserved ratio impaired spirometry population. In the mild COPD population, frequent exacerbators showed a trend toward more CVD events. CONCLUSIONS COPD exacerbations are associated with an increased risk of subsequent cardiovascular events in subjects with and without preexisting CVD. Patients with COPD experiencing frequent exacerbations may necessitate careful monitoring and additional management for subsequent potential CVD. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT00608764.
Collapse
Affiliation(s)
- Han‐Mo Yang
- Department of Medicine, Channing Division of Network MedicineBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Min Hyung Ryu
- Department of Medicine, Channing Division of Network MedicineBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Vincent J. Carey
- Department of Medicine, Channing Division of Network MedicineBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Gregory L. Kinney
- Department of EpidemiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - John E. Hokanson
- Department of EpidemiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Health CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Craig P. Hersh
- Department of Medicine, Channing Division of Network MedicineBrigham and Women’s HospitalBostonMAUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Edwin K. Silverman
- Department of Medicine, Channing Division of Network MedicineBrigham and Women’s HospitalBostonMAUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
11
|
Beasley MB. Interstitial Lung Abnormalities. Surg Pathol Clin 2024; 17:215-225. [PMID: 38692806 DOI: 10.1016/j.path.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Interstitial lung abnormalities (ILA) is a radiographic term, which has recently undergone clarification of definition with creation of 3 subtypes. ILA is defined as incidental identification of computed tomography abnormalities in a patient who is not suspected of having an interstitial lung disease (ILD). A subset of ILA may progress to clinically significant ILD and is associated with morbidities not related to progression such as an increased incidence of sepsis-related acute respiratory distress syndrome (ARDS). ILA has been associated with an increased incidence of treatment-related complications in patients with lung cancer. Information on corresponding histology is limited; knowledge gaps exist concerning optimal patient management.
Collapse
Affiliation(s)
- Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg 15-76, New York, NY 10029, USA.
| |
Collapse
|
12
|
Wada N, Hunninghake GM, Hatabu H. Interstitial Lung Abnormalities: Current Understanding. Clin Chest Med 2024; 45:433-444. [PMID: 38816098 DOI: 10.1016/j.ccm.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Interstitial lung abnormalities (ILAs) are incidental findings on computed tomography scans, characterized by nondependent abnormalities affecting more than 5% of any lung zone. They are associated with factors such as age, smoking, genetic variants, worsened clinical outcomes, and increased mortality. Risk stratification based on clinical and radiological features of ILAs is crucial in clinical practice, particularly for identifying cases at high risk of progression to pulmonary fibrosis. Traction bronchiectasis/bronchiolectasis index has emerged as a promising imaging biomarker for prognostic risk stratification in ILAs. These findings suggest a spectrum of fibrosing interstitial lung diseases, encompassing from ILAs to pulmonary fibrosis.
Collapse
Affiliation(s)
- Noriaki Wada
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Gary M Hunninghake
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Tang XL, Sun YB, Guo XT, Yang SZ, Zhang WP. Prognostic impact of interstitial lung abnormalities in lung cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1397246. [PMID: 38800393 PMCID: PMC11116699 DOI: 10.3389/fonc.2024.1397246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Department of Thoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yin-Bo Sun
- Department of Thoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiao-Tong Guo
- Department of Rehabilitation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Sheng-Zhao Yang
- Department of Thoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wen-Ping Zhang
- Department of Thoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
14
|
Seok J, Park S, Yoon EC, Yoon HY. Clinical outcomes of interstitial lung abnormalities: a systematic review and meta-analysis. Sci Rep 2024; 14:7330. [PMID: 38538680 PMCID: PMC10973382 DOI: 10.1038/s41598-024-57831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024] Open
Abstract
Interstitial lung abnormalities (ILA), incidental findings on computed tomography scans, have raised concerns due to their association with worse clinical outcomes. Our meta-analysis, which included studies up to April 2023 from PubMed/MEDLINE, Embase, and Cochrane Library, aimed to clarify the impact of ILA on mortality, lung cancer development, and complications from lung cancer treatments. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for outcomes. Analyzing 10 studies on ILA prognosis and 9 on cancer treatment complications, we found that ILA significantly increases the risk of overall mortality (RR 2.62, 95% CI 1.94-3.54; I2 = 90%) and lung cancer development (RR 3.85, 95% CI 2.64-5.62; I2 = 22%). Additionally, cancer patients with ILA had higher risks of grade 2 radiation pneumonitis (RR 2.28, 95% CI 1.71-3.03; I2 = 0%) and immune checkpoint inhibitor-related interstitial lung disease (RR 3.05, 95% CI 1.37-6.77; I2 = 83%) compared with those without ILA. In conclusion, ILA significantly associates with increased mortality, lung cancer risk, and cancer treatment-related complications, highlighting the necessity for vigilant patient management and monitoring.
Collapse
Affiliation(s)
- Jinwoo Seok
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Eun Chong Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea.
| |
Collapse
|
15
|
Jackson MK, Choi Y, Eisenberg E, Hanson C, Wang A, Wang JG, Washko GR, Ash S, Estepar RSJ, Liu G, Shikany JM, Steffen LM, Wharton R, Kalhan R, Jacobs DR, Bose S. A Plant-Centered Diet is Inversely Associated With Radiographic Emphysema: Findings from the CARDIA Lung Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:164-173. [PMID: 37931598 DOI: 10.15326/jcopdf.2023.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a significant public health concern and intercepting the development of emphysema is vital for COPD prevention. Smokers are a high-risk population for emphysema with limited prevention strategies. We aimed to determine if adherence to a nutritionally rich, plant-centered diet among young ever-smokers is associated with reduced risk of future radiographic emphysema. Methods We studied participants from the Coronary Artery Risk Development in Young Adults (CARDIA) Lung Prospective Cohort Study who were 18-30 years old at enrollment and followed for 30 years. We analyzed 1706 adults who reported current or former smoking by year 20. Repeated measures of diet history were used to calculate A Priori Diet Quality Scores (APDQSs), and categorized into quintiles, with higher quintiles representing higher nutritionally rich plant-centered food intake. Emphysema was assessed at year 25 (n=1351) by computed tomography (CT). Critical covariates were selected, acknowledging potential residual confounding. Results Emphysema was observed in 13.0% of the cohort, with a mean age of 50.4 ± 3.5 years. The prevalence of emphysema was 4.5% in the highest APDQS quintile (nutritionally rich), compared with 25.4% in the lowest quintile. After adjustment for multiple covariates, including smoking, greater adherence to a plant-centered diet was inversely associated with emphysema (highest versus lowest quintile odds ratio: 0.44, 95% CI 0.19-0.99, ptrend=0.008). Conclusion Longitudinal adherence to a nutritionally rich, plant-centered diet was associated with a decreased risk of emphysema development in middle adulthood, warranting further examination of diet as a strategy for emphysema prevention in a high-risk smoking population.
Collapse
Affiliation(s)
- Mariah K Jackson
- Division of Medical Nutrition Education, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Yuni Choi
- Division of Epidemiology and Community Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States
| | - Elliot Eisenberg
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Corrine Hanson
- Division of Medical Nutrition Education, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Ann Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jing Gennie Wang
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Samuel Ash
- Critical Care, South Shore Hospital, Weymouth, Massachusetts, United States
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Gabrielle Liu
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - James M Shikany
- Division of Preventive Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States
| | - Robert Wharton
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
16
|
Ash S, Doyle TJ, Choi B, San Jose Estepar R, Castro V, Enzer N, Kalhan R, Liu G, Bowler R, Wilson DO, San Jose Estepar R, Rosas IO, Washko GR. Utility of peripheral protein biomarkers for the prediction of incident interstitial features: a multicentre retrospective cohort study. BMJ Open Respir Res 2024; 11:e002219. [PMID: 38485250 PMCID: PMC10941119 DOI: 10.1136/bmjresp-2023-002219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION/RATIONALE Protein biomarkers may help enable the prediction of incident interstitial features on chest CT. METHODS We identified which protein biomarkers in a cohort of smokers (COPDGene) differed between those with and without objectively measured interstitial features at baseline using a univariate screen (t-test false discovery rate, FDR p<0.001), and which of those were associated with interstitial features longitudinally (multivariable mixed effects model FDR p<0.05). To predict incident interstitial features, we trained four random forest classifiers in a two-thirds random subset of COPDGene: (1) imaging and demographic information, (2) univariate screen biomarkers, (3) multivariable confirmation biomarkers and (4) multivariable confirmation biomarkers available in a separate testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We evaluated classifier performance in the remaining one-third of COPDGene, and, for the final model, also in PLuSS. RESULTS In COPDGene, 1305 biomarkers were available and 20 differed between those with and without interstitial features at baseline. Of these, 11 were associated with feature progression over a mean of 5.5 years of follow-up, and of these 4 were available in PLuSS, (angiopoietin-2, matrix metalloproteinase 7, macrophage inflammatory protein 1 alpha) over a mean of 8.8 years of follow-up. The area under the curve (AUC) of classifiers using demographics and imaging features in COPDGene and PLuSS were 0.69 and 0.59, respectively. In COPDGene, the AUC of the univariate screen classifier was 0.78 and of the multivariable confirmation classifier was 0.76. The AUC of the final classifier in COPDGene was 0.75 and in PLuSS was 0.76. The outcome for all of the models was the development of incident interstitial features. CONCLUSIONS Multiple novel and previously identified proteomic biomarkers are associated with interstitial features on chest CT and may enable the prediction of incident interstitial diseases such as idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Samuel Ash
- Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Tracy J Doyle
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Victor Castro
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas Enzer
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ravi Kalhan
- Division of Pulmonary/Critical Care, Northwestern University, Chicago, Illinois, USA
| | - Gabrielle Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - David O Wilson
- Medicine, Pulmonary Division, University of Pittsburgh, pittsburgh, Pennsylvania, USA
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ivan O Rosas
- Department of Medicine: Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - George R Washko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Oh JH, Kim GHJ, Song JW. Interstitial lung abnormality evaluated by an automated quantification system: prevalence and progression rate. Respir Res 2024; 25:78. [PMID: 38321467 PMCID: PMC10848490 DOI: 10.1186/s12931-024-02715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Despite the importance of recognizing interstitial lung abnormalities, screening methods using computer-based quantitative analysis are not well developed, and studies on the subject with an Asian population are rare. We aimed to identify the prevalence and progression rate of interstitial lung abnormality evaluated by an automated quantification system in the Korean population. METHODS A total of 2,890 healthy participants in a health screening program (mean age: 49 years, men: 79.5%) with serial chest computed tomography images obtained at least 5 years apart were included. Quantitative lung fibrosis scores were measured on the chest images by an automated quantification system. Interstitial lung abnormalities were defined as a score ≥ 3, and progression as any score increased above baseline. RESULTS Interstitial lung abnormalities were identified in 251 participants (8.6%), who were older and had a higher body mass index. The prevalence increased with age. Quantification of the follow-up images (median interval: 6.5 years) showed that 23.5% (59/251) of participants initially diagnosed with interstitial lung abnormality exhibited progression, and 11% had developed abnormalities (290/2639). Older age, higher body mass index, and higher erythrocyte sedimentation rate were independent risk factors for progression or development. The interstitial lung abnormality group had worse survival on follow-up (5-year mortality: 3.4% vs. 1.5%; P = 0.010). CONCLUSIONS Interstitial lung abnormality could be identified in one-tenth of the participants, and a quarter of them showed progression. Older age, higher body mass index and higher erythrocyte sedimentation rate increased the risk of development or progression of interstitial lung abnormality.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Grace Hyun J Kim
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jin Woo Song
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88, Olympic-Ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
18
|
Horiuchi K, Ikemura S, Sato T, Shimozaki K, Okamori S, Yamada Y, Yokoyama Y, Hashimoto M, Jinzaki M, Hirai I, Funakoshi T, Mizuno R, Oya M, Hirata K, Hamamoto Y, Terai H, Yasuda H, Kawada I, Soejima K, Fukunaga K. Pre-existing Interstitial Lung Abnormalities and Immune Checkpoint Inhibitor-Related Pneumonitis in Solid Tumors: A Retrospective Analysis. Oncologist 2024; 29:e108-e117. [PMID: 37590388 PMCID: PMC10769794 DOI: 10.1093/oncolo/oyad187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have demonstrated efficacy over previous cytotoxic chemotherapies in clinical trials among various tumors. Despite their favorable outcomes, they are associated with a unique set of toxicities termed as immune-related adverse events (irAEs). Among the toxicities, ICI-related pneumonitis has poor outcomes with little understanding of its risk factors. This retrospective study aimed to investigate whether pre-existing interstitial lung abnormality (ILA) is a potential risk factor for ICI-related pneumonitis. MATERIALS AND METHODS Patients with non-small cell lung cancer, malignant melanoma, renal cell carcinoma, and gastric cancer, who was administered either nivolumab, pembrolizumab, or atezolizumab between September 2014 and January 2019 were retrospectively reviewed. Information on baseline characteristics, computed tomography findings before administration of ICIs, clinical outcomes, and irAEs were collected from their medical records. Pre-existing ILA was categorized based on previous studies. RESULTS Two-hundred-nine patients with a median age of 68 years were included and 23 (11.0%) developed ICI-related pneumonitis. While smoking history and ICI agents were associated with ICI-related pneumonitis (P = .005 and .044, respectively), the categories of ILA were not associated with ICI-related pneumonitis (P = .428). None of the features of lung abnormalities were also associated with ICI-related pneumonitis. Multivariate logistic analysis indicated that smoking history was the only significant predictor of ICI-related pneumonitis (P = .028). CONCLUSION This retrospective study did not demonstrate statistically significant association between pre-existing ILA and ICI-related pneumonitis, nor an association between radiologic features of ILA and ICI-related pneumonitis. Smoking history was independently associated with ICI-related pneumonitis. Further research is warranted for further understanding of the risk factors of ICI-related pneumonitis.
Collapse
Affiliation(s)
- Kohei Horiuchi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, NY, USA
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Sato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keitaro Shimozaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Ikuko Hirai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Kenro Hirata
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Escalon JG, Podolanczuk AJ, Aronson KI, Legasto AC, Gruden JF, Lynch DA, Rachid L, Rabkova Y, Steinberger S. Practice patterns in reporting interstitial lung abnormality at a tertiary academic medical center. Clin Imaging 2023; 104:109996. [PMID: 37862912 DOI: 10.1016/j.clinimag.2023.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/07/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE Interstitial lung abnormality (ILA) is a common finding on chest CTs and is associated with higher all-cause mortality. The 2020 Fleischner Society position paper standardized the terminology and definition of ILA. Despite these published guidelines, the extent to which radiologists use this term is unknown. We evaluated practice patterns for identification of ILAs among radiologists at a tertiary academic medical center. METHODS In this retrospective review, we identified 157 radiology reports between January 1, 2010 through December 31, 2021 containing the phrase "interstitial lung abnormality" or "interstitial abnormality". After exclusions, 125 CT scans were reviewed by thoracic-trained radiologists using the sequential reading method. RESULTS Seventy-seven (62%) patients were found to have ILA (69% subpleural fibrotic, 19% subpleural non-fibrotic, and 6% non-subpleural), nine (7%) were equivocal for ILA and 39 (31%) had no ILA. The term ILA was used exclusively by thoracic-trained radiologists except for two cases. Use of the term ILA has rapidly increased since the position paper publication (none from 2010-2017, one case in 2018, 20 cases in 2019, 41 cases in 2020, and 73 cases in 2021), and cases were typically very mild (1-25% of the lung). CONCLUSION While there has been increased use of the term ILA among thoracic-trained radiologists, non-thoracic radiologists have essentially not begun to use the term. Almost one-third of cases labeled ILA on clinical reads were re-classified as not having ILA on research reads.
Collapse
Affiliation(s)
- Joanna G Escalon
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| | - Anna J Podolanczuk
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Kerri I Aronson
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Alan C Legasto
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| | - James F Gruden
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA.
| | - Leena Rachid
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yana Rabkova
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sharon Steinberger
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
20
|
Shin YJ, Yi JG, Kim MY, Son D, Ahn SY. Radiologic Progression of Interstitial Lung Abnormalities following Surgical Resection in Patients with Lung Cancer. J Clin Med 2023; 12:6858. [PMID: 37959324 PMCID: PMC10647667 DOI: 10.3390/jcm12216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we aimed to assess the prevalence of interstitial lung abnormalities (ILAs) and investigate the rates and risk factors associated with radiologic ILA progression among patients with lung cancer following surgical resection. Patients who underwent surgical resection for lung cancer at our institution from January 2015 to December 2020 were retrospectively evaluated and grouped according to their ILA status as having no ILAs, equivocal ILAs, or ILAs. Progression was determined by simultaneously reviewing the baseline and corresponding follow-up computed tomography (CT) scans. Among 346 patients (median age: 67 (interquartile range: 60-74) years, 204 (59.0%) men), 22 (6.4%) had equivocal ILAs, and 33 (9.5%) had ILAs detected upon baseline CT. Notably, six patients (6/291; 2.1%) without ILAs upon baseline CT later developed ILAs, and 50% (11/22) of those with equivocal ILAs exhibited progression. Furthermore, 75.8% (25/33) of patients with ILAs upon baseline CT exhibited ILA progression (76.9% and 71.4% with fibrotic and non-fibrotic ILAs, respectively). Multivariate analysis revealed that ILA status was a significant risk factor for ILA progression. ILAs and equivocal ILAs were associated with radiologic ILA progression after surgical resection in patients with lung cancer. Hence, early ILA detection can significantly affect clinical outcomes.
Collapse
Affiliation(s)
- Yoon Joo Shin
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (Y.J.S.)
| | - Jeong Geun Yi
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (Y.J.S.)
| | - Mi Young Kim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (Y.J.S.)
| | - Donghee Son
- Research Coordinating Center, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| | - Su Yeon Ahn
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (Y.J.S.)
| |
Collapse
|
21
|
McDermott GC, Hayashi K, Yoshida K, Moll M, Cho MH, Doyle TJ, Kinney GL, Dellaripa PF, Putman RK, San Jose Estepar R, Hata A, Hino T, Hida T, Yanagawa M, Nishino M, Washko G, Regan EA, Hatabu H, Hunninghake GM, Silverman EK, Sparks JA. Prevalence and mortality associations of interstitial lung abnormalities in rheumatoid arthritis within a multicentre prospective cohort of smokers. Rheumatology (Oxford) 2023; 62:SI286-SI295. [PMID: 37871923 PMCID: PMC10593512 DOI: 10.1093/rheumatology/kead277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/16/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE To investigate the prevalence and mortality impact of interstitial lung abnormalities (ILAs) in RA and non-RA comparators. METHODS We analysed associations between ILAs, RA, and mortality in COPDGene, a multicentre prospective cohort study of current and past smokers, excluding known interstitial lung disease (ILD) or bronchiectasis. All participants had research chest high-resolution CT (HRCT) reviewed by a sequential reading method to classify ILA as present, indeterminate or absent. RA cases were identified by self-report RA and DMARD use; non-RA comparators had neither an RA diagnosis nor used DMARDs. We examined the association and mortality risk of RA and ILA using multivariable logistic regression and Cox regression. RESULTS We identified 83 RA cases and 8725 non-RA comparators with HRCT performed for research purposes. ILA prevalence was 16.9% in RA cases and 5.0% in non-RA comparators. After adjusting for potential confounders, including genetics, current/past smoking and other lifestyle factors, ILAs were more common among those with RA compared with non-RA [odds ratio 4.76 (95% CI 2.54, 8.92)]. RA with ILAs or indeterminate for ILAs was associated with higher all-cause mortality compared with non-RA without ILAs [hazard ratio (HR) 3.16 (95% CI 2.11, 4.74)] and RA cases without ILA [HR 3.02 (95% CI 1.36, 6.75)]. CONCLUSIONS In this cohort of smokers, RA was associated with ILAs and this persisted after adjustment for current/past smoking and genetic/lifestyle risk factors. RA with ILAs in smokers had a 3-fold increased all-cause mortality, emphasizing the importance of further screening and treatment strategies for preclinical ILD in RA.
Collapse
Affiliation(s)
- Gregory C McDermott
- Division of Rheumatology, Department of Medicine, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Keigo Hayashi
- Division of Rheumatology, Department of Medicine, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kazuki Yoshida
- Division of Rheumatology, Department of Medicine, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthew Moll
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, Department of Medicine, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Michael H Cho
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tracy J Doyle
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gregory L Kinney
- Colorado School of Public Health, Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul F Dellaripa
- Division of Rheumatology, Department of Medicine, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rachel K Putman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Raul San Jose Estepar
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Akinori Hata
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Hida
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - George Washko
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Hiroto Hatabu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gary M Hunninghake
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Department of Medicine, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Park S, Choe J, Hwang HJ, Noh HN, Jung YJ, Lee JB, Do KH, Chae EJ, Seo JB. Long-Term Follow-Up of Interstitial Lung Abnormality: Implication in Follow-Up Strategy and Risk Thresholds. Am J Respir Crit Care Med 2023; 208:858-867. [PMID: 37590877 DOI: 10.1164/rccm.202303-0410oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023] Open
Abstract
Rationale: The optimal follow-up computed tomography (CT) interval for detecting the progression of interstitial lung abnormality (ILA) is unknown. Objectives: To identify optimal follow-up strategies and extent thresholds on CT relevant to outcomes. Methods: This retrospective study included self-referred screening participants aged 50 years or older, including nonsmokers, who had imaging findings relevant to ILA on chest CT scans. Consecutive CT scans were evaluated to determine the dates of the initial CT showing ILA and the CT showing progression. Deep learning-based ILA quantification was performed. Cox regression was used to identify risk factors for the time to ILA progression and progression to usual interstitial pneumonia (UIP). Measurements and Main Results: Of the 305 participants with a median follow-up duration of 11.3 years (interquartile range, 8.4-14.3 yr), 239 (78.4%) had ILA on at least one CT scan. In participants with serial follow-up CT studies, ILA progression was observed in 80.5% (161 of 200), and progression to UIP was observed in 17.3% (31 of 179), with median times to progression of 3.2 years (95% confidence interval [CI], 3.0-3.4 yr) and 11.8 years (95% CI, 10.8-13.0 yr), respectively. The extent of fibrosis on CT was an independent risk factor for ILA progression (hazard ratio, 1.12 [95% CI, 1.02-1.23]) and progression to UIP (hazard ratio, 1.39 [95% CI, 1.07-1.80]). Risk groups based on honeycombing and extent of fibrosis (1% in the whole lung or 5% per lung zone) showed significant differences in 10-year overall survival (P = 0.02). Conclusions: For individuals with initially detected ILA, follow-up CT at 3-year intervals may be appropriate to monitor radiologic progression; however, those at high risk of adverse outcomes on the basis of the quantified extent of fibrotic ILA and the presence of honeycombing may benefit from shortening the interval for follow-up scans.
Collapse
Affiliation(s)
- Sohee Park
- Department of Radiology and Research Institute of Radiology
| | - Jooae Choe
- Department of Radiology and Research Institute of Radiology
| | - Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology
| | - Han Na Noh
- Health Screening and Promotion Center, and
| | | | - Jung-Bok Lee
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyung-Hyun Do
- Department of Radiology and Research Institute of Radiology
| | - Eun Jin Chae
- Department of Radiology and Research Institute of Radiology
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology
| |
Collapse
|
23
|
Fukuda K, Katsurada N, Kawa Y, Satouchi M, Kaneshiro K, Matsumoto M, Takamiya R, Hatakeyama Y, Dokuni R, Matsumura K, Katsurada M, Nakata K, Yoshimura S, Tachihara M. Drug-induced interstitial lung disease after chemoimmunotherapy for extensive-stage small cell lung cancer. Heliyon 2023; 9:e20463. [PMID: 37822623 PMCID: PMC10562781 DOI: 10.1016/j.heliyon.2023.e20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Objectives The combination of chemotherapy and immune checkpoint inhibitors (chemo-ICI) has become the new standard of treatment for extensive-stage small cell lung cancer (ES-SCLC). Recently, slight changes in interstitial shadows, defined as interstitial lung abnormalities (ILA), have been identified. In patients with ES-SCLC who received chemo-ICI, there are limited data on the incidence of drug-induced interstitial lung disease (D-ILD) in daily practice and the association between the development of D-ILD and ILA in the baseline computed tomography (CT). Materials and methods A multicenter, retrospective study was conducted to investigate the incidence of D-ILD, the risk factors for developing D-ILD, progression-free survival (PFS), and overall survival (OS) in patients with ES-SCLC who received chemo-ICI between August 2019 and November 2021. Results This study enrolled 70 patients (median age, 71 years; including 58 men) from nine institutions in Japan. There were 62 patients (89%) treated with carboplatin/etoposide/atezolizumab and 8 patients treated with carboplatin or cisplatin/etoposide/durvalumab. Twenty-nine patients (41.4%) were found to have ILA at baseline CT. Eleven patients (15.7%) developed D-ILD. The proportion of patients with ILA was significantly higher in the group who developed D-ILD than in the group who did not (9/11 (81.8%) vs. 20/59 (33.9%), respectively, P = 0.0057). In addition, the frequency of ground glass attenuation (GGA) and reticulation was higher in patients who developed D-ILD. There was no significant difference in PFS and OS between patients who developed D-ILD and those who did not (median PFS, 8.0 (95% confidence interval (CI), 5.5-9.5) months vs. 5.0 (95% CI, 4.5-5.6) months, respectively, P = 0.11 and median OS, not reached (NR) (95% CI, 8.7-NR) vs. 18.2 (95% CI, 13.2-NR) months, respectively, P = 0.20). Conclusion The incidence of D-ILD in patients with ES-SCLC who received chemo-ICI in clinical practice was higher than that in clinical trials. Patients with pre-existing ILA were more likely to develop D-ILD.
Collapse
Affiliation(s)
- Kiyoko Fukuda
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | - Yoshitaka Kawa
- Department of Thoracic Oncology, Hyogo Cancer Center, Japan
| | | | - Kazumi Kaneshiro
- Department of Respiratory Medicine, Kita-harima Medical Center, Japan
| | | | - Rei Takamiya
- Department of Respiratory Medicine, Akashi Medical Center, Japan
| | | | - Ryota Dokuni
- Department of Respiratory Medicine, Hyogo Prefectural Awaji Medical Center, Japan
| | - Kanoko Matsumura
- Department of Respiratory Medicine, Takatsuki General Hospital, Japan
| | - Masahiro Katsurada
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Japan
| | - Kyosuke Nakata
- Department of Respiratory Medicine, Konan Medical Center, Japan
| | - Sho Yoshimura
- Department of Respiratory Medicine, Steel Memorial Hirohata Hospital, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
24
|
Raoof S, Shah M, Make B, Allaqaband H, Bowler R, Fernando S, Greenberg H, Han MK, Hogg J, Humphries S, Lee KS, Lynch D, Machnicki S, Mehta A, Mina B, Naidich D, Naidich J, Naqvi Z, Ohno Y, Regan E, Travis WD, Washko G, Braman S. Lung Imaging in COPD Part 1: Clinical Usefulness. Chest 2023; 164:69-84. [PMID: 36907372 PMCID: PMC10403625 DOI: 10.1016/j.chest.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
COPD is a condition characterized by chronic airflow obstruction resulting from chronic bronchitis, emphysema, or both. The clinical picture is usually progressive with respiratory symptoms such as exertional dyspnea and chronic cough. For many years, spirometry was used to establish a diagnosis of COPD. Recent advancements in imaging techniques allow quantitative and qualitative analysis of the lung parenchyma as well as related airways and vascular and extrapulmonary manifestations of COPD. These imaging methods may allow prognostication of disease and shed light on the efficacy of pharmacologic and nonpharmacologic interventions. This is the first of a two-part series of articles on the usefulness of imaging methods in COPD, and it highlights useful information that clinicians can obtain from these imaging studies to make more accurate diagnosis and therapeutic decisions.
Collapse
Affiliation(s)
- Suhail Raoof
- Northwell Health, Lenox Hill Hospital, New York, NY.
| | - Manav Shah
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | | | | | - James Hogg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Kyung Soo Lee
- Sungkyunkwan University School of Medicine, Samsung ChangWon Hospital, ChangWon, South Korea
| | | | | | | | - Bushra Mina
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | - Zarnab Naqvi
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | - Sidney Braman
- Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
25
|
Joyce BT, Chen X, Gao T, Zheng Y, Nannini DR, Liu L, Henkle BE, Kalhan R, Washko G, Kunisaki KM, Thyagarajan B, Vaughan DE, Gross M, Jacobs DR, Lloyd-Jones D, Hou L. Associations between GrimAge acceleration and pulmonary function in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Epigenomics 2023; 15:693-703. [PMID: 37694401 PMCID: PMC10503465 DOI: 10.2217/epi-2023-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background: The objective of this research was to determine whether pulmonary function is associated with epigenetic aging (GrimAge) and whether GrimAge predicts emphysema. Methods: This prospective study examined 1042 participants enrolled as part of a community-based longitudinal cohort. The cross-sectional associations between pulmonary function and GrimAge, measured at study year (Y) 20 (participant ages 40-45 years), and prospective associations with emphysema at Y25 were examined. Results: At Y20, forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) were negatively associated with GrimAge; for Y0-Y10 cumulative measures, only the FEV1/FVC ratio was associated with GrimAge at Y15 and Y20. Emphysema at Y25 was associated with GrimAge at Y15 and Y20. Conclusion: Pulmonary function was associated with GrimAge during early and mid-life; GrimAge partially mediated the association between pulmonary function and emphysema.
Collapse
Affiliation(s)
- Brian T Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xuefen Chen
- Department of Epidemiology of Health Statistics, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201318, China
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Drew R Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - Benjamin E Henkle
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- University of Minnesota, Minneapolis, MN 55455, USA
| | - Ravi Kalhan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - George Washko
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ken M Kunisaki
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Douglas E Vaughan
- Potocsnak Longevity Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Myron Gross
- University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Potocsnak Longevity Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
McGroder CF, Hansen S, Hinckley Stukovsky K, Zhang D, Nath PH, Salvatore MM, Sonavane SK, Terry N, Stowell JT, D'Souza BM, Leb JS, Dumeer S, Aziz MU, Batra K, Hoffman EA, Bernstein EJ, Kim JS, Podolanczuk AJ, Rotter JI, Manichaikul AW, Rich SS, Lederer DJ, Barr RG, McClelland RL, Garcia CK. Incidence of Interstitial Lung Abnormalities: The MESA Lung Study. Eur Respir J 2023; 61:2201950. [PMID: 37202153 PMCID: PMC10773573 DOI: 10.1183/13993003.01950-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 05/20/2023]
Abstract
The incidence of newly developed interstitial lung abnormalities (ILA) and fibrotic ILA have not been previously reported.Trained thoracic radiologists evaluated 13 944 cardiac CT scans for the presence of ILA in 6197 Multi-Ethnic Study of Atherosclerosis longitudinal cohort study participants >45 years of age from 2000 to 2012. 5% of the scans were re-read by the same or a different observer in a blinded fashion. After exclusion of participants with ILA at baseline, incidence rates and incidence rate ratios for ILA and fibrotic ILA were calculated.The intra-reader agreement of ILA was 92.0% (Gwet AC1=0.912, ICC=0.982) and the inter-reader agreement of ILA was 83.5% (Gwet AC1=0.814; ICC=0.969). Incidence of ILA and fibrotic ILA was estimated to be 13.1 cases/1000 person-years and 3.5/1000 person-years, respectively. In multivariable analyses, age (HR 1.06 (1.05, 1.08), p <0.001; HR 1.08 (1.06, 1.11), p <0.001), high attenuation area (HAA) at baseline (HR 1.05 (1.03, 1.07), p <0.001; HR 1.06 (1.02, 1.10), p=0.002), and the MUC5B promoter SNP (HR 1.73 (1.17, 2.56) p=0.01; HR 4.96 (2.68, 9.15), p <0.001) were associated with incident ILA and fibrotic ILA, respectively. Ever smoking (HR 2.31 (1.34, 3.96), p= 0.002) and an IPF polygenic risk score (HR 2.09 (1.61-2.71), p<0.001) were associated only with incident fibrotic ILA.Incident ILA and fibrotic ILA were estimated by review of cardiac imaging studies. These findings may lead to wider application of a screening tool for atherosclerosis to identify preclinical lung disease.
Collapse
Affiliation(s)
- Claire F McGroder
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Spencer Hansen
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - David Zhang
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - P Hrudaya Nath
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Mary M Salvatore
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | | | - Nina Terry
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Justin T Stowell
- Department of Radiology, Mayo Clinic at Jacksonville, Jacksonville, FL, USA
| | - Belinda M D'Souza
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Jay S Leb
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Shifali Dumeer
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Muhammad U Aziz
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Kiran Batra
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Elana J Bernstein
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - John S Kim
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anna J Podolanczuk
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ani W Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlotte, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlotte, VA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlotte, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlotte, VA, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | | | - Christine Kim Garcia
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Center for Precision Medicine and Genomics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Hata A, Hino T, Li Y, Johkoh T, Christiani DC, Lynch DA, Cho MH, Silverman EK, Hunninghake GM, Hatabu H. Traction Bronchiectasis/Bronchiolectasis in Interstitial Lung Abnormality: Follow-up in the COPDGene Study. Am J Respir Crit Care Med 2023; 207:1395-1398. [PMID: 36898128 PMCID: PMC10595461 DOI: 10.1164/rccm.202211-2061le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Affiliation(s)
- Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology
- Department of Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | | | | | - Gary M Hunninghake
- Center for Pulmonary Functional Imaging, Department of Radiology
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology
| |
Collapse
|
28
|
Colombi D, Petrini M, Morelli N, Silva M, Milanese G, Sverzellati N, Michieletti E. Are Interstitial Lung Abnormalities a Prognostic Factor of Worse Outcome in COVID-19 Pneumonia? J Thorac Imaging 2023; 38:137-144. [PMID: 36917514 DOI: 10.1097/rti.0000000000000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
PURPOSE To assess the association between interstitial lung abnormalities (ILAs) and worse outcome in patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19)-related pneumonia. MATERIALS AND METHODS The study included patients older than 18 years, who were admitted at the emergency department between February 29 and April 30, 2020 with findings of COVID-19 pneumonia at chest computed tomography (CT), with positive reverse-transcription polymerase chain reaction nasal-pharyngeal swab for SARS-CoV-2, and with the availability of prepandemic chest CT. Prepandemic CTs were reviewed for the presence of ILAs, categorized as fibrotic in cases with associated architectural distortion, bronchiectasis, or honeycombing. Worse outcome was defined as intensive care unit (ICU) admission or death. Cox proportional hazards regression analysis was used to test the association between ICU admission/death and preexisting ILAs. RESULTS The study included 147 patients (median age 73 y old; 95% CIs: 71-76-y old; 29% females). On prepandemic CTs, ILA were identified in 33/147 (22%) of the patients, 63% of which were fibrotic ILAs. Fibrotic ILAs were associated with higher risk of ICU admission or death in patients with COVID-19 pneumonia (hazard ratios: 2.73, 95% CIs: 1.50-4.97, P =0.001). CONCLUSIONS In patients affected by COVID-19 pneumonia, preexisting fibrotic ILAs were an independent predictor of worse prognosis, with a 2.7 times increased risk of ICU admission or death. Chest CT scans obtained before the diagnosis of COVID-19 pneumonia should be carefully reviewed for the presence and characterization of ILAs.
Collapse
Affiliation(s)
- Davide Colombi
- Department of Radiological Functions, Azienda USL Piacenza, Piacenza
| | - Marcello Petrini
- Department of Radiological Functions, Azienda USL Piacenza, Piacenza
| | - Nicola Morelli
- Department of Radiological Functions, Azienda USL Piacenza, Piacenza
| | - Mario Silva
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | | |
Collapse
|
29
|
Chae KJ, Lim S, Seo JB, Hwang HJ, Choi H, Lynch D, Jin GY. Interstitial Lung Abnormalities at CT in the Korean National Lung Cancer Screening Program: Prevalence and Deep Learning-based Texture Analysis. Radiology 2023; 307:e222828. [PMID: 37097142 DOI: 10.1148/radiol.222828] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Background Interstitial lung abnormalities (ILAs) are associated with worse clinical outcomes, but ILA with lung cancer screening CT has not been quantitatively assessed. Purpose To determine the prevalence of ILA at CT examinations from the Korean National Lung Cancer Screening Program and define an optimal lung area threshold for ILA detection with CT with use of deep learning-based texture analysis. Materials and Methods This retrospective study included participants who underwent chest CT between April 2017 and December 2020 at two medical centers participating in the Korean National Lung Cancer Screening Program. CT findings were classified by three radiologists into three groups: no ILA, equivocal ILA, and ILA (fibrotic and nonfibrotic). Progression was evaluated between baseline and last follow-up CT scan. The extent of ILA was assessed visually and quantitatively with use of deep learning-based texture analysis. The Youden index was used to determine an optimal cutoff value for detecting ILA with use of texture analysis. Demographics and ILA subcategories were compared between participants with progressive and nonprogressive ILA. Results A total of 3118 participants were included in this study, and ILAs were observed with the CT scans of 120 individuals (4%). The median extent of ILA calculated by the quantitative system was 5.8% for the ILA group, 0.7% for the equivocal ILA group, and 0.1% for the no ILA group (P < .001). A 1.8% area threshold in a lung zone for quantitative detection of ILA showed 100% sensitivity and 99% specificity. Progression was observed in 48% of visually assessed fibrotic ILAs (15 of 31), and quantitative extent of ILA increased by 3.1% in subjects with progression. Conclusion ILAs were detected in 4% of the Korean lung cancer screening population. Deep learning-based texture analysis showed high sensitivity and specificity for detecting ILA with use of a 1.8% lung area cutoff value. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Egashira and Nishino in this issue.
Collapse
Affiliation(s)
- Kum Ju Chae
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - Soyeoun Lim
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - Joon Beom Seo
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - Hye Jeon Hwang
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - Hyemi Choi
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - David Lynch
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| | - Gong Yong Jin
- From the Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonjiro Deokjin-gu, Jeonju-si, Jeollabuk-do, Korea 54907 (K.J.C., G.Y.J.); Department of Radiology, Jeonbuk National University Medical School, Jeonju, Korea (K.J.C., G.Y.J.); Department of Radiology, National Jewish Health, Denver, Colo (K.J.C., H.J.H., D.L.); Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (S.L.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.B.S., H.J.H.); and Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Republic of Korea (H.C.)
| |
Collapse
|
30
|
Ito M, Katano T, Okada H, Sakuragi A, Minami Y, Abe S, Adachi S, Oshima Y, Ohashi W, Kubo A, Fukui T, Ito S, Suzuki K. Subpleural fibrotic interstitial lung abnormalities are implicated in non-small cell lung cancer radiotherapy outcomes. Radiol Oncol 2023:raon-2023-0018. [PMID: 37078697 DOI: 10.2478/raon-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The relationship between interstitial lung abnormalities (ILAs) and the outcomes of lung cancer radiotherapy is unclear. This study investigated whether specific ILA subtypes are risk factors for radiation pneumonitis (RP). PATIENTS AND METHODS This retrospective study analysed patients with non-small cell lung cancer treated with radical-intent or salvage radiotherapy. Patients were categorised into normal (no abnormalities), ILA, and interstitial lung disease (ILD) groups. The ILA group was further subclassified into non-subpleural (NS), subpleural non-fibrotic (SNF), and subpleural fibrotic (SF) types. The Kaplan-Meier and Cox regression methods were used to determine RP and survival rates and compare these outcomes between groups, respectively. RESULTS Overall, 175 patients (normal, n = 105; ILA-NS, n = 5; ILA-SNF, n = 28; ILA-SF, n = 31; ILD, n = 6) were enrolled. Grade ≥2 RP was observed in 71 (41%) patients. ILAs (hazard ratio [HR]: 2.33, p = 0.008), intensity-modulated radiotherapy (HR: 0.38, p = 0.03), and lung volume receiving 20 Gy (HR: 54.8, p = 0.03) contributed to the cumulative incidence of RP. Eight patients with grade 5 RP were in the ILA group, seven of whom had ILA-SF. Among radically treated patients, the ILA group had worse 2-year overall survival (OS) than the normal group (35.3% vs 54.6%, p = 0.005). Multivariate analysis revealed that the ILA-SF group contributed to poor OS (HR: 3.07, p =0.02). CONCLUSIONS ILAs, particularly ILA-SF, may be important risk factors for RP, which can worsen prognosis. These findings may aid in making decisions regarding radiotherapy.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Takuma Katano
- Department of Respiratory Medicine and Allergology, Aichi Medical University, Aichi, Japan
| | - Hiroaki Okada
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Ami Sakuragi
- Department of Central Radiology, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Minami
- Department of Central Radiology, Aichi Medical University, Aichi, Japan
| | - Souichiro Abe
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Sou Adachi
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Yukihiko Oshima
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Wataru Ohashi
- Department of Biostatistics, Clinical Research Center, Aichi Medical University, Aichi, Japan
| | - Akihito Kubo
- Department of Respiratory Medicine and Allergology, Aichi Medical University, Aichi, Japan
| | - Takayuki Fukui
- Division of Chest Surgery, Department of Surgery, Aichi Medical University, Aichi, Japan
| | - Satoru Ito
- Department of Respiratory Medicine and Allergology, Aichi Medical University, Aichi, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, Aichi, Japan
| |
Collapse
|
31
|
Lee JE, Chae KJ, Suh YJ, Jeong WG, Lee T, Kim YH, Jin GY, Jeong YJ. Prevalence and Long-term Outcomes of CT Interstitial Lung Abnormalities in a Health Screening Cohort. Radiology 2023; 306:e221172. [PMID: 36219115 DOI: 10.1148/radiol.221172] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background The association between interstitial lung abnormalities (ILAs) and long-term outcomes has not been reported in Asian health screening populations. Purpose To investigate ILA prevalence in an Asian health screening cohort and determine rates and risks for ILA progression, lung cancer development, and mortality within the 10-year follow-up. Materials and Methods This observational, retrospective multicenter study included patients aged 50 years or older who underwent chest CT at three health screening centers over a 4-year period (2007-2010). ILA status was classified as none, equivocal ILA, and ILA (nonfibrotic or fibrotic). Progression was evaluated from baseline to the last follow-up CT examination, when available. The log-rank test was performed to compare mortality rates over time between ILA statuses. Multivariable Cox proportional hazards models were used to assess factors associated with hazards of ILA progression, lung cancer development, and mortality. Results Of the 2765 included patients (mean age, 59 years ± 7 [SD]; 2068 men), 94 (3%) had a finding of ILA (35 nonfibrotic and 59 fibrotic ILA) and 119 (4%) had equivocal ILA. The median time for CT follow-up and the entire observation was 8 and 12 years, respectively. ILA progression was observed in 80% (48 of 60) of patients with ILA over 8 years. Those with fibrotic and nonfibrotic ILA had a higher mortality rate than those without ILA (P < .001 and P = .01, respectively) over 12 years. Fibrotic ILA was independently associated with ILA progression (hazard ratio [HR], 10.3; 95% CI: 6.4, 16.4; P < .001), lung cancer development (HR, 4.4; 95% CI: 2.1, 9.1; P < .001), disease-specific mortality (HR, 6.7; 95% CI: 3.7, 12.2; P < .001), and all-cause mortality (HR, 2.5; 95% CI: 1.6, 3.8; P < .001) compared with no ILA. Conclusion The prevalence of interstitial lung abnormalities (ILAs) in an Asian health screening cohort was approximately 3%, and fibrotic ILA was an independent risk factor for ILA progression, lung cancer development, and mortality. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hatabu and Hata in this issue.
Collapse
Affiliation(s)
- Jong Eun Lee
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Kum Ju Chae
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Young Ju Suh
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Won Gi Jeong
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Taebum Lee
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Yun-Hyeon Kim
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Gong Yong Jin
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| | - Yeon Joo Jeong
- From the Departments of Radiology (J.E.L., Y.H.K.) and Pathology (T.L.), Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea (K.J.C., G.Y.J.); Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, Korea (Y.J.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea (Y.J.J.)
| |
Collapse
|
32
|
Liu Y, Tang J, Sun Y. Impact of Interstitial Lung Abnormalities on Disease Expression and Outcomes in COPD or Emphysema: A Systematic Review. Int J Chron Obstruct Pulmon Dis 2023; 18:189-206. [PMID: 36890863 PMCID: PMC9987235 DOI: 10.2147/copd.s392349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Background Both COPD and interstitial lung abnormalities (ILAs) are conditions associated with smoking and age. The impact of coexistent ILAs on the manifestations and outcomes of COPD or emphysema awaits evaluation. Methods We searched PubMed and Embase using Medical Subject Headings terms in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results Eleven studies were included in the review. The sample size of the studies ranged from 30 to 9579. ILAs were reported in 6.5% to 25.7% of the patients with COPD/emphysema, higher than that reported in the general populations. COPD/emphysema patients with ILAs were older, mostly male, and had a higher smoking index than those without ILAs. Hospital admission and mortality were increased in COPD patients with ILAs compared to those without ILAs, whereas the frequency of COPD exacerbations was discrepant in 2 of the studies. The FEV1 and FEV1% predicted tended to be higher in the group with ILAs, but not significantly in most of the studies. Conclusion ILAs were more frequent in subjects with COPD/emphysema than in the general population. ILAs may have a negative impact on hospital admission and mortality of COPD/emphysema. The impact of ILAs on lung functions and exacerbations of COPD/emphysema was discrepant in these studies. Further prospective studies are warranted to provide high-quality evidence of the association and interaction between COPD/emphysema and ILAs.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Respiratory and Critical Medicine, Peking University Third Hospital, Beijing, People's Republic of China.,Department of Respiratory and Critical Medicine, Peking University International Hospital, Beijing, People's Republic of China
| | - Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, People's Republic of China
| | - Yongchang Sun
- Department of Respiratory and Critical Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
33
|
Kim JS, Kim J, Yin X, Hiura GT, Anderson MR, Hoffman EA, Raghu G, Noth I, Manichaikul A, Rich SS, Smith BM, Podolanczuk AJ, Garcia CK, Barr RG, Prince MR, Oelsner EC. Associations of hiatus hernia with CT-based interstitial lung changes: the MESA Lung Study. Eur Respir J 2023; 61:2103173. [PMID: 35777776 PMCID: PMC10203882 DOI: 10.1183/13993003.03173-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hiatus hernia (HH) is prevalent in adults with pulmonary fibrosis. We hypothesised that HH would be associated with markers of lung inflammation and fibrosis among community-dwelling adults and stronger among MUC5B (rs35705950) risk allele carriers. METHODS In the Multi-Ethnic Study of Atherosclerosis, HH was assessed from cardiac and full-lung computed tomography (CT) scans performed at Exam 1 (2000-2002, n=3342) and Exam 5 (2010-2012, n=3091), respectively. Percentage of high attenuation areas (HAAs; percentage of voxels with attenuation between -600 and -250 HU) was measured from cardiac and lung scans. Interstitial lung abnormalities (ILAs) were examined from Exam 5 scans (n=2380). Regression models were used to examine the associations of HH with HAAs, ILAs and serum matrix metalloproteinase-7 (MMP-7), and adjusted for age, sex, race/ethnicity, educational attainment, smoking, height, weight and scanner parameters for HAA analysis. RESULTS HH detected from Exam 5 scans was associated with a mean percentage difference in HAAs of 2.23% (95% CI 0.57-3.93%) and an increase of 0.48% (95% CI 0.07-0.89%) per year, particularly in MUC5B risk allele carriers (p-value for interaction=0.02). HH was associated with ILAs among those <80 years of age (OR for ILAs 1.78, 95% CI 1.14-2.80) and higher serum MMP-7 level among smokers (p-value for smoking interaction=0.04). CONCLUSIONS HH was associated with more HAAs over time, particularly among MUC5B risk allele carriers, and ILAs in younger adults, and may be a risk factor in the early stages of interstitial lung disease.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinhye Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Westchester Medical Center, Valhalla, NY, USA
| | - Xiaorui Yin
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Grant T Hiura
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Eric A Hoffman
- Department of Radiology, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, NY, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Is Thoracic Radiotherapy an Absolute Contraindication for Treatment of Lung Cancer Patients With Interstitial Lung Disease? A Systematic Review. Clin Oncol (R Coll Radiol) 2022; 34:e493-e504. [PMID: 35168842 DOI: 10.1016/j.clon.2022.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
Thoracic radiotherapy decisions in patients with interstitial lung disease (ILD) are complex due to concerns about severe or even fatal radiation pneumonitis. This systematic review analysed the published evidence regarding the incidence of radiation pneumonitis and mortality after thoracic radiotherapy and investigated clinical and dosimetric predictors of radiation pneumonitis in lung cancer patients with ILD. A systematic search was carried out in PubMed, Medline, Embase and the Cochrane database for articles published between January 2000 and April 2021. Two authors independently screened eligible studies that met our predefined criteria. Studies were assessed for design and quality and a qualitative data synthesis was carried out. The search strategy resulted in 1750 articles. After two rounds of screening, 24 publications were included. The median overall incidence of grade ≥3 radiation pneumonitis was 19.7% (range 8-46%). The incidence was greater in conventional radical radiotherapy-treated patients (median 31.8%) compared with particle beam therapy- or stereotactic ablative radiotherapy-treated patients (median 12.5%). The median rate of grade 5 radiation pneumonitis was 11.9% (range 0-60%). The presence of ILD was an independent predictor of severe radiation pneumonitis. Severe radiation pneumonitis was more common in the presence of usual interstitial pneumonia (UIP) pattern or idiopathic pulmonary fibrosis (IPF) than non-UIP or non-IPF subtype. Several other clinical predictors were reported in the literature. V5, V10, V20 and mean lung dose were the most common dosimetric predictors for severe radiation pneumonitis, often with stricter dose constraints than conventionally used. Patients with lung cancer associated with ILD had a poorer overall survival compared with patients without ILD. In conclusion, patients with lung cancer associated with ILD have a poor prognosis. They are at high risk of severe and even fatal radiation pneumonitis. Careful patient selection is necessary, appropriate high-risk consenting and strict lung dose-volume constraints should be used, if these patients are to be treated with thoracic radiotherapy.
Collapse
|
35
|
Tseng SC, Hino T, Hatabu H, Park H, Sanford NN, Lin G, Nishino M, Mamon H. Interstitial Lung Abnormalities in Patients With Locally Advanced Esophageal Cancer: Prevalence, Risk Factors, and Clinical Implications. J Comput Assist Tomogr 2022; 46:871-877. [PMID: 35995596 PMCID: PMC9675694 DOI: 10.1097/rct.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Interstitial lung abnormalities (ILAs) represent nondependent abnormalities on chest computed tomography (CT) indicating lung parenchymal damages due to inflammation and fibrosis. Interstitial lung abnormalities have been studied as a predictor of clinical outcome in lung cancer, but not in other thoracic malignancies. The present study investigated the prevalence of ILA in patients with esophageal cancer and identified risk factors and clinical implications of ILA in these patients. METHODS The study included 208 patients with locally advanced esophageal cancer (median age, 65.6 years; 166 males, 42 females). Interstitial lung abnormality was scored on baseline CT scans before treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA). Clinical characteristics and overall survival were compared in patients with ILA (score 2) and others. RESULTS An ILA was present in 14 of 208 patients (7%) with esophageal cancer on pretreatment chest CT. Patients with ILA were significantly older (median age, 69 vs 65, respectively; P = 0.011), had a higher number of pack-years of smoking ( P = 0.02), and more commonly had T4 stage disease ( P = 0.026) than patients with ILA score of 1 or 0. Interstitial lung abnormality on baseline scan was associated with a lack of surgical resection after chemoradiotherapy (7/14, 50% vs 39/194, 20% respectively; P = 0.016). Interstitial lung abnormality was not associated with overall survival (log-rank P = 0.75, Cox P = 0.613). CONCLUSIONS An ILA was present in 7% of esophageal cancer patients, which is similar to the prevalence in general population and in smokers. Interstitial lung abnormality was strongly associated with a lack of surgical resection after chemoradiotherapy, indicating an implication of ILA in treatment selection in these patients, which can be further studied in larger cohorts.
Collapse
Affiliation(s)
- Shu-Chi Tseng
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Takuya Hino
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
| | - Hyesun Park
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
| | - Nina N. Sanford
- Department of Radiation Oncology, University of Texas Southwestern
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
| | - Harvey Mamon
- Department of Radiation Oncology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave. Boston MA, 02215, USA
| |
Collapse
|
36
|
Hata A, Hino T, Yanagawa M, Nishino M, Hida T, Hunninghake GM, Tomiyama N, Christiani DC, Hatabu H. Interstitial Lung Abnormalities at CT: Subtypes, Clinical Significance, and Associations with Lung Cancer. Radiographics 2022; 42:1925-1939. [PMID: 36083805 PMCID: PMC9630713 DOI: 10.1148/rg.220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
Interstitial lung abnormality (ILA) is defined as an interstitial change detected incidentally on CT images. It is seen in 4%-9% of smokers and 2%-7% of nonsmokers. ILA has a tendency to progress with time and is associated with respiratory symptoms, decreased exercise capability, reduced pulmonary function, and increased mortality. ILAs can be classified into three subcategories: nonsubpleural, subpleural nonfibrotic, and subpleural fibrotic. In cases of ILA, clinically significant interstitial lung disease should be identified and requires clinically driven management by a pulmonologist. Risk factors for the progression of ILA include clinical elements (ie, inhalation exposures, medication use, radiation therapy, thoracic surgery, physiologic findings, and gas exchange findings) and radiologic elements (ie, basal and peripheral predominance and fibrotic findings). It is recommended that individuals with one or more clinical or radiologic risk factors for progression of ILA be actively monitored with pulmonary function testing and CT. To avoid overcalling ILA at CT, radiologists must recognize the imaging pitfalls, including centrilobular nodularity, dependent abnormality, suboptimal inspiration, osteophyte-related lesions, apical cap and pleuroparenchymal fibroelastosis-like lesions, aspiration, and infection. There is a close association between ILA and lung cancer, and many studies have reported an increased incidence of lung cancer, worse prognoses, and/or increased pulmonary complications in relation to cancer treatment in patients with ILA. ILA is considered to be an important comorbidity in patients with lung cancer. Accordingly, all radiologists involved with body CT must have sound knowledge of ILAs owing to the high prevalence and potential clinical significance of these anomalies. An overview of ILAs, including a literature review of the associations between ILAs and lung cancer, is presented. ©RSNA, 2022.
Collapse
Affiliation(s)
- Akinori Hata
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Takuya Hino
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Masahiro Yanagawa
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Mizuki Nishino
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Tomoyuki Hida
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Gary M. Hunninghake
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Noriyuki Tomiyama
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - David C. Christiani
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| | - Hiroto Hatabu
- From the Department of Diagnostic and Interventional Radiology,
Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka
5650871, Japan (A.H., M.Y., N.T.); Center for Pulmonary Functional Imaging,
Department of Radiology (A.H., T.H., M.N., G.M.H., H.H.) and Pulmonary and
Critical Care Division (G.M.H.), Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA; Department of Clinical Radiology, Graduate School of
Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hino, T. Hida);
Department of Imaging, Dana Farber Cancer Institute, Boston, MA (M.N.); and
Department of Environmental Health, Harvard TH Chan School of Public Health,
Boston, Mass (D.C.C.)
| |
Collapse
|
37
|
Weng L, Chen Y, Liang T, Lin Y, Liu D, Yu C, Hu Y, Lui W, Liu Y, Chen X, Li Q, Ge S, Ascherman DP, Chen J. Biomarkers of interstitial lung disease associated with primary Sjögren's syndrome. Eur J Med Res 2022; 27:199. [PMID: 36217184 PMCID: PMC9549683 DOI: 10.1186/s40001-022-00828-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The aim of this study was to investigate serum biomarkers linked to primary Sjögren's syndrome (pSS)-associated interstitial lung disease (ILD). Methods 69 pSS patients were consecutively enrolled and evaluated via quantitative ILD scoring based on high-resolution computed tomography (HRCT). Biomarkers of interest were assessed by multiplex enzyme-linked immunosorbent assays (ELISAs). Results Among consecutively enrolled patients with pSS, the presence of pSS–ILD was 50% based on the presence of radiographically defined interstitial lung abnormalities (ILA) meeting specified criteria for mild/moderate (ILA 2) or severe (ILA 3) disease. Age, immunoglobulin M (IgM), C-reactive protein (CRP), and serum levels of eotaxin/CCL11, Krebs von den Lungen-6 (KL-6), TNFα, and TGFα were significantly higher in the combined pSS–ILD group (ILA 2 + ILA 3) than in the pSS–no-ILD and pSS–indeterminate ILD groups (ILA 0 and ILA 1, respectively) in unadjusted analyses (p < 0.05 for all variables). A binary logistic regression model revealed that disease duration and KL-6 levels were associated with the presence of pSS–ILD (p < 0.05). Complementary least absolute shrinkage and selection operator (LASSO) modeling showed that age, KL-6, and TNF-α effectively differentiated pSS–ILD (ILA 2 + ILA3) from pSS without ILD (ILA 0 + ILA 1), with an area under the curve (AUC) of 0.883 (p value < 0.0001). Conclusions Patient age, disease duration, and serum levels of both KL-6 and TNFα were the most discriminating factors associated with the presence of ILD in our pSS patients. Higher levels of CRP, IgM, eotaxin, TGFα, and TNFα should also prompt the search for occult as well as clinically evident lung involvement based on statistically significant univariate associations with pSS–ILD. Clinical trial registration None. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00828-3.
Collapse
Affiliation(s)
- Lin Weng
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yaqiong Chen
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Tao Liang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yihua Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dehao Liu
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ciyong Yu
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yudi Hu
- School of Medicine, Xiamen University, Xiamen, China
| | - Wei Lui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongliang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiangfang Chen
- Fuqing City Hospital affiliated to Fujian Medical University, Fuzhou, China
| | - Qiyuan Li
- Department of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University National Institute of Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Dana P Ascherman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Juan Chen
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
38
|
Hata A, Hino T, Putman RK, Yanagawa M, Hida T, Menon AA, Honda O, Yamada Y, Nishino M, Araki T, Valtchinov VI, Jinzaki M, Honda H, Ishigami K, Johkoh T, Tomiyama N, Christiani DC, Lynch DA, San José Estépar R, Washko GR, Cho MH, Silverman EK, Hunninghake GM, Hatabu H. Traction Bronchiectasis/Bronchiolectasis on CT Scans in Relationship to Clinical Outcomes and Mortality: The COPDGene Study. Radiology 2022; 304:694-701. [PMID: 35638925 PMCID: PMC9434811 DOI: 10.1148/radiol.212584] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023]
Abstract
Background The clinical impact of interstitial lung abnormalities (ILAs) on poor prognosis has been reported in many studies, but risk stratification in ILA will contribute to clinical practice. Purpose To investigate the association of traction bronchiectasis/bronchiolectasis index (TBI) with mortality and clinical outcomes in individuals with ILA by using the COPDGene cohort. Materials and Methods This study was a secondary analysis of prospectively collected data. Chest CT scans of participants with ILA for traction bronchiectasis/bronchiolectasis were evaluated and outcomes were compared with participants without ILA from the COPDGene study (January 2008 to June 2011). TBI was classified as follows: TBI-0, ILA without traction bronchiectasis/bronchiolectasis; TBI-1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; TBI-2, ILA with mild to moderate traction bronchiectasis; and TBI-3, ILA with severe traction bronchiectasis and/or honeycombing. Clinical outcomes and overall survival were compared among the TBI groups and the non-ILA group by using multivariable linear regression model and Cox proportional hazards model, respectively. Results Overall, 5295 participants (median age, 59 years; IQR, 52-66 years; 2779 men) were included, and 582 participants with ILA and 4713 participants without ILA were identified. TBI groups were associated with poorer clinical outcomes such as quality of life scores in the multivariable linear regression model (TBI-0: coefficient, 3.2 [95% CI: 0.6, 5.7; P = .01]; TBI-1: coefficient, 3.3 [95% CI: 1.1, 5.6; P = .003]; TBI-2: coefficient, 7.6 [95% CI: 4.0, 11; P < .001]; TBI-3: coefficient, 32 [95% CI: 17, 48; P < .001]). The multivariable Cox model demonstrated that ILA without traction bronchiectasis (TBI-0-1) and with traction bronchiectasis (TBI-2-3) were associated with shorter overall survival (TBI-0-1: hazard ratio [HR], 1.4 [95% CI: 1.0, 1.9; P = .049]; TBI-2-3: HR, 3.8 [95% CI: 2.6, 5.6; P < .001]). Conclusion Traction bronchiectasis/bronchiolectasis was associated with poorer clinical outcomes compared with the group without interstitial lung abnormalities; TBI-2 and 3 were associated with shorter survival. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee and Im in this issue.
Collapse
Affiliation(s)
- Akinori Hata
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Takuya Hino
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Rachel K. Putman
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Masahiro Yanagawa
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Tomoyuki Hida
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Aravind A. Menon
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Osamu Honda
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Yoshitake Yamada
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Mizuki Nishino
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Tetsuro Araki
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Vladimir I. Valtchinov
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Masahiro Jinzaki
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Hiroshi Honda
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Kousei Ishigami
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Takeshi Johkoh
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Noriyuki Tomiyama
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - David C. Christiani
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - David A. Lynch
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Raúl San José Estépar
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - George R. Washko
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Michael H. Cho
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Edwin K. Silverman
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Gary M. Hunninghake
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Hiroto Hatabu
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - for the COPDGene Investigators
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| |
Collapse
|
39
|
McDermott G, Gill R, Gagne S, Byrne S, Huang W, Wang X, Prisco LC, Zaccardelli A, Martin LW, Masto L, Kronzer VL, Shadick N, Dellaripa PF, Doyle TJ, Sparks JA. Demographic, Lifestyle, and Serologic Risk Factors for Rheumatoid Arthritis (RA)-associated Bronchiectasis: Role of RA-related Autoantibodies. J Rheumatol 2022; 49:672-679. [PMID: 35293341 PMCID: PMC9250607 DOI: 10.3899/jrheum.211242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate demographic, lifestyle, and serologic risk factors for isolated rheumatoid arthritis (RA)-associated bronchiectasis (RA-BR) that is not a result of interstitial lung disease (ILD). METHODS We performed a case-control study using patients with RA from the Mass General Brigham Biobank. We reviewed the records of all patients with RA meeting the 2010 American College of Rheumatology/European Alliance of Associations for Rheumatology criteria with computed tomography (CT) chest imaging to identify RA-BR cases and controls with RA and RA-related lung disease. For each patient, the CT chest imaging that was performed closest to enrollment was independently reviewed by 2 radiologists for the presence of RA-related lung diseases. Cases had clinical and radiologic evidence of RA-BR without interstitial lung abnormalities on imaging. Controls had RA and no evidence of bronchiectasis or ILD. We examined the associations between demographic, lifestyle, and serologic factors with RA-BR using multivariable logistic regression. RESULTS We identified 57 cases of isolated RA-BR and 360 RA controls without RA-related lung disease. In multivariable models, RA-BR was associated with older age at RA onset (OR 1.37 per 10 years, 95% CI 1.02-1.82), lower BMI at RA diagnosis (OR 0.94 per kg/m2, 95% CI 0.89-0.99), seropositive RA (OR 3.96, 95% CI 1.84-8.53), positive rheumatoid factor (OR 4.40, 95% CI 2.14-9.07), and positive anticyclic citrullinated peptide (OR 3.47, 95% CI 1.65-7.31). Higher titers of RA-related autoantibodies were associated with higher odds of RA-BR. CONCLUSION Seropositivity, older age at RA diagnosis, and lower BMI at RA onset were associated with isolated bronchiectasis in RA that was not a result of ILD. These findings expand the list of potential risk factors for RA-BR and suggest a pathogenic link between airway inflammation and RA-related autoantibodies.
Collapse
Affiliation(s)
- Gregory McDermott
- G. McDermott, MD, N. Shadick, MD, MPH, P.F. Dellaripa, MD, J.A. Sparks, MD, MMSc, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ritu Gill
- R. Gill, MD, Department of Radiology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Staci Gagne
- S. Gagne, MD, S. Byrne, MD, Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Suzanne Byrne
- S. Gagne, MD, S. Byrne, MD, Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Weixing Huang
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Xiaosong Wang
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lauren C Prisco
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alessandra Zaccardelli
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lily W Martin
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lucy Masto
- W. Huang, MSPH, X. Wang, MS, L.C. Prisco, BA, A. Zaccardelli, MS, L.W. Martin, BS, L. Masto, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vanessa L Kronzer
- V.L. Kronzer, MD, MSCI, Division of Rheumatology, Mayo Clinic, Rochester, Minnesota
| | - Nancy Shadick
- G. McDermott, MD, N. Shadick, MD, MPH, P.F. Dellaripa, MD, J.A. Sparks, MD, MMSc, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Paul F Dellaripa
- G. McDermott, MD, N. Shadick, MD, MPH, P.F. Dellaripa, MD, J.A. Sparks, MD, MMSc, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Tracy J Doyle
- T.J. Doyle, MD, MPH, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Sparks
- G. McDermott, MD, N. Shadick, MD, MPH, P.F. Dellaripa, MD, J.A. Sparks, MD, MMSc, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
40
|
Tomassetti S, Poletti V, Ravaglia C, Sverzellati N, Piciucchi S, Cozzi D, Luzzi V, Comin C, Wells AU. Incidental discovery of interstitial lung disease: diagnostic approach, surveillance and perspectives. Eur Respir Rev 2022; 31:31/164/210206. [PMID: 35418487 PMCID: PMC9488620 DOI: 10.1183/16000617.0206-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
The incidental discovery of pre-clinical interstitial lung disease (ILD) has led to the designation of interstitial lung abnormalities (ILA), a radiological entity defined as the incidental finding of computed tomography (CT) abnormalities affecting more than 5% of any lung zone. Two recent documents have redefined the borders of this entity and made the recommendation to monitor patients with ILA at risk of progression. In this narrative review, we will focus on some of the limits of the current approach, underlying the potential for progression to full-blown ILD of some patients with ILA and the numerous links between subpleural fibrotic ILA and idiopathic pulmonary fibrosis (IPF). Considering the large prevalence of ILA in the general population (7%), restricting monitoring only to cases considered at risk of progression appears a reasonable approach. However, this suggestion should not prevent pulmonary physicians from pursuing an early diagnosis of ILD and timely treatment where appropriate. In cases of suspected ILD, whether found incidentally or not, the pulmonary physician is still required to make a correct ILD diagnosis according to current guidelines, and eventually treat the patient accordingly. In patients with interstitial lung abnormalities (ILA), monitoring of those at risk of progression is currently recommended, and pulmonary physicians should pursue an early diagnosis when ILA become clinically significant to facilitate timely treatment https://bit.ly/3HKOQc8
Collapse
Affiliation(s)
- Sara Tomassetti
- Dept of Experimental and Clinical Medicine, Florence University, Florence, Italy .,Interventional Pneumology, Careggi University Hospital, Florence, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | | | | | - Diletta Cozzi
- Dept of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Valentina Luzzi
- Interventional Pneumology, Careggi University Hospital, Florence, Italy
| | - Camilla Comin
- Dept of Experimental and Clinical Medicine, Florence University, Florence, Italy
| | - Athol U Wells
- Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Predictors of long-term prognosis in rheumatoid arthritis-related interstitial lung disease. Sci Rep 2022; 12:9469. [PMID: 35676424 PMCID: PMC9177673 DOI: 10.1038/s41598-022-13474-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of the study was to identify specific clinical and serum protein biomarkers that are associated with longitudinal outcome of RA-associated interstitial lung disease (RA-ILD). 60 RA patients with clinical and serological profiles were assessed by HRCT and pulmonary function tests (PFTs) at baseline (Year 0) and 5 years post enrollment (Year 5). Progression versus non-progression was defined based on changes in Quantitative Modified HRCT scores and PFTs over time. Specific serum protein biomarkers were assessed in serum samples at baseline and Year 5 by Multiplex enzyme-linked immunosorbent assays (ELISAs). At Year 5, 32% of patients demonstrated progressive RA-ILD, 35% were stable, and 33% improved. Baseline age and rheumatoid factor (RF) were significantly different between RA-ILD outcomes of progression vs. no-progression (p < 0.05). Changes in levels of CXCL11/I-TAC and MMP13 over 5 years also distinguished pulmonary outcomes (p < 0.05). A final binary logistic regression model revealed that baseline age and changes in serum MMP13 as well as CXCL11/I-TAC were associated with RA-ILD progression at Year 5 (p < 0.01), with an AUC of 0.7772. Collectively, these analyses demonstrated that baseline clinical variables (age, RF) and shifts in levels of selected serum proteins (CXCL11/I-TAC, MMP13) were strongly linked to RA-ILD outcome over time.
Collapse
|
42
|
Giménez A, Mazzini S, Franquet T. El informe radiológico en patología intersticial pulmonar. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Kim JS, Axelsson GT, Moll M, Anderson MR, Bernstein EJ, Putman RK, Hida T, Hatabu H, Hoffman EA, Raghu G, Kawut SM, Doyle MF, Tracy R, Launer LJ, Manichaikul A, Rich SS, Lederer DJ, Gudnason V, Hobbs BD, Cho MH, Hunninghake GM, Garcia CK, Gudmundsson G, Barr RG, Podolanczuk AJ. Associations of Monocyte Count and Other Immune Cell Types with Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 205:795-805. [PMID: 34929108 PMCID: PMC10394677 DOI: 10.1164/rccm.202108-1967oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Higher blood monocyte counts are associated with worse survival in adults with clinically diagnosed pulmonary fibrosis. Their association with the development and progression of interstitial lung abnormalities (ILA) in humans is unknown. Objectives: We evaluated the associations of blood monocyte count, and other immune cell types, with ILA, high-attenuation areas, and FVC in four independent cohorts. Methods: We included participants with measured monocyte counts and computed tomographic (CT) imaging enrolled in MESA (Multi-Ethnic Study of Atherosclerosis, n = 484), AGES-Reykjavik (Age/Gene Environment Susceptibility Study, n = 3,547), COPDGene (Genetic Epidemiology of COPD, n = 2,719), and the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points, n = 646). Measurements and Main Results: After adjustment for covariates, a 1-SD increment in blood monocyte count was associated with ILA in MESA (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.0-1.8), AGES-Reykjavik (OR, 1.2; 95% CI, 1.1-1.3), COPDGene (OR, 1.3; 95% CI, 1.2-1.4), and ECLIPSE (OR, 1.2; 95% CI, 1.0-1.4). A higher monocyte count was associated with ILA progression over 5 years in AGES-Reykjavik (OR, 1.2; 95% CI, 1.0-1.3). Compared with participants without ILA, there was a higher percentage of activated monocytes among those with ILA in MESA. Higher monocyte count was associated with greater high-attenuation areas in MESA and lower FVC in MESA and COPDGene. Associations of other immune cell types were less consistent. Conclusions: Higher blood monocyte counts were associated with the presence and progression of interstitial lung abnormalities and lower FVC.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, and.,Department of Medicine, Columbia University, New York, New York
| | - Gísli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Matthew Moll
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Tomoyuki Hida
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Eric A Hoffman
- Department of Radiology.,Department of Medicine, and.,Department of Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Steven M Kawut
- Department of Medicine and.,Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, Vermont
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, Vermont
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute of on Aging, National Institutes of Health, Bethesda, Maryland
| | - Ani Manichaikul
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Brian D Hobbs
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael H Cho
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, New York, New York; and
| | - Anna J Podolanczuk
- Department of Medicine, Columbia University, New York, New York.,Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
44
|
Interstitial lung abnormalities: new insights between theory and clinical practice. Insights Imaging 2022; 13:6. [PMID: 35032230 PMCID: PMC8761184 DOI: 10.1186/s13244-021-01141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Interstitial lung abnormalities (ILAs) represent radiologic abnormalities incidentally detected on chest computed tomography (CT) examination, potentially related to interstitial lung diseases (ILD). Numerous studies have demonstrated that ILAs are associated with increased risk of progression toward pulmonary fibrosis and mortality. Some radiological patterns have been proven to be at a higher risk of progression. In this setting, the role of radiologists in reporting these interstitial abnormalities is critical. This review aims to discuss the most recent advancements in understanding this radiological entity and the open issues that still prevent the translation from theory to practice, emphasizing the importance of ILA recognition and adequately reporting in clinical practice.
Collapse
|
45
|
Esposito AJ, Sparks JA, Gill RR, Hatabu H, Schmidlin EJ, Hota PV, Poli S, Fletcher EA, Xiong W, Frits ML, Iannaccone CK, Prado M, Zaccardelli A, Marshall A, Dellaripa PF, Weinblatt ME, Shadick NA, Rosas IO, Doyle TJ. Screening for preclinical parenchymal lung disease in rheumatoid arthritis. Rheumatology (Oxford) 2021; 61:3234-3245. [PMID: 34875040 PMCID: PMC9348774 DOI: 10.1093/rheumatology/keab891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/21/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Pulmonary disease is a common extraarticular manifestation of RA associated with increased morbidity and mortality. No current strategies exist for screening this at-risk population for parenchymal lung disease, including emphysema and interstitial lung disease (ILD). METHODS RA patients without a diagnosis of ILD or chronic obstructive pulmonary disease underwent prospective and comprehensive clinical, laboratory, functional and radiological evaluations. High resolution CT (HRCT) scans were scored for preclinical emphysema and preclinical ILD and evaluated for other abnormalities. RESULTS Pulmonary imaging and/or functional abnormalities were identified in 78 (74%) of 106 subjects; 45% had preclinical parenchymal lung disease. These individuals were older with lower diffusion capacity but had similar smoking histories compared with no disease. Preclinical emphysema (36%), the most commonly detected abnormality, was associated with older age, higher anti-cyclic citrullinated peptide antibody titres and diffusion abnormalities. A significant proportion of preclinical emphysema occurred among never smokers (47%) with a predominantly panlobular pattern. Preclinical ILD (15%) was not associated with clinical, laboratory or functional measures. CONCLUSION We identified a high prevalence of undiagnosed preclinical parenchymal lung disease in RA driven primarily by isolated emphysema, suggesting that it may be a prevalent and previously unrecognized pulmonary manifestation of RA, even among never smokers. As clinical, laboratory and functional evaluations did not adequately identify preclinical parenchymal abnormalities, HRCT may be the most effective screening modality currently available for patients with RA.
Collapse
Affiliation(s)
| | | | - Ritu R Gill
- Department of Radiology, Beth Israel Deaconess Medical Center
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Eric J Schmidlin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Partha V Hota
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sergio Poli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elaine A Fletcher
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Wesley Xiong
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Michelle L Frits
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Christine K Iannaccone
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Maria Prado
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Alessandra Zaccardelli
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Allison Marshall
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Paul F Dellaripa
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Michael E Weinblatt
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Nancy A Shadick
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital
| | - Ivan O Rosas
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tracy J Doyle
- Correspondence to: Tracy J. Doyle, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Menon AA, Putman RK, Sanders JL, Hino T, Hata A, Nishino M, Ghosh AJ, Ash SY, Rosas IO, Cho MH, Lynch DA, Washko GR, Silverman EK, Hatabu H, Hunninghake GM. Interstitial Lung Abnormalities, Emphysema and Spirometry in Smokers. Chest 2021; 161:999-1010. [PMID: 34742688 DOI: 10.1016/j.chest.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Most pulmonary conditions reduce forced vital capacity (FVC), but studies of patients with combined pulmonary fibrosis and emphysema demonstrate that reductions in FVC are less than expected when these two conditions coexist clinically. RESEARCH QUESTION Do interstitial lung abnormalities (ILA), chest computed tomography (CT) imaging findings that may suggest an early stage of pulmonary fibrosis in undiagnosed individuals, affect the association between emphysema and FVC? STUDY DESIGN AND METHODS Measures of ILA and emphysema were available in 9579 and 5277 participants from phases 1 (2007-2011) and 2 (2012-2016) of COPDGene, respectively. ILA were defined by Fleischner Society guidelines. Adjusted linear regression models were used to assess the associations and interactions between ILA, emphysema, measures of spirometry and lung function. RESULTS ILA were present in 528 (6%), and 580 (11%), of participants in phases 1 and 2 of COPDGene, respectively. ILA modified the association between emphysema and FVC (P<0.0001 for interaction) in both phases. In phase 1, in those without ILA, a 5% increase in emphysema was associated with a reduction in FVC (-110 cc, 95% confidence interval [CI] -121, -100; P<0.0001) however, in those with ILA it was not (-11cc, 95% CI -53,31; P=0.59). In contrast, there was no interaction between ILA and emphysema on total lung capacity (TLC) nor on diffusing capacity of carbon monoxide (DLCO). INTERPRETATION The presence of ILA attenuates the reduction in FVC associated with emphysema.
Collapse
Affiliation(s)
- Aravind A Menon
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Rachel K Putman
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Jason L Sanders
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Takuya Hino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Akinori Hata
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Radiology, Osaka University, Osaka, Japan
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Auyon J Ghosh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Samuel Y Ash
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - David A Lynch
- Department of Radiology, National Jewish Health, and University of Colorado at Denver Health Sciences Center, Denver, CO
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA.
| |
Collapse
|
47
|
Liu Q, Zhang H, Han B, Jiang H, Chung KF, Li F. Interstitial lung abnormalities: What do we know and how do we manage? Expert Rev Respir Med 2021; 15:1551-1561. [PMID: 34689661 DOI: 10.1080/17476348.2021.1997598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interstitial lung abnormalities (ILAs), which refer to mild or subtle nongravity-dependent interstitial changes, may be neglected by some clinicians due to many reasons, such as lack of diagnostic criteria for ILAs and absence of available treatments and surveillance strategies. However, without intervention, some ILAs may progress to interstitial lung disease (ILD). This review summarizes our current knowledge of this condition and ways of diagnosing it together with current management. We hope that this will lead to better recognition of ILAs. AREAS COVERED We reviewed the literature on PubMed between 2008 and 2020 focusing on prevalence, etiology, symptoms, diagnostic biomarkers, clinical associations, and management of ILAs. EXPERT OPINION Timely diagnosis with close monitoring of ILAs and appropriate intervention should be recognized as the management approach to ILAs. Research into ILAs should continue to improve its management.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Baohui Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Handong Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| |
Collapse
|
48
|
Hata A, Schiebler ML, Lynch DA, Hatabu H. Interstitial Lung Abnormalities: State of the Art. Radiology 2021; 301:19-34. [PMID: 34374589 DOI: 10.1148/radiol.2021204367] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The clinical importance of interstitial lung abnormality (ILA) is increasingly recognized. In July 2020, the Fleischner Society published a position paper about ILA. The purposes of this article are to summarize the definition, existing evidence, clinical management, and unresolved issues for ILA from a radiologic standpoint and to provide a practical guide for radiologists. ILA is a common incidental finding at CT and is often progressive and associated with worsened clinical outcomes. The hazard ratios for mortality range from 1.3 to 2.7 in large cohorts. Risk factors for ILA include age, smoking status, other inhalational exposures, and genetic factors (eg, gene encoding mucin 5B variant). Radiologists should systematically record the presence, morphologic characteristics, distribution, and subcategories of ILA (ie, nonsubpleural, subpleural nonfibrotic, and subpleural fibrotic), as these are informative for predicting progression and mortality. Clinically significant interstitial lung disease should not be considered ILA. Individuals with ILA are triaged into higher- and lower-risk groups depending on their risk factors for progression, and systematic follow-up, including CT, should be considered for the higher-risk group. Artificial intelligence-based automated analysis for ILA may be helpful, but further validation and improvement are needed. Radiologists have a central role in clinical management and research on ILA.
Collapse
Affiliation(s)
- Akinori Hata
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Mark L Schiebler
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - David A Lynch
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Hiroto Hatabu
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| |
Collapse
|
49
|
Spagnolo P, Ryerson CJ, Putman R, Oldham J, Salisbury M, Sverzellati N, Valenzuela C, Guler S, Jones S, Wijsenbeek M, Cottin V. Early diagnosis of fibrotic interstitial lung disease: challenges and opportunities. THE LANCET RESPIRATORY MEDICINE 2021; 9:1065-1076. [PMID: 34331867 DOI: 10.1016/s2213-2600(21)00017-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Many patients with interstitial lung disease (ILD) develop pulmonary fibrosis, which can lead to reduced quality of life and early mortality. Patients with fibrotic ILD often have considerable diagnostic delay, and are exposed to unnecessary and costly diagnostic procedures, and ineffective and potentially harmful treatments. Non-specific and insidious presenting symptoms, along with scarce knowledge of fibrotic ILD among primary care physicians and non-ILD experts, are some of the main causes of diagnostic delay. Here, we outline and discuss the challenges facing both patients and physicians in making an early diagnosis of fibrotic ILD, and explore strategies to facilitate early identification of patients with fibrotic ILD, both in the general population and among individuals at highest risk of developing the disease. Finally, we discuss controversies and key uncertainties in screening programmes for fibrotic ILD. Timely identification and accurate diagnosis of patients with fibrotic ILD poses several substantial clinical challenges, but could potentially improve outcomes through early initiation of appropriate management.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Respiratory Disease Unit, University of Padova, Padova, Italy.
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Rachel Putman
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Justin Oldham
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Davis, CA, USA
| | - Margaret Salisbury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Sverzellati
- Department of Surgery, Section of Diagnostic Imaging, University of Parma, Parma, Italy
| | - Claudia Valenzuela
- Instituto de Investigación Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Sabina Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Steve Jones
- Action for Pulmonary Fibrosis, Peterborough, UK
| | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France; Department of Respiratory Medicine, Université de Lyon, Université Claude Bernard Lyon 1, UMR754, IVPC, Lyon, France
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Unclassifiable interstitial lung disease (ILD) comprises a subset of ILDs which cannot be classified according to the current diagnostic framework. This is a likely a heterogeneous group of diseases rather than a single entity and it is poorly defined and hence problematic for prognosis and therapy. RECENT FINDINGS With increased treatment options for progressive fibrosing ILD it is increasingly relevant to correctly categorise ILD. SUMMARY This review article will summarise the definition and reasons for a diagnosis of unclassifiable ILD, the current management options and possible future approaches to improve diagnosis and differentiation within this broad subset. Finally, we will describe the implications of the labelling of unclassifiable ILD in clinical practice and research and whether the term 'unclassified' should be used, implying a less definitive diagnosis.
Collapse
|